home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!zaphod.mps.ohio-state.edu!rpi!batcomputer!munnari.oz.au!uniwa!ycchin
- From: ycchin@tartarus.uwa.edu.au (Chin Yih Chong)
- Subject: A puzzle! (Re)
- Message-ID: <1992Jul30.072300.13843@uniwa.uwa.edu.au>
- Summary: A puzzle!
- Keywords: A puzzle! (Re)
- Sender: news@uniwa.uwa.edu.au (USENET News System)
- Nntp-Posting-Host: tartarus.uwa.edu.au
- Organization: University of Western Australia
- Date: Thu, 30 Jul 1992 07:23:00 GMT
- Lines: 38
-
-
- The series given by P.Nambi can be broken down as follow:
-
- 4 = 2^2
- 72 = (2^3)*(3^2)
- 21600 = (2^5)*(3^3)*(5^2)
- 190512000 = (2^7)*(3^5)*(5^3)*(7^2)
- 580909190400000 = (2^11)*(3^7)*(5^5)*(7^3)*(11^2)
-
- I reckoned that the general formula is
-
-
- n
- ___
- | |
- | | p(i)^p(n+1-i)
- | |
-
- where p(i) stands for the i-th prime number.
-
-
- so the next number in the list is
-
- 428616352408083840000000! phew!
-
- Have a nice time multiplying the next number in the row!
-
-
- ^ ^
- O O
- ~
- \_/
-
- Y.C.CHIN
-
- Any mistake please email ycchin@tartarus.uwa.edu.au
-
-
-