home *** CD-ROM | disk | FTP | other *** search
/ Handbook of Infosec Terms 2.0 / Handbook_of_Infosec_Terms_Version_2.0_ISSO.iso / text / rfcs / rfc0803.txt < prev    next >
Text File  |  1996-05-07  |  34KB  |  280 lines

  1.  
  2.  
  3.  
  4.  
  5. RFC 803 
  6.  
  7.  
  8.  
  9.           Dacom 450/500 Facsimile Data Transcoding          A. Agarwal, M. J. O'Connor and D. L. Mills                       2 November 1981 
  10.  
  11.  1.  Introduction 
  12.  
  13.      As part of our effort in support of  the  DARPA  Internet  Program, software  modules  to encode and decode facsimile data for the Dacom 450 and 500 models Computerfax facsimile  machines  have  been  constructed. The  purpose of these modules is to map the data representations used by these machines to and from bit-map  and  run-length  representations  in programs  for editing, transmission and archiving facsimile images.  The modules are written in the PDP-11 MACRO-11 assembly language and can  be incorporated into programs for, among others, the RT-11 operating system and the DCNET BOS or VOS operating systems. 
  14.  
  15.      The first part of this report describes in  detail  the  Dacom  450 data compression algorithm and is an update and correction to an earlier memorandum [2].  Following this, the encoding  and  decoding  algorithms are  described  along  with  the  supporting  programs and file formats. Reference  [3]  describes  another  implementation   of   the   decoding algorithm.   Grateful  acknowledgment  is made to E.  A.  Poe of Rapicom for his assistance in this effort. 
  16.  
  17.      The second part of this report describes briefly the Dacom 500 data compression  algorithm  as used by the INTELPOST electronic-mail network under  development  by  the  US  Postal  Service  and  several   foreign administrations.    These  machines  conform  to  the  CCITT  T.4  Draft Recommendation, described in [5].  Supporting programs and file  formats are described. 
  18.  
  19. 2.  Dacom 450 Data Compression Principles 
  20.  
  21.      The encoding algorithm for the Dacom 450 processes lines scanned by the  machine  to  produce a two-dimensional run-length code described by Weber [1]; however,  this  article  contains  a  number  of  errors  and omissions,  many  of  which  were  discovered  only  after  considerable analysis  and  experimentation  [2,3].   The  machine  operates  over  a coordinate   space   of   l726   by  approximately  2200  pels  when  in high-resolution (detail) mode.  In normal (quality)  mode  the  vertical resolution is halved, so that about 1100 lines are transmitted, while in express mode about 733 lines are transmitted (missed lines are filled in on playback by replicating previous lines). 
  22.  
  23.      Data are encoded  two  rows  at  a  time  using  a  two-dimensional run-length  code.   Each  row-pair  is  scanned  left-to-right  and  the line-pairs themselves processed top-to-bottom of the document.  Figure 1 shows how the pels are represented. 
  24.  Dacom 450/500 Facsimile Data Transcoding                        PAGE   2 
  25.  
  26.  
  27.  
  28.                     |          |          |                 ----+----------+----------+----                 ... |  x(1,j)  | x(1,j+1) | ...                 ----+----------+----------+----                 ... |  x(2,j)  | x(2,j+1) | ...                 ----+----------+----------+----                     |          |          |                       Direction of scan -> 
  29.  
  30.                Figure 1. Data Representation 
  31.  
  32.      For each j the vector (x(1,j),x(2,j)) represents  the  contents  of the  jth  column, where x(i,j) can take on values of zero (white) or one (black).  Each of the four possible vectors ranging  over  these  values will  be  called a state (Dacom calls these "modes") with the succession of transitions between these states determined by the picture content of the  particular line-pair.  Scanning of the line-pairs follows one after the other with no special end-of-line code in the data itself.  For  the purpose  of later discussion and comparison with the published data, the following conventions will be used (note: the pels read top-bottom): 
  33.  
