home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!news.univie.ac.at!news.tu-graz.ac.at!iaik.tu-graz.ac.at!hhassler
- From: hhassler@iaik.tu-graz.ac.at (Hannes Hassler)
- Subject: Integer Sequence Problem
- Message-ID: <1992Jul28.173452.24364@news.tu-graz.ac.at>
- Sender: news@news.tu-graz.ac.at (USENET News System)
- Nntp-Posting-Host: fiaikds01.tu-graz.ac.at
- Organization: Institut fuer Angewandte Informationsverarbeitung, TU Graz
- Date: Tue, 28 Jul 92 17:34:52 GMT
- Lines: 13
-
- For S an infinite, increasing sequence of positive integers (1=a_1 < a_2 <
- a_3 < ... < a_i < a_{i+1} < ...), we define the VALUE val(S) of S
-
- val(S) := sup_{n>1} \sum_{i=1}^n a_i / a_{n-1}
-
- (in words: For every n, sum up the first n terms of S and divide this sum
- by the (n-1)st term. Then val(S) is the supremum of all these values).
-
- PROBLEM: Find the minimum (infimum) of val(S) over all possible sequences S.
-
- ***************************************************************************
- Hannes Hassler
- ***************************************************************************
-