home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
The World of Computer Software
/
World_Of_Computer_Software-02-385-Vol-1of3.iso
/
i
/
iritsm3s.zip
/
irit
/
geomvals.c
< prev
next >
Wrap
C/C++ Source or Header
|
1992-01-25
|
10KB
|
277 lines
/*****************************************************************************
* "Irit" - the 3d polygonal solid modeller. *
* *
* Written by: Gershon Elber Ver 0.2, Mar. 1990 *
******************************************************************************
* Module to evaluate geometric properties of the objects such as area, *
* volume, number of polygons etc. *
*****************************************************************************/
#include <stdio.h>
#include <ctype.h>
#include <math.h>
#include <string.h>
#include "program.h"
#include "allocate.h"
#include "convex.h"
#include "geomat3d.h"
#include "geomvals.h"
#include "objects.h"
#include "windows.h"
#include "graphgen.h"
static RealType PolygonXYArea(VertexStruct *VHead);
static RealType Polygon3VrtxXYArea(PointType Pt1, PointType Pt2, PointType Pt3);
/*****************************************************************************
* Routine to evaluate the Area of the given geom. object, in object unit. *
* Algorithm (for each polygon): V3 *
* 1. Set Polygon Area to be zero. /\ *
* Make a copy of the original polygon / \ *
* and transform it to a XY parallel plane. / \V2 *
* Find the minimum Y value of the polygon V4/ | *
* in the XY plane \ | *
* 2. Let V(0) be the first vertex, V(n) the last one \ | *
* for i goes from 0 to n-1 add to Area the area of \_______| *
* below edge V(i), V(i+1): V0 V1 *
* PolygonArea += (V(i+1)x - V(i)x) * (V(i+1)y' - V(i)y') / 2 *
* where V(i)y' is V(i)y - MinY, where MinY is the polygon minimum Y value *
* 3. Note that the result of step 2 is the area of the polygon itself. *
* However it might be negative, so take the absolute result of step 2 and *
* add it to the global ObjectArea. *
* Note step 2 is performed by another aux. routine below: PolygonXYArea. *
*****************************************************************************/
double
#ifdef __MSDOS__
cdecl
#endif /* __MSDOS__ */
PolyObjectArea(ObjectStruct *PObj)
{
RealType ObjectArea = 0.0;
MatrixType RotMat;
PolygonStruct *Pl;
VertexStruct *V, *VHead;
if (!IS_POLY_OBJ(PObj))
FatalError("Geometric property requested on non polygonal object");
if (IS_POLYLINE_OBJ(PObj)) {
WndwInputWindowPutStr("Warning: geometric object is polyline - zero area");
return 0.0;
}
Pl = PObj -> U.Pl.P;
while (Pl != NULL) {
V = VHead = CopyVList(Pl -> V); /* Dont transform original object. */
/* Create the trans. matrix to transform the polygon to XY parallel */
GenRotateMatrix(RotMat, Pl -> Plane); /* plane. */
do {
MatMultVecby4by4(V -> Pt, V -> Pt, RotMat);
V = V -> Pnext;
}
while (V != NULL && V != VHead);
ObjectArea += PolygonXYArea(VHead);
MyFree((char *) VHead, ALLOC_VERTEX); /* Free the vertices list. */
Pl = Pl -> Pnext;
}
return ObjectArea;
}
/*****************************************************************************
* Routine to evaluate the area of the given polygon projection on the XY *
* plane. Note the polygon does not have to be on a XY parallel plane, as *
* only its XY projection is considered (Z is ignored). Returns the area of *
* its XY parallel projection. *
* See GeomObjectArea above for algorithm: *
*****************************************************************************/
static RealType PolygonXYArea(VertexStruct *VHead)
{
RealType PolygonArea = 0.0, MinY;
VertexStruct *V = VHead, *Vnext;
MinY = V -> Pt[1];
V = V -> Pnext;
while (V != VHead && V != NULL /* Should not happen! */) {
if (MinY > V -> Pt[1]) MinY = V -> Pt[1];
V = V -> Pnext;
}
Vnext = V -> Pnext;
MinY *= 2.0; /* Instead of subtracting twice each time. */
do {
/* Evaluate area below edge V-Vnext relative to Y level MinY. Note */
/* it can come out negative, but thats o.k. as the sum of all these */
/* quadraliterals should be exactly the area (up to correct sign). */
PolygonArea += (Vnext -> Pt[0] - V -> Pt[0]) *
(Vnext -> Pt[1] + V -> Pt[1] - MinY) / 2.0;
V = Vnext;
Vnext = V -> Pnext;
}
while (V != VHead && V != NULL /* Should not happen! */);
return ABS(PolygonArea);
}
/*****************************************************************************
* Routine to evaluate the Volume of the given geom object, in object unit. *
* This routine has a side effect that all non-convex polygons will be *
* splitted to convex ones. *
* Algorithm (for each polygon, and let ObjMinY be the minimum OBJECT Y): *
* V3 *
* 1. Set Polygon Area to be zero. /\ *