  34.                 Pels    Vector  State                 ---------------------                    W-W     (0,0)   0                 B-W     (1,0)   1                 W-B     (0,1)   2                 B-B     (1,1)   3 
  35.  
  36.      The algorithm used by Dacom to generate the transmitted data as the columns   are   scanned   can  be  described  as  the  non-deterministic finite-state automaton (nfsa) shown in Figure 2.  Conceptually, the nfsa starts  at  the beginning of a page in a designated state and at a point just after scanning the jth column in the jth state.  It then scans  the (j + 1)th column and enters that state while emitting the string of bits shown in the figure. 
  37.  
  38.      In the states corresponding to  W-W  (0)  and  B-B  (3)  a  special run-length  encoding  techniques is used.  There are two state variables associated with each of  these  two  states,  one  variable  used  as  a run-length  counter  and  the  other  the field length (in bits) of this counter.  Upon each entry to either of these two states the  counter  is initialized  at  zero  and  counts up for every additional column of the same state.  At the end  of  the  run  the  value  of  this  counter  is transmitted  extending  with high-order zeros, if necessary, to fill the field length specified.  If, however, the counter equals 2**n - 1, where n  is the field length, then a sequence of n one-bits is emitted and the counter re-initialized at zero with a field length of n + 1.   Thus,  if n = 3, a run length of three is transmitted as {010} and a run length of seven as {110}, while a run length of eight as two words, {111} followed by  {0000}.   The  field-length  variables are maintained separately for both the W-W and B-B states, and at each re-entry  to  either  of  these states the previous values are used. 
  39.  Dacom 450/500 Facsimile Data Transcoding                        PAGE   3 
  40.  
  41.  
  42.  
  43.                                     0100            .--------------------->----------------------------------.            |                                                        |            |   .-----------------<------------------------------.   |            |   |                1                               |   |            |   V                                                |   |      .--------------.                     .---------------.     |   |      |              |                     |               |     |   |      |              |        010          |               |     |   |   .->|      1       |-------------------->|       2       |->.  |   |   |  |              |                     |               |  |  |   |  0|  |     B-W      |        101          |      W-B      |  |1 |   |   \<-|              |<--------------------|               |<-'  |   |      |              |                     |               |     |   |      |              |               .---->|               |     |   |      \--------------'               |     \---------------'     |   |          |   A                      |      |     |   A          |   |          |   |     .--------->------'      |     |   |          |   |          |   |     |         1             |     |   |          |   |          |   |     |                       |     |   |          A   V          |   |     |                       |     |   |          |   |      0111|   |1    |                       | 1000|   |1         |   |          |   |     |                       |     |   |          |   |          |   |     |                       |     |   |          |   |          |   |     |                       |     |   |          |   |          |   |     |          1011         |     |   |          |   |          |   |     |    .-------<----------'     |   |          |   |          V   |     |    |                        V   |          |   |      .--------------.   |                 .---------------.     |   |      |              |<--'                 |               |     |   |      |              |        0            |               |     |   |      |      3       |<--------------------|       0       |-----'   |      |              |                     |               |         |      |     B-B      |                     |      W-W      |         |      |              |-------------------->|               |<--------'      |              |        0            |               |      |              |                     |               |      \--------------'                     \---------------'          |    A                                 |    A          |    |                                 |    |          \----'                                 \----'           run                                    run                      Figure 2.  NFSA Model of Encoding       
  44.  Dacom 450/500 Facsimile Data Transcoding                        PAGE   4 
  45.  
  46.  
  47.  
  48.      Field-length values are constrained not to exceed  seven,  so  that runs  exceeding  l27 with n = 7 will be encoded as a separate 7-bit word of one-bits for each run of l27  except  the  last,  which  must  always contain  at  least one zero-bit.  The field length n is decreased by one under the following circumstances: the current run has been encoded as a single  n-bit  field,  and for n in the range four through seven the two high-order bits are zero or for n equal to three the  single  high-order bit  is  zero.   The field length is not allowed to be reduced below two bits. 
