home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!dtix!darwin.sura.net!wupost!gumby!destroyer!sol.ctr.columbia.edu!cs.columbia.edu!ohsie
- From: ohsie@cs.columbia.edu (David Ohsie)
- Newsgroups: sci.math
- Subject: Re: Group Theory Question
- Keywords: group, coset
- Message-ID: <Bs6GM7.E8@cs.columbia.edu>
- Date: 30 Jul 92 01:10:55 GMT
- References: <36049@sdcc12.ucsd.edu>
- Sender: news@cs.columbia.edu (The Daily News)
- Distribution: usa
- Organization: Columbia University Department of Computer Science
- Lines: 23
-
- In article <36049@sdcc12.ucsd.edu> dmassey@sdcc3.ucsd.edu (Daniel Massey) writes:
- >G is an abelian group and H a subgroup of G. Prove their exists
- >a subgroup of G which is iso. to G/H.
- >
- >Thanks,
- >Dan Massey
-
- counterexample:
-
- G=integers under addition, H=subgroup generated by 2.
-
- G/H is simply the integers under addition mod 2. both elements are
- their own inverse, but no integer but 0 is its own inverse so there is
- no isomorphic subgroup.
-
-
-
-
- --
- david alan ohsie
- internet: ohsie@cs.columbia.edu
- usenet: ...!rutgers!columbia!ohsie
- bitnet: ohsie%cs.columbia.edu@cuvmb
-