home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!mcsun!julienas!seti!ausone.inria.fr!menissie
- From: menissie@ausone.inria.fr (Valerie Menissier-Morain)
- Newsgroups: sci.math
- Subject: Re: sum(i=1 to n, i^3) = ?? URGENT !!
- Message-ID: <4820@seti.inria.fr>
- Date: 8 Jan 93 10:37:40 GMT
- References: <1993Jan7.145215@imhfhp16.epfl.ch> <8979@lhdsy1.lahabra.chevron.com>
- Sender: news@seti.inria.fr
- Organization: INRIA * Rocquencourt BP 105 * F-78153 LE CHESNAY CEDEX* France
- Lines: 42
-
- In article <8979@lhdsy1.lahabra.chevron.com>, jgrij@lhdsy1.lahabra.chevron.com (Joey J. Griffin) writes:
- |>
- [deleted]
- |> 1^3 + 2^3 + 3^3 + ... + n^3 = (1 + 2 + 3 + ... n) ^ 2
- |> Proof by induction.
- --
-
- In fact there is a very beautiful geometrical proof of this assertion:
-
- If you consider two squares with each side of length
- (1+2...+(n-1)) and (1+2+...+n), the difference of the surfaces
- of these two squares is exactly n^3 as on the following
- figure:
-
- ------------------------
- |/ / / / / / / / / / / |
- |/ / / / / / / / / / / |
- |/ / / / / / / / / / / |
- n |/ / / / / / / / / / / |
- |/ / / / / / / / / / / |
- |/ / / / / / / / / / / |
- |/_/_/_/_/_/ / / / / / |
- | |\ \ \ \ \ \ |
- | |\ \ \ \ \ \ |
- (1+2+...+n-1) | |\ \ \ \ \ \ |
- | |\ \ \ \ \ \ |
- |_________|\_\_\_\_\_\_|
-
- (1+2+...+n-1) n
-
- The difference of the two surfaces is:
-
- n*((1+...+n-1)+n) (the upper rectangle / / /)
- + (1+...+n-1)*n (the lower rectangle \ \ \)
- = n*(2*(1+...+n-1)+n) = n^3
-
- ------------------- Vale'rie ME'NISSIER - MORAIN -----------------------------
- INRIA Projet Formel Tel: (33 1) (16 1) 39 63 55 98
- Domaine de Voluceau Fax: (33 1) (16 1) 39 63 53 30
- 78153 Rocquencourt e-mail: menissie@margaux.inria.fr
- BP 105
- ------------------------------------------------------------------------------
-