home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Trigonometry
/
ProOneSoftware-Trigonometry-Win31.iso
/
trig
/
chapter4.5r
< prev
next >
Wrap
Text File
|
1995-04-09
|
4KB
|
150 lines
148
à 4.5ïDouble and Half-Angle Identities
äïPlease use the Double and Half-Angle Identities to answer
êêthe following questions.
â
êë Prove the identity, sin 2x ∙ sec xï=ï2∙sin x
è Proof:ïsin 2x ∙ sec xï=ï2∙sin x ∙ cos x ∙ 1/cos xï=ï2∙sin x
éSïIn the last section, we looked at the Addition Identities.
While they will be helpful in some situations in later math courses,
the Double and Half-Angle Identities will be needed frequently in
differentiation and integration of trigonometric expressions in cal-
culus and differential equations.ïThey are listed below.
êêêèDouble-Angle Identities
êêë 1)ïsin 2xï=ï2∙sin x ∙ cos x
#êêë 2)ïcos 2xï=ïcosìx - sinìx
#êêêêè =ï2∙cosìx - 1
#êêêêè =ï1 - 2∙sinìx
#êêë 3)ïtan 2xï=ï2∙tan x/(1 - tanìx)
êêêè Half-Angle Identities
#êêè ┌─────────────êêêï┌─────────────
#4)ïcos x/2ï=ï± á(1 + cos x)/2ë5)ïsin x/2ï=ï± á(1 - cos x)/2
ê 6)ïtan x/2ï=ï(1 -cos x)/sin xï=ïsin x/(1 + cos x)
è Each of the double-angle identities can be proven by expressing 2x
as x + x, and using the addition identities.ïFor example, sin 2xï=
sin (x + x)ï=ïsin x ∙ cos x + cos x ∙ sin xï=ï2∙sin x ∙ cos x.ïIt
is possible to prove the half-angle formulas by solving for the sin or
#cos in the double-angle formulas.ïFor example, cos 2xï=ï1 - 2∙sinìx.
#êêêè2∙sinìxï=ï1 - cos 2x
#êêêèsinìxï=ï(1 - cos 2x)/2
#êêêêê ┌──────────────
#êêêèsin xï=ï± á(1 - cos 2x)/2
è To prove the identity, sin 2x ∙ sec xï=ï2∙sin x, you can substi-
tute the double-angle formula for sin 2x into the left side of the equa-
tion.
ë sin 2x ∙ sec xï=ï2∙sin x ∙ cos x ∙ 1/cos xï=ï2∙sin x
1ê Use a double-angle identity to evaluate
#êêêê2∙così15° - 1
êë A)ï1/2êêêêB)ï√3/2
êë C)ï2êêêêïD)ïå of ç
ü
#êêêècos 2xï=ï2∙cosìx - 1
#êêêècos 30°ï=ï2∙così15° - 1
#êêêè√3/2ï=ï2∙così15° - 1
Ç B
2ê Use a double-angle identity to evaluate
êêêè2∙sin 22.5° ∙ cos 22.5°
êë A)ï1êêêêïB)ï√2
êë C)ï1/√2êêêë D)ïå of ç
ü
êêêèsin 2xï=ï2∙sin x ∙cos x
êêêèsin 45°ï=ï2∙sin 22.5° ∙ cos 22.5°
êêêè1/√2ï=ï2∙sin 22.5° ∙ cos 22.5°
Ç C
3ê Use a double-angle identity to evaluate
#êêêè2∙tan π/8/(1 - tanìπ/8)
êë A)ï1êêêêïB)ï1/√2
êë C)ï√3/2êêêë D)ïå of ç
ü
#êêêètan 2xï=ï2∙tan x/(1 - tanìx)
#êêêètan π/4ï=ï2∙tan π/8/(1 - tanìπ/8)
#êêêè1ï=ï2∙tan π/8/(1 - tanìπ/8)
Ç A
4ê Use a half-angle identity to evaluate
#êêêë ┌───────────────
#êêêë á(1 - cos 60°)/2
êë A)ï√3/2êêêë B)ï1/√2
êë C)ï1/2êêêêD)ïå of ç
#üêêêêï┌─────────────
#êêêèsin x/2ï=ïá(1 - cos x)/2
#êêêêê ┌───────────────
#êêêèsin 30°ï=ïá(1 - cos 60°)/2
#êêêêè ┌───────────────
#êêêè1/2ï=ïá(1 - cos 60°)/2
Ç C
5ê Use a half-angle identity to evaluate
êêêè (1 - cos 120°)/sin 120°
êë A)ï√3êêêê B)ï√3/2
êë C)ï1/2êêêêD)ïå of ç
ü
êêêètan x/2ï=ï(1 - cos x)/sin x
êêêètan 60°ï=ï(1 - cos 120°)/sin 120°
êêêè√3ï=ï(1 - cos 120°)/sin 120°
Ç A
6ë Prove one of the following is an identity.
#ëcosìx - sinìxêêêë sinì2x
# A)ï─────────────ï=ï2∙cot 2xê B)ï──────────ï=ï2∙sinìx
ësin x ∙ cos xêêêè 1 - cos 2x
êêêè C)ïå of ç
ü
#êêêê cosìx - sinìx
#êêêê ─────────────
êêêê sin x ∙ cos x
êêêêè cos 2x
#êêêè=è ────────────
êêêê 1/2 ∙ sin 2x
êêêè=è 2∙cot 2x
Ç A
7ë Prove one of the following is an identity.
êêêêêêë2
# A)ïcosÅx - sinÅxï=ïsin 2xêèB)ï──────────ï=ïsecìx
êêêêêê 1 + cos 2x
êêêè C)ïå of ç
ü
êêêêë 2
#êêêê ───────────
êêêê 1 +ïcos 2x
êêêêê2
#êêêè=è ──────────────
#êêêê 1 + 1 - 2∙sinìx
êêêêë 2
#êêêè=è ─────────────
#êêêê 2(1 - sinìx)
#êêêè=è 1/cosìx
#êêêè=è secìx
Ç B