home *** CD-ROM | disk | FTP | other *** search
-
- 7.5 Differentiation
-
- SymbMath differentiates an expression expr by functions
-
- d(expr, x)
- d(expr, x, order)
- d(expr, x=x0)
- d(expr, x=x0, order)
-
- Example 7.5.1. Differentiate x^(x^x).
- Input:
- d(x^(x^x), x)
- end
- Output:
- x^(x^x)*(x^(-1 + x) + x^x*ln(x)*(1 + ln(x)))
-
- Example 7.5.2. Differentiate the expression f=sin(x^2+y^3)+
- cos(2*(x^2+y^3)) with respect to x, and with respect to both x and y.
- Input:
- f=sin(x^2+y^3)+cos(2*(x^2+y^3))
- d(f, x)
- d(d(f, x), y)
- end
- Output:
- f = sin(x^2 + y^3) + cos(2*(x^2 + y^3))
- 2*x*cos(x^2 + y^3) - 4*x*sin(2*(x^2 + y^3))
- -6*x*y^2*sin(x^2 + y^3) - 12*x*y^2*cos(2*(x^2 + y^3))
-
- To define a derivative.
- Input:
- d(si(x_),x_) := sin(x)/x
- d(si(t),t)
- end
- Output:
- d(si(x_),x_) := sin(x)/x
- sin(t)/t
-
- Or the package d.sm is included before finding the derviatives.
- Example:
- Input:
- include 'd.sm'
- d(si(t),t)
- end
- Output:
- done
- sin(t)/t
-
- If SymbMath cannot find some derivatives, you should include
- the package 'd.sm' in your program or in the initial package 'init.sm'.
-