  49.  
  50.      The encoding algorithm starts in state 0 with  both  field  lengths set to 7. 
  51.  
  52. 2.1.  Dacom 450 Decoding Algorithm 
  53.  
  54.      For reasons of speed and simplicity it is desirable that the  Dacom 450  decoding  algorithm  be  modeled  on  the  basis of a deterministic finite-state automaton (dfsa).  Using straightforward formal procedures, the  dfsa  of Figure 3 can be constructed.  This machine makes one state transition for every bit, except for the W-W (0)  and  B-B  (3)  states, which  must be treated specially in any case.  The states are labeled in such a way as to correspond to those of Figure  2  for  states  numbered from zero to three. 
  55.  
  56.      The decoded output symbols, in this case the columns  corresponding to  each  of the states, are represented by the states themselves.  Upon entry to state B-W (1) or W-B (2) a run-length counter is initialized to one.   Each  traversal  of a loop back to the same state increments this counter and, upon exit to any other state, the  value  of  this  counter represents  the  number  of columns to be produced.  Upon entry to state W-W (0) or B-B (3) the run-length counter is initialized to zero and the associated   field-length   state  variable  n  established.   For  each successive n bits of all-ones, the counter is increased by 2**n - 1  and then n itself increased by one, but not above seven.  If the next n bits are not all ones, then the counter is increased by the value represented by the n-bit field plus one.  Finally, if upon entry to either state the next n bits are not all ones, n is decreased by  one  according  to  the rule mentioned in the preceding section. 
  57.  Dacom 450/500 Facsimile Data Transcoding                        PAGE   5 
  58.  
  59.  
  60.  
  61.                                   .-----------.                     .-----------.   .-----|           |                     |           |-----.   |     |     9     |                     |     6     |     |   |   .-|           |<--.             .-->|           |-.   |   |   | \-----------'    \           /    \-----------' |   |  1|  0|                   \         /                   |1  |0   |   |    .->Error        \       /        Error<-.    |   |   |   |   0|                \     /                |1   |   |   |   | .-----------.        \   /        .-----------. |   |   | 1 | |           |         \ /         |           | | 0 |   | .---|     7     |          \          |    10     |---. |   | | | |           |         / \         |           | | | |   | | | \-----------'        /   \        \-----------' | | |   | | |       A             /     \             A       | | |   | | |       |            /       \            |       | | |   | | |      1|           /         \           |0      | | |   | | | .-----------.  0 /           \ 1  .-----------. | | |   | | | |           |---'             \---|           | | | |   | | | |     5     |                     |     8     | | | |   | | | |           |                     |           | | | |   | | | \-----------'                     \-----------' | | |   | | |       A                                 A       | | |   | | |       |                                 |       | | |   | | |      1|                                 |0      | | |   | | | .-----------.                     .-----------. | | |   | | ->|           |                     |           |<- | |   | |   |     1     |                     |     2     |   | |   | |   |    B-W    |<-----.       .----->|    W-B    |   | |   | |   \-----------'      |       |      \-----------'   | |   | |      |     A         |       |         A     |      | |   | |      |     |         |0     1|         |     |      | |   | |      \-----'         |       |         \-----'      | |   | |         0          .-----------.          0         | |   | |                    |           |                    | |   | |                    |     4     |                    | |   | |        RUN         |           |         RUN        | |   | |      .-----.       \-----------'       .-----.      | |   | |      |     |         A       A         |     |      | |   | |      |     V         |       |         V     |      | |   | |   .-----------.   1  |       |  1   .-----------.   | |   | \-->|           |------'   0   \------|           |<--' |   |     |     3     |<--------------------|     0     |     |   \---->|    B-B    |-------------------->|    W-W    |<----'         \-----------'          0          \-----------'                                                 Figure 3.  DFSA Model of Encoding  
  62.  Dacom 450/500 Facsimile Data Transcoding                        PAGE   6 
  63.  
