home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!sun-barr!cs.utexas.edu!torn!watserv1!watdragon.uwaterloo.ca!daisy.waterloo.edu!deghare
- From: deghare@daisy.waterloo.edu (Dave Hare)
- Subject: Re: Need help!
- Message-ID: <Bs7osq.4rw@watdragon.uwaterloo.ca>
- Sender: news@watdragon.uwaterloo.ca (USENET News System)
- Organization: University of Waterloo
- References: <chepan.712505966@gsusgi1.gsu.edu>
- Date: Thu, 30 Jul 1992 17:05:13 GMT
- Lines: 20
-
- In article <chepan.712505966@gsusgi1.gsu.edu> chepan@gsusgi1.gsu.edu (Parthasarathy Nambi) writes:
- > I need help in solving the equation:
- >
- > e^(-x) - x = e^(-y) + y
- >
- > For what values of x and y this equation is true?
-
- Let W(z) be the inverse of the function z -> z*e^z . Then solving the
- given equation for x in terms of y we get:
-
- x = W(e^((y*e^y+1) * e^(-y))) - y - e^(-y)
-
- This is the relation you are seeking.
-
- Note that as the function W() has an infinite number of branches, there are
- an infinite number of solutions x for each value of y.
-
- (Solution found with the aid of MapleV.)
-
- Dave Hare
-