home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!munnari.oz.au!uniwa!ycchin
- From: ycchin@tartarus.uwa.edu.au (Chin Yih Chong)
- Subject: Re:A puzzle!
- Message-ID: <1992Jul27.024344.9337@uniwa.uwa.edu.au>
- Summary: Re: A puzzle!
- Keywords: Re: A puzzle!
- Sender: news@uniwa.uwa.edu.au (USENET News System)
- Nntp-Posting-Host: tartarus.uwa.edu.au
- Organization: University of Western Australia
- Date: Mon, 27 Jul 1992 02:43:44 GMT
- Lines: 40
-
-
- Reply to the puzzle:
-
-
- 4 72 21600 ...
-
-
- Observation 4 = 2^2
- 72 = (2^3)*(3^2)
- 21600 = (2^5)*(3^3)*(5^2)
- 1905120000 = (2^7)*(3^5)*(5^3)*(7^2)
- 580909190400000 = (2^11)*(3^7)*(5^5)*(7^3)*(11^2)
-
- I reckon that the general formalu is
-
- _n_
- | |
- | | P(i)^P(n-i+1)
- i=1
-
- where P(n) stands for the nth prime number.
-
- So, I supposed the next number to the list is
-
- 428616352408083840000000 phew!
-
- Hope this answer the question....
-
-
- ^ ^
- O O
- ~
- \_/
-
- Y.C.CHIN
-
- Please email me if I have made any mistake!
- Address: ycchin@tartarus.uwa.edu.au
-
-
-