  64.  
  65.  
  66. 2.2.  Formatting Considerations 
  67.  
  68.      Data are encoded for transmission  by  the  Dacom  450  in  585-bit frames,  consisting  of  a  24-bit  synchronization code, 37-bit leader, 512-bit information area and l2-bit checksum.  There are  two  kinds  of frames  distinguished  by leader format, one for setup or initialization and the other for the data itself.  Serial binary image data are  placed in the data area of succeeding data frames. 
  69.  
  70.      The header of each frame is shown in Figure 4.  The various  fields are defined in Table 1 following the Figure. 
  71.  
  72.                  
  73.  
  74.    +-----------+--------+-------------------+----------+    | Sync Code | Leader |        Data       | CRC Code |    +-----------+--------+-------------------+----------+         24    /    37    \       512             12      .-------'            \----------------------.     /                                             \    +-------+-------+-------+-------+-------+-------+    | Flags | Count | X Pos | Black | White | State |    +-------+-------+-------+-------+-------+-------+    |   7    \ 10      12       3       3       2    |         \--------------------------.    |                                     \    +-----+-----+------+-----+-------+-----+    | Seq | RUN | COFB | RPT | Spare | SUB |    +-----+-----+------+-----+-------+-----+       2     1     1      1      1      1 
  75.  
  76.                    Figure 4. Frame Format 
  77.  Dacom 450/500 Facsimile Data Transcoding                        PAGE   7 
  78.  
  79.  
  80.  
  81.              Table 1. Header Field Definitions  
  82.  
  83.         
  84.  
  85. Field   Width   Function                Setup   Data        (bits)                           Block   Block ----------------------------------------------------- 
  86.  
  87. Sync Code  24   Synchronization         30474730 (octal) 
  88.  
  89. Seq         2   Sequence number         00      00,01,10,11 
  90.  
  91. RUN         1   Initialize-start        0       1 
  92.  
  93. COFB        1   Unknown                 0       0 
  94.  
  95. RPT         1   Unknown                 1       0 
  96.  
  97. Spare       1   Unknown                 0       0 
  98.  
  99. SUB         1   Indicates setup frame   1       0 
  100.  
  101. Count      10   Number of bits in data  All 1's                 field (0 - 512) 
  102.  
  103. X Pos      12   Current position on     All 1's                 scan line (0 - 1725) 
  104.  
  105. Black       3   Current black field     All 1's                 length (2 - 7) 
  106.  
  107. White       3   Current white field     All 1's                 length (2 - 7) 
  108.  
  109. State       2   Current state (0 - 3)   All 1's 
  110.  
  111. Data      512   Data (0 - 512 bits) 
  112.  
  113. CRC Code   12   CRC checksum. Uses polynomial                 x**12 + x**8 + x**7  + x**5 + x**3 + 1 
  114.  Dacom 450/500 Facsimile Data Transcoding                        PAGE   8 
  115.  
  116.  
  117.  
  118.      Setup frames have additional information in  the  data  field;  the various fields and their functions are described in Table 2. 
  119.  
  120.          Table 2. Field Definitions for Setup Frame.       
  121.  
  122. Field       Width       Function -------------------------------- 
  123.  
  124. Start bit       1       Always zero 
  125.  
  126. Speed bit       1       Set if express mode 
  127.  
  128. Detail bit      1       Set if detail mode (speed and detail                         bits both zero for quality mode) 
  129.  
  130. 14 inch         1       Set if 14-inch paper  
  131.  
  132. 5 inch          1       Set if 5-inch inch paper (14-inch                         and 5-inch inch paper bits both zero                         for 11-inch paper) 
  133.  
  134. Paper present   1       Set if paper present in scanner 
  135.  
  136. Spare           5       Can have any value 
  137.  
