home *** CD-ROM | disk | FTP | other *** search
- ;
- ; A non-visible comment starts with a semicolon. If you load a file in
- ; Alged and save it, all your non-visible comments are LOST! So don't
- ; be too prolific.
- "
- " These two functions demonstrate graphics. (Press 'g' twice for 3D).
- cos(x*2)^2*cos(y*2)^2 + r*0.2
- cos(2*t) + sin(3*t + 0.2*u)
- "
- " Solve this for x.
- (x*(5 + 2*x) - 2)/(3 + x) - 2*x + 1 = 13
- "
- " (1) This is a circle located at the origin.
- x^2 + y^2 = r^2
- " (2) This is a parabola that intersects the circle at the x axis.
- y = a*(r^2 - x^2)
- "
- " Complex arithmetic.
- i^i = e^(-1*pi/2)
- "
- " Expand this with ^N expand, Distribute, Simplify.
- (x - 2/3)^3=0
- "
- " Factor this with FactrPoly and Simplify.
- x^5 + 47*x^4 - 5606*x^3 - 264690*x^2 + 7857621*x + 372616659 = 0
- "
- " Join these terms and simplify
- a^x^2*a^(2*x)/a/a^(x + 1)
- "
- " Simplify this with polynomial long division
- (3*x^2 + 5*x*y - 2*y^2)/(x + 2*y)
- "
- " Verify each of the following equations
- (x^2 - 2)*(x + 1) = x^3 + x^2 - 2*x - 2
- 5*x^2 + 13*x - 6 = (5*x - 2)*(x + 3)
- (a^-3*b^7/(a^2*b^4))^-2 = a^10/b^6
- x^3 - x^2 - 7 = (x^5 + 4*x^4 - 8*x^3 - 4*x^2 - 35*x + 21)/(x^2 + 5*x - 3)
- (1 - x^-2)/(x^-1 - 1) = (-1 - x)/x
- "
- " Polynomial long division: put x in the key and press '\'.
- (r*x^6 + s*x^5 + t*x^4 + u*x^3 + v*x^2 + w*x + y)/(x^4 + a*x^3 + b*x^2 + c*x + d)
- "
- " ---------------------------------------------------------------------
- " The following system of equations describes impact of two bodies.
- " Try so solve for cx, cy and o in terms of the other variables.
- m2*cy2 - m2*vy2 = 0
- m1*cy1 - m1*vy1 = 0
- cx1 - cx2 + (o1*y1 - o2*y2) = -1*E*(vx1 - vx2 + (w1*y1 - w2*y2))
- w2*I2 + m2*(x2*vy2 - y2*vx2) = o2*I2 + m2*(x2*cy2 - y2*cx2)
- w1*I1 + m1*(x1*vy1 - y1*vx1) = o1*I1 + m1*(x1*cy1 - y1*cx1)
- m1*vy1 + m2*vy2 = m1*cy1 + m2*cy2
- m1*vx1 + m2*vx2 = m1*cx1 + m2*cx2