home *** CD-ROM | disk | FTP | other *** search
- { SCCSid "@(#)rayinit.cal 2.4 8/17/92 LBL" }
-
- {
- Initialization file for Radiance.
-
- The following are predefined:
-
- Dx, Dy, Dz - ray direction
- Nx, Ny, Nz - surface normal
- Px, Py, Pz - intersection point
- T - distance from start
- Ts - single ray (shadow) distance
- Rdot - ray dot product
- S - world scale
- Tx, Ty, Tz - world origin
- Ix, Iy, Iz - world i unit vector
- Jx, Jy, Jz - world j unit vector
- Kx, Ky, Kz - world k unit vector
- arg(n) - real arguments, arg(0) is count
-
- For brdf functions, the following are also available:
-
- NxP, NyP, NzP - perturbed surface normal
- RdotP - perturbed ray dot product
- CrP, CgP, CbP - perturbed material color
-
- Library functions:
-
- if(a, b, c) - if a positive, return b, else c
-
- select(N, a1, a2, ..) - return aN
-
- sqrt(x) - square root function
-
- sin(x), cos(x), tan(x),
- asin(x), acos(x),
- atan(x), atan2(y,x) - standard trig functions
-
- floor(x), ceil(x) - g.l.b. & l.u.b.
-
- exp(x), log(x), log10(x) - exponent and log functions
-
- erf(z), erfc(z) - error functions
-
- rand(x) - pseudo-random function (0 to 1)
-
- hermite(p0,p1,r0,r1,t) - 1-dimensional hermite polynomial
-
- noise3(x,y,z), noise3a(x,y,z),
- noise3b(x,y,z), noise3c(x,y,z) - noise function with gradient (-1 to 1)
-
- fnoise3(x,y,z) - fractal noise function (-1 to 1)
- }
-
- { Backward compatibility }
- AC = arg(0);
- A1 = arg(1); A2 = arg(2); A3 = arg(3); A4 = arg(4); A5 = arg(5);
- A6 = arg(6); A7 = arg(7); A8 = arg(8); A9 = arg(9); A10 = arg(10);
-
- { Forward compatibility (?) }
- D(i) = select(i, Dx, Dy, Dz);
- N(i) = select(i, Nx, Ny, Nz);
- P(i) = select(i, Px, Py, Pz);
- noise3d(i,x,y,z) = select(i, noise3a(x,y,z), noise3b(x,y,z), noise3c(x,y,z));
-
- { More robust versions of library functions }
- bound(a,x,b) : if(a-x, a, if(x-b, b, x));
- Acos(x) : acos(bound(-1,x,1));
- Asin(x) : asin(bound(-1,x,1));
- Exp(x) : if(-x-100, 0, exp(x));
- Sqrt(x) : if(x, sqrt(x), 0);
-
- { Useful constants }
- PI : 3.14159265358979323846;
- DEGREE : PI/180;
- FTINY : 1e-7;
-
- { Useful functions }
- and(a,b) : if( a, b, a );
- or(a,b) : if( a, a, b );
- not(a) : if( a, -1, 1 );
- abs(x) : if( x, x, -x );
- sgn(x) : if( x, 1, if(-x, -1, 0) );
- sq(x) : x*x;
- max(a,b) : if( a-b, a, b );
- min(a,b) : if( a-b, b, a );
- inside(a,x,b) : and(x-a,b-x);
- frac(x) : x - floor(x);
- mod(n,d) : n - floor(n/d)*d;
- tri(n,d) : abs( d - mod(n-d,2*d) );
- linterp(t,p0,p1) : (1-t)*p0 + t*p1;
-
- noop(v) = v;
- clip(v) = bound(0,v,1);
- noneg(v) = if(v,v,0);
- red(r,g,b) = if(r,r,0);
- green(r,g,b) = if(g,g,0);
- blue(r,g,b) = if(b,b,0);
- grey(r,g,b) = noneg(.263*r + .655*g + .082*b);
- clip_r(r,g,b) = bound(0,r,1);
- clip_g(r,g,b) = bound(0,g,1);
- clip_b(r,g,b) = bound(0,b,1);
- clipgrey(r,g,b) = bound(0,grey(r,g,b),1);
-
- dot(v1,v2) : v1(1)*v2(1) + v1(2)*v2(2) + v1(3)*v2(3);
- cross(i,v1,v2) : select(i, v1(2)*v2(3) - v1(3)*v2(2),
- v1(3)*v2(1) - v1(1)*v2(3),
- v1(1)*v2(2) - v1(2)*v2(1));
-
- fade(near_val,far_val,dist) = far_val +
- if (16-dist, (near_val-far_val)/(1+dist*dist), 0);
-
- bezier(p1, p2, p3, p4, t) = p1 * (1+t*(-3+t*(3-t))) +
- p2 * 3*t*(1+t*(-2+t)) +
- p3 * 3*t*t*(1-t) +
- p4 * t*t*t ;
-
- bspline(pp, p0, p1, pn, t) = pp * (1/6+t*(-.5+t*(.5-1/6*t))) +
- p0 * (2/3+t*t*(-1+.5*t)) +
- p1 * (1/6+t*(.5+t*(.5-.5*t))) +
- pn * (1/6*t*t*t) ;
-
- turbulence(x,y,z,s) = if( s-1.01, 0, abs(noise3(x/s,y/s,z/s)*s) +
- turbulence(x,y,z,2*s) );
- turbulencea(x,y,z,s) = if( s-1.01, 0,
- sgn(noise3(x/s,y/s,z/s))*noise3a(x/s,y/s,z/s) +
- turbulencea(x,y,z,2*s) );
- turbulenceb(x,y,z,s) = if( s-1.01, 0,
- sgn(noise3(x/s,y/s,z/s))*noise3b(x/s,y/s,z/s) +
- turbulenceb(x,y,z,2*s) );
- turbulencec(x,y,z,s) = if( s-1.01, 0,
- sgn(noise3(x/s,y/s,z/s))*noise3c(x/s,y/s,z/s) +
- turbulencec(x,y,z,2*s) );
-
- { Normal distribution from uniform range (0,1) }
-
- un2`private(t) : t - (2.515517+t*(.802853+t*.010328))/
- (1+t*(1.432788+t*(.189269+t*.001308))) ;
- un1`private(p) : un2`private(sqrt(-2*log(p))) ;
-
- unif2norm(p) : if( .5-p, un1`private(p), -un1`private(1-p) ) ;
-
- nrand(x) = unif2norm(rand(x));
-
- { Local (u,v) coordinates for planar surfaces }
- crosslen`private = Nx*Nx + Ny*Ny;
- { U is distance from origin in XY-plane }
- U = if( crosslen`private - FTINY,
- (Py*Nx - Px*Ny)/crosslen`private,
- Px);
- { V is defined so that N = U x V }
- V = if( crosslen`private - FTINY,
- Pz - Nz*(Px*Nx + Py*Ny)/crosslen`private,
- Py);
-