  138. Multi-page      1       Set if multi-page mode 
  139.  
  140.                20       All 0's 
  141.  
  142.               480       Alternate 1's and 0's 
  143.  
  144.       The tailing setup frames differ from the leading setup frames  only in  bits  which  indicate  whether  the system is operating in single or multiple page mode and whether paper is present in the scanner. 
  145.  
  146.      All n-bit numeric fields (except Seq) are transmitted by the  Dacom 450  machine  least-significant-bit  (LSB)  first  (i.e.   Count, X Pos, Black,  White,  State, CRC, and run length words  in  the  data  field). All other fields are transmitted left-most bit first. 
  147.  
  148.      There are a few important points to be considered in regard to  the header  of  a  data frame.  The header contains enough information about the state of the decoding algorithm to be able to  re-establish  correct decoding  in  the  event  of  loss  or  mutilation of a data frame.  The decoding algorithm resets its state variables to  those  in  the  header each  time  it  begins  decoding  a  new  data  frame.   One of the most difficult problems encountered while constructing the decoding algorithm was  the  correct synchronization of the algorithm as it proceeds across the frame boundary with respect to the header information.  In order for synchronization  to  be  maintained, the operation of the algorithm must 
  149.  Dacom 450/500 Facsimile Data Transcoding                        PAGE   9 
  150.  
  151.  
  152.  
  153. follow exactly that described in the previous section. 
  154.  
  155.      This requirement for every data  frame  to  be  self-synchronizing, leads  to  a  few  subtleties in the encoding algorithm which seem quite natural, but were not very obvious in the beginning. 
  156.  
  157. 1.  Transition bits(s) labeling the arcs on the state transition diagram     in  Figure  2  are  not broken across frames.  Similarly, individual     run-length words are not broken across frames. 
  158.  
  159. 2.  If a frame ends with a transition, the  header  of  the  next  frame     contains the state to which the transition is made. 
  160.  
  161. 3.  If a frame ends with a transition out of state  0  or  3,  then  the     transition  bit (0 or 1) is inserted at the end of the current frame     (not at the beginning of the next frame). 
  162.  
  163. 4.  The field lengths for black and white runs  in  the  header  include     changes that may have been caused at the end of the previous frame. 
  164.  
  165. 5.  If a frame begins with a white  or  black  run,  then  this  run  is     treated  (for  purpose of decreasing its field length) as if it were     the beginning of a new run, since there is  no  information  in  the     header to indicate otherwise. 
  166.  
  167.      The decoding algorithm is  initialized  at  the  first  data  frame received  after  the  sequence  of  setup  frames  at  the  beginning of transmission.  The first data frame has a count of zero,  indicating  no data  bits  are  in  the frame.  The second data frame begins the actual document; however, its X position appears to be irrelevant.  Instead, we assume the initial X position at this time is one pel to the left of the right margin  (-l  mod  l726).   With  these  assumptions  succeeding  X positions of the algorithm and the frame headers agree. 
  168.  
  169. 2.3.  The Decoding Program 
  170.  
  171.      The decoding algorithm described above has been implemented in  the PDP-11  MACRO-11 assembly language for the RT-11 operating system.  This program contains extensive features for selectively dumping  frames  and tracing  the operation of the algorithm.  It is designed to operate on a file containing the raw data generated  by  the  machine  and  does  not depend  upon  any  prior  reformatting  of  the  data.  However, it will operate also on files in the so-called UCL format [4],  which  has  been adopted  as  the standard for use in the Internet Program.  The existing DCNET supporting software for the Dacom 450  uses  the  UCL  format  and operates  normally  to  copy  data  directly between the machine and the file, with decoding operations done at a later time.  However, there  is no  intrinsic factor, except processing-rate limitations, why input data could not be decoded directly from the machine. 
  172.  
