home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!gatech!destroyer!cs.ubc.ca!unixg.ubc.ca!liuli
- From: liuli@unixg.ubc.ca (Li Liu)
- Newsgroups: sci.math
- Subject: Re: proof wanted 2
- Date: 10 Jan 1993 09:54:05 GMT
- Organization: University of British Columbia, Vancouver, B.C., Canada
- Lines: 9
- Message-ID: <1iorntINNoal@skeena.ucs.ubc.ca>
- References: <1993Jan8.195646.1694@cc.umontreal.ca> <1ikq9eINNmue@roundup.crhc.uiuc.edu> <1993Jan9.193759.3671@Princeton.EDU>
- NNTP-Posting-Host: unixg.ubc.ca
-
- The claim that there is a closest point in C (a close set) to a point
- x (a point outside C) is not true for general metric spaces.
-
- A simple example is to take the metric space to be { 1/n | n is positive
- integers }, under the usual metric d(a,b)= |a-b|. Let C be the space
- itself. C is closed. Let x be 0. There is no point in C that is closet to
- zero.
-
-
-