home *** CD-ROM | disk | FTP | other *** search
- 7.4 Limits
-
- SymbMath finds real or complex limits, and discontinuity
- when x approaches to x=x0 by functions
-
- subs(f, x=x0)
- lim(f, x=x0)
-
- First use subs() to find limits, if the result is undefined
- (indeterminate forms, e.g. 0/0, inf/inf, 0*inf, and 0^0), then use
- lim() to try again; if the result is discont, then use the one-side
- limit by c+zero or c-zero.
-
- Example 7.4.1. Find limits of types 0/0 and inf/inf.
- Input:
- p=(x^2-4)/(2*x-4)
- subs(p, x=2)
- lim(p, x=2)
- subs(p, x=inf)
- lim(p, x=inf)
- end
- Output:
- p = (x^2 - 4)/(2 x - 4)
- undefined
- 2
- undefined
- inf
-
- The "discont" (discontinuity) means that the expression has
- a discontinuity and only has the one-sided limit value at x=x0. Users
- should use x0+zero or x0-zero to find the one-sided limit. The
- f(x0+zero) or f(x0-zero) is the right-sided limit or left-sided limit
- as approaching x0 from positive (+inf) or negative (-inf) direction,
- respectively, i.e. limit as zero -> 0.
- SymbMath find a left-sided or right-sided limit when x
- approaches to x0 from positive (+inf) or negative (-inf) direction at
- discontinuity by functions
-
- subs(f, x=x0+zero)
- subs(f, x=x0-zero)
- lim(f, x=x0+zero)
- lim(f, x=x0-zero)
-
- Example 7.4.2. Find the left-sided and right-sided limits of
- y=exp(1/x), (i.e. when x approaches 0 from positive and negative
- directions).
- Input:
- y=exp(1/x)
- subs(y, x=0)
- subs(y, x=0+zero)
- subs(y, x=0-zero)
- end
- Output:
- y = exp(1/x)
- discont
- inf
- 0
-
- The built-in constants of inf or -inf, zero or -zero, and
- discont or undefined can be used as numbers in calculation of
- expressions or functions.
-
- Example 7.4.3.
- Input:
- 1/sgn(0)
- 1/sgn(zero)
- end
- Output:
- discont
- 1
-