  173.      In operation, the program scans the input data one bit  at  a  time and  searches  for  the  synchronization  pattern.   Note  that all data processed are inverted from the natural interface conventions.   When  a 
  174.  Dacom 450/500 Facsimile Data Transcoding                        PAGE  10 
  175.  
  176.  
  177.  
  178. synchronization  pattern  is  found,  the  header  and data portions are extracted  and  the  various  state  variable  checked  and  reset,   if necessary.    Checksum   verification  is  performed  according  to  the polynomial 1 + x**3 + x**5 + x**7 + x**8 + x**12.  In the case of  setup frames  the  format  (detail, quality, express), page length (14, 8-l/2, 5-l/4) and multiple-page indicators are extracted from  the  data  area. Finally,  under  control  of  specified  options,  the  header  and data portions of the frame are printed with appropriate headings. 
  179.  
  180.      The decoding algorithm itself is called for each  data  frame.   It produces  an  output  consisting of a sequence of run-length pairs which can be used to form bit maps and  other  representations  of  the  data. Optionally, a printed trace of the operations performed by the algorithm can be produced. 
  181.  
  182. 2.4.  The Encoding Program 
  183.  
  184.      The encoding algorithm has been implemented in the PDP-11  MACRO-11 assembly  language  for the RT-11 operating system.  The program accepts facsimile data in 16-bit run-length format or bit-map format.  The input data  would normally be in a file, possibly obtained by translating some other representation (e.g., T.4 format) to run-length or bit-map format. The  program  produces  an output consisting of data compressed in Dacom 450 format and packed in 585-bit frames  along  with  the  corresponding header and checksum information. 
  185.  
  186.      The encoding program needs to be careful about how  to  break  data across  frames  and  how many bits of data to insert in each frame.  The rules mentioned in section 2.2.  help to solve the first  problem.   The second  problem is a little less understood.  The problem arises because data bits are required by the printing mechanism at a constant rate, but successive  frames  transmitted  at  the line rate can contain different amounts of decoded information, leading to  buffer  overrun  in  extreme cases. 
  187.  
  188.      In order to compensate for the rate mismatch,  it  has  been  found sufficient  to  control  the  size  of  the  data  portion  of the frame according to a simple set of empirical rules which produce results quite similar  to  the  scanner  iteslf.  According to these rules, a frame is "full" when it contains more than 500 bits of  data  or  when  the  data represents more than 4800*X pels (or columns) of information, 
  189.  
  190. where   X = 2 for transmission rate 2.4 kbs,         X = 1 for transmission rate 4.8 kbs,         X = 1/2 for transmission rate 9.6 kbs. 
  191.  
  192. 2.5.  Dacom 450 File Formats 
  193.  
  194.      Dacom 450 facsimile data is ordinarily stored as an RT-11  file  in the  so-called  UCL  format  [4].  In this format, each 585-bit frame is stored in a 76-byte record.  The first byte specifies the length of  the record,  the  second  specifies  a  command  and  the remaining 72 bytes contain the 585 bits of the original Dacom 450 frame zero-filled at  the 
  195.  Dacom 450/500 Facsimile Data Transcoding                        PAGE  11 
  196.  
  197.  
  198.  
  199. end.  The command byte is coded as follows: 
  200.  
  201. a.  56 (70 octal): The data field contains  a  setup  frame  (the  first     record of the file).  The length byte is 76 (114 octal). 
  202.  
  203. b.  57 (71 octal): The data field contains a data frame  (the  remaining     records  in  the  file  except the last one).  The length byte is 76     (114 octal). 
  204.  
  205. c.  58 (72 octal): End of file (the last frame of the file).   There  is     no data field and the length byte is 2. 
  206.  
  207. 2.6.  Run-Length and Bit-Map File Formats 
  208.  
  209.      The decode program produces 16-bit run length words as its  output. Each  run  is encoded in a 16-bit word, with white in positive and black in negative two's complement values.  A zero word terminates each  line, with the trailing white run suppressed if present.  An all-white line is encoded as a single run of length one followed by a zero word.  The file is terminated by a line of length zero, that is, a single zero word. 