* Let V(0) be the first vertex, V(n) the last. / \ *
* For i goes from 1 to n-1 form triangles / \V2 *
* by V(0), V(i), V(i+1). For each such V4/ | *
* triangle do: \ | *
* 1.1. Find the vertex (out of V(0), V(i), V(i+1)) \ | *
* with the minimum Z - TriMinY. \_______| *
* 1.2. The volume below V(0), V(i), V(i+1) triangle, V0 V1 *
* relative to ObjMinZ level, is the sum of: *
* 1.2.1. volume of V'(0), V'(i), V'(i+1) - the *
* area of projection of V(0), V(i), V(i+1) on XY parallel *
* plane, times (TriMinZ - ObjMinZ). *
* 1.2.2. Assume V(0) is the one with the PolyMinZ. Let V"(i) and *
* V"(i+1) be the projections of V(i) and V(i+1) on the plane *
* Z = PolyZMin. The volume above 1.2.1. and below the polygon *
* (triangle!) will be: the area of quadraliteral V(i), V(i+1),*
* V"(i+1), V"(i), times distance of V(0) for quadraliteral *
* plane divided by 3. *
* 1.3. If Z component of polygon normal is negative add 1.2. result to *
* ObjectVolume, else subtract it. *
*****************************************************************************/
double
#ifdef __MSDOS__
cdecl
#endif /* __MSDOS__ */
PolyObjectVolume(ObjectStruct *PObj)
{
int PlaneExists;
RealType ObjVolume = 0.0, ObjMinZ, TriMinZ, Area, PolygonVolume, Dist;
PointType Pt1;
PlaneType Plane;
PolygonStruct *Pl;
VertexStruct *V, *VHead, *Vnext, *Vtemp;
if (!IS_POLY_OBJ(PObj))
FatalError("Geometric property requested on non polygonal object");
if (IS_POLYLINE_OBJ(PObj)) {
WndwInputWindowPutStr("Warning: geometric object is polyline - zero area");
return 0.0;
}
ObjMinZ = INFINITY; /* Find Object minimum Z value (used as min level). */
Pl = PObj -> U.Pl.P;
while (Pl != NULL) {
V = VHead = Pl -> V;
do {
if (V -> Pt[2] < ObjMinZ) ObjMinZ = V -> Pt[2];
V = V -> Pnext;
}
while (V != VHead && V != NULL);
Pl = Pl -> Pnext;
}
ConvexPolyObject(PObj); /* Make sure all polygons are convex. */
Pl = PObj -> U.Pl.P;
while (Pl != NULL) {
PolygonVolume = 0.0; /* Volume below poly relative to ObjMinZ level. */
V = Vtemp = VHead = Pl -> V;/* We set VHead to be vertex with min Z: */
do {
if (V -> Pt[2] < Vtemp -> Pt[2]) Vtemp = V;
V = V -> Pnext;
}
while (V != VHead && V != NULL);
VHead = Vtemp; /* Now VHead is the one with lowest Z in polygon! */
TriMinZ = VHead -> Pt[2]; /* Save this Z for fast access. */
V = VHead -> Pnext;
Vnext = V -> Pnext;
do {
/* VHead, V, Vnext form the triangle - find volume 1.2.1. above: */
Area = Polygon3VrtxXYArea(VHead -> Pt, V -> Pt, Vnext -> Pt);
PolygonVolume += Area * (TriMinZ - ObjMinZ);
/* VHead, V, Vnext form the triangle - find volume 1.2.2. above: */
Area = sqrt(SQR(V -> Pt[0] - Vnext -> Pt[0]) + /* XY distance. */
SQR(V -> Pt[1] - Vnext -> Pt[1])) *
((V -> Pt[2] + Vnext -> Pt[2]) / 2.0 - TriMinZ);
PT_COPY(Pt1, V -> Pt);
Pt1[2] = TriMinZ;
if ((PlaneExists =
CGPlaneFrom3Points(Plane, V -> Pt, Vnext -> Pt, Pt1)) == 0) {
/* Try second pt projected to Z = TriMinZ plane as third pt. */
PT_COPY(Pt1, Vnext -> Pt);
Pt1[2] = TriMinZ;
PlaneExists =
CGPlaneFrom3Points(Plane, V -> Pt, Vnext -> Pt, Pt1);
}
if (PlaneExists) {
Dist = CGDistPointPlane(VHead -> Pt, Plane);
PolygonVolume += Area * ABS(Dist) / 3.0;
}
V = Vnext;
Vnext = V -> Pnext;
}
while (Vnext != VHead);
if (Pl -> Plane[2] < 0.0)
ObjVolume += PolygonVolume;
else
ObjVolume -= PolygonVolume;
Pl = Pl -> Pnext;
}
return ObjVolume;
}
/*****************************************************************************
* Routine to evaluate the area of the given triangle projected to the XY *
* plane, given as 3 Points. Only the X & Y components are considered. *
* See PolyObjectArea above for algorithm: *
*****************************************************************************/
static RealType Polygon3VrtxXYArea(PointType Pt1, PointType Pt2, PointType Pt3)
{
RealType PolygonArea = 0.0, MinY;
MinY = MIN(Pt1[1], MIN(Pt2[1], Pt3[1])) * 2.0;
PolygonArea += (Pt2[0] - Pt1[0]) * (Pt2[1] + Pt1[1] - MinY) / 2.0;
PolygonArea += (Pt3[0] - Pt2[0]) * (Pt3[1] + Pt2[1] - MinY) / 2.0;
PolygonArea += (Pt1[0] - Pt3[0]) * (Pt1[1] + Pt3[1] - MinY) / 2.0;
return ABS(PolygonArea);
}
/*****************************************************************************
* Routine to count number of polygons in given geometric object. *
*****************************************************************************/
double
#ifdef __MSDOS__
cdecl
#endif /* __MSDOS__ */
PolyCountPolys(ObjectStruct *PObj)
{
int Count = 0;
PolygonStruct *Pl;
if (!IS_POLY_OBJ(PObj))
FatalError("Geometric property requested on non polygonal object");
Pl = PObj -> U.Pl.P;
while (Pl != NULL) {
Count++;
Pl = Pl -> Pnext;
}
return ((double) Count);
}