home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!cs.utexas.edu!swrinde!elroy.jpl.nasa.gov!nntp-server.caltech.edu!harry!allenk
- From: allenk@harry.ugcs.caltech.edu (Allen Knutson)
- Newsgroups: sci.math
- Subject: Re: Group Theory Question
- Keywords: group, coset
- Message-ID: <allenk.711970768@harry>
- Date: 24 Jul 92 09:39:28 GMT
- References: <36049@sdcc12.ucsd.edu>
- Sender: news@cco.caltech.edu
- Distribution: usa
- Organization: California Institute of Technology, Pasadena
- Lines: 10
- Nntp-Posting-Host: harry.ugcs.caltech.edu
-
- dmassey@sdcc3.ucsd.edu (Daniel Massey) writes:
-
- >I'm reviewing algebra and have gotten stuck on the following
- >seemingly simple question:
-
- >G is an abelian group and H a subgroup of G. Prove their exists
- >a subgroup of G which is iso. to G/H.
-
- It's easy once you've classified the finite abelian groups, and false for
- many infinite G,H such as the integers and the even integers. Allen K.
-