  210.  
  211.      Bit-map files consist of a four-byte header followed by  the  data. The  header  consists  of  two  2-byte  quantities,  the  first of which represents the number of pels in a line and the  second  the  number  of lines  in  the  page.   Each  scanning line of data is represented in an integral number of bytes,  the  last  byte  of  a  line  zero-filled  if necessary. 
  212.  
  213. 3.  Dacom 500 Data Compression Principles 
  214.  
  215.      The Dacom 500 machines are high-speed versions  of  the  Dacom  450 machines  and  operate  in  the  50-Kbps range using the T.4 compression algorithm.  This algorithm, described in the [5], is  a  one-dimensional one,  rather  than  the  two-dimensional  one  used in the Dacom 450 and described in previous sections.  Since this algorithm is well known  and the  subject  of  an  international  standard,  it  will  not be further discussed here. 
  216.  
  217. 3.1.  Dacom 500 Decoding Algorithm 
  218.  
  219.      The decoding program has been implemented in  the  PDP-11  MACRO-11 assembly  language  for  the  DCNET  and  RT-11  operating  systems.  It operates on a file containing  facsimile  data  encoded  using  the  T.4 algorithm and produces a file in bit-map format. 
  220.  
  221.      The decoding program scans the input data bit-by-bit and recognizes sequences  of  bits which form valid run-length codes (see the tables in [5]).  The table of Huffman codes can be represented as  a  binary  tree with  the  values of the run lengths (e.g.  1, 2, 64, 1728, etc.) at the terminal nodes and each branch labeled 0 or 1.  The  code  for  any  run length  then  is the sequence of branch labels on the path from the root to the terminal node representing this length. 
  222.  Dacom 450/500 Facsimile Data Transcoding                        PAGE  12 
  223.  
  224.  
  225.  
  226.      The tables for black and  white  run-length  codes  are  stored  as separate  binary  trees in the decoding program.  The decoding algorithm starts by initializing an accumulator at zero.  It then  begins  at  the root  of  the  corresponding  tree and traverses the tree as it consumes bits one-by-one from the input.  When a terminal node  is  reached,  the value  stored  at  that  node is added to the accumulator.  If a make-up node is reached, the value at that node is added to the accumulator  and the  search  is  resumed  with  the  same tree to obtain the terminating value; otherwise, the accumulator represents the current run length  and the search resumes with the alternate tree. 
  227.  
  228. 3.2.  Dacom 500 Encoding Program 
  229.  
  230.      The encoding program is also implemented  in  the  PDP-11  MACRO-11 assembly  language  for the DCNET and RT-11 operating systems.  It scans the bit-map input and encodes each run of  black  or  white  pels  by  a simple  table  lookup  of  the  Huffman  codes.   It  operates on a file containing facsimile data in bit-map format and produces a file  in  T.4 format.   The T.4 specifications [5] require a minimum transmission time per scan line of 4.3 milliseconds, which at 50-Kbps corresponds  to  242 bits  (DATA bits plus any required FILL bits plus the EOL bits equal 242 bits minimum). 
  231.  
  232. 3.3.  Dacom 500 File Formats 
  233.  
  234.      The file consists of a number of  512-byte  blocks,  the  first  of which  is  the  header.  The header contains a list of two-byte entries, the first of which contains the number of pages and  the  remaining  the lengths  (in  blocks) of each page in turn.  The remaining blocks of the file contain the data for each page in T.4 format.  The  data  for  each page   is   preceded   by  a  page-setup  command  and  succeeded  by  a page-end-of-record command, as transmitted by the Dacom 500.  The format of  both  commands  consists  of  the 12-bit T.4 EOL code (000000000001) repeated six times and followed  by  a  special  4-bit  code  word  also repeated  six  times.  The special code word consists of bits B1 through B4 as defined below. 
