home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!stanford.edu!nntp.Stanford.EDU!ilan
- From: ilan@leland.Stanford.EDU (ilan vardi)
- Subject: Digits of Pi
- Message-ID: <1992Dec17.070938.9229@leland.Stanford.EDU>
- Sender: news@leland.Stanford.EDU (USENET News System)
- Organization: DSG, Stanford University, CA 94305, USA
- Date: Thu, 17 Dec 92 07:09:38 GMT
- Lines: 16
-
- I have shown that the harmonic mean of the continued fraction digits
- of almost every number 0<x<1 converges to
-
- 1/(3/2 + (2/log 2) sum_{n>2} (2^(n-2)-1) (zeta'(n) + 2^(-n) log 2))
-
- = 1.74540566224073468634...
-
- R.W. Gosper then checked that the harmonic mean of the first million
- digits of pi is about 1.745942 and for the first 17 million digits
- it's about 1.745882.
-
- So pi seems to not fail this randomness test. On the other hand, the
- harmonic mean of the continued fraction digits of e can easily be
- shown to converge to 1.5
-
- -Ilan Vardi
-