home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!ogicse!das-news.harvard.edu!husc-news.harvard.edu!zariski!kubo
- From: kubo@zariski.harvard.edu (Tal Kubo)
- Newsgroups: sci.math
- Subject: Re: A Divisibility Problem
- Message-ID: <1992Jul28.150549.14261@husc3.harvard.edu>
- Date: 28 Jul 92 19:05:48 GMT
- Article-I.D.: husc3.1992Jul28.150549.14261
- References: <1992Jul28.115747.20313@news.tu-graz.ac.at>
- Organization: Dept. of Math, Harvard Univ.
- Lines: 11
- Nntp-Posting-Host: zariski.harvard.edu
-
- In article <1992Jul28.115747.20313@news.tu-graz.ac.at>
- hhassler@iaik.tu-graz.ac.at (Hannes Hassler) writes:
-
- >(3) A more interesting result is the following: Given a set of 2n
- > integers, one
- > can always choose a subset S of cardinality n and with sum
- > divisible by n.
- > The proof of this is left to the reader as an exercise.
-
- A bit harder is the same exercise with (2n-1) integers.
- [A set of (n-1) zeros and (n-1) ones shows that (2n-2) is impossible.]
-