  235.  
  236.  B1: VERTICAL RESOLUTION     0 = 7.7 lines per millimeter     1 = future option, not implemented  
  237.  
  238. B2: OUTPUT PAPER LENGTH     0 = short length (Letter size)     1 = long length (Legal size) 
  239.  
  240. B3: DOCUMENT IN SCANNER     0 = no document present (end of page)     1 = document present (beginning of page) 
  241.  
  242. B4: ODD PARITY OVER B1-B4 
  243.  Dacom 450/500 Facsimile Data Transcoding                        PAGE  13 
  244.  
  245.  
  246.  
  247. 3.4.  Comparison of Facsimile Formats and Transcoding Speeds 
  248.  
  249.      Four different file formats are presently used in  our  system  for facsimile  data  storage:  Dacom 450, Dacom 500 (T.4), 16-bit run-length and bit-map.  The sizes of typical files (in megabits) in these  formats are shown below for comparison. 
  250.  
  251.         
  252.  
  253.         File    Dacom   Dacom   16-bit                 450     500     run-length         ---------------------------------- 
  254.  
  255.         PNGUIN  0.22    0.5     0.27         INTELP  0.62    0.77    3.3         PANDA   1.02    2.03    6.41 
  256.  
  257.  The file called PNGUIN is  a  block  drawing  of  dancing  penguins  and represents  a  "small"  file.   The  file  called  INTELP is a composite INTELPOST test image with text and graphics and  represents  a  "medium" file.    Finally,  the  file  called  PANDA  is  a  half-tone  newspaper photograph of a giant panda and represents a "monster" file  (this  file was  recorded  on  the  Dacom 450 in quality mode and is therefore about half the size it would be in detail mode).  The size of the bit-map file for all these images is 3.8 megabits.   
  258.  
  259.      Figure 5 shows the file sizes (in 512-byte blocks) and  transcoding times  (in  seconds)  for  the  INTELPOST test page.  The file sizes are indicated on the boxes, while the transcoding times are indicated on the arrows.  All times were obtained on the LSI-11/23 processor. 
  260.  
  261.                   193                      925         +-----------+     95     +-----------+         |           |----------->|           |         |    T.4    |            |  Bit-map  |         |           |<-----------|           |         +-----------+    165     +-----------+                                      A   |                           60         |   |               .----------------------'   |110               |                          |               |                          V         +-----------+     89     +-----------+         |           |----------->|           |         |Run-length |            | Dacom 450 |         |           |<-----------|           |         +-----------+    153     +-----------+              413                      155 
  262.  
  263.          Figure 5. File Sizes and Transcoding Times 
  264.  Dacom 450/500 Facsimile Data Transcoding                        PAGE  14 
  265.  
  266.  
  267.  
  268. 4.  References 
  269.  
  270. 1.  Weber, D.R.  An adaptive  run-length  encoding  algorithm.   ICC-75,     IEEE, San Francisco, California, June 1975. 
  271.  
  272. 2.  Palmer, L.C.  Final Report, COMSAT Participation in the DARPA Packet     Satellite  Internetworking  and Speech Applications Program.  COMSAT     Laboratories, July 1980. 
  273.  
  274. 3.  Katz, A.  Decoding Facsimile  Data  from  the  Rapicom  450.   DARPA     Network  Working  Group  Report  RFC-798,  USC/Information  Sciences     Institute, September 1981. 
  275.  
  276. 4.  Postel, J.  Rapicom 450  Facsimile  File  Formats.   DARPA   Network     Working Group Report RFC-769,   USC/Information  Sciences Institute,     September 1980. 
  277.  
  278. 5.  Draft Recommendation T.4 - Standardization of Group 3 Facsimile  for     Document  Transmission.   CCITT  Study Group XIV Contribution #25-E,     December 1977.  (Also in RFC-804). 
  279.  
  280.