home *** CD-ROM | disk | FTP | other *** search
open in:
MacOS 8.1
|
Win98
|
DOS
browse contents |
view JSON data
|
view as text
This file was processed as: LaTeX Document
(document/latex).
Confidence | Program | Detection | Match Type | Support
|
---|
100%
| dexvert
| LaTeX Document (document/latex)
| magic
| Supported |
100%
| dexvert
| Texinfo Document (document/texInfo)
| magic
| Supported |
1%
| dexvert
| Corel 10 Texture (image/corel10Texture)
| ext
| Unsupported |
1%
| dexvert
| Text File (text/txt)
| fallback
| Supported |
100%
| file
| LaTeX 2e document text
| default
| |
99%
| file
| LaTeX document text
| default
| |
98%
| file
| TeX document text
| default
| |
97%
| file
| LaTeX document, ASCII text, with CRLF line terminators
| default
| |
100%
| TrID
| LaTeX 2e document (with rem)
| default
| |
100%
| checkBytes
| Printable ASCII
| default
| |
100%
| perlTextCheck
| Likely Text (Perl)
| default
| |
100%
| siegfried
| fmt/280 LaTeX (Master document)
| default
| |
100%
| detectItEasy
| Format: Plain text[CRLF]
| default
| |
100%
| xdgMime
| text/x-matlab
| default (weak)
|
|
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 25 25 20 54 68 69 73 20 | 64 6f 63 75 6d 65 6e 74 |%% This |document|
|00000010| 20 63 72 65 61 74 65 64 | 20 62 79 20 53 63 69 65 | created| by Scie|
|00000020| 6e 74 69 66 69 63 20 4e | 6f 74 65 62 6f 6f 6b 20 |ntific N|otebook |
|00000030| 28 52 29 20 56 65 72 73 | 69 6f 6e 20 33 2e 30 0d |(R) Vers|ion 3.0.|
|00000040| 0a 0d 0a 0d 0a 5c 64 6f | 63 75 6d 65 6e 74 63 6c |.....\do|cumentcl|
|00000050| 61 73 73 5b 31 32 70 74 | 2c 74 68 6d 73 61 5d 7b |ass[12pt|,thmsa]{|
|00000060| 61 72 74 69 63 6c 65 7d | 0d 0a 25 25 25 25 25 25 |article}|..%%%%%%|
|00000070| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|00000080| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|00000090| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|000000a0| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|000000b0| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|000000c0| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|000000d0| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|000000e0| 25 25 25 25 25 25 0d 0a | 5c 75 73 65 70 61 63 6b |%%%%%%..|\usepack|
|000000f0| 61 67 65 7b 6d 61 6b 65 | 69 64 78 7d 0d 0a 5c 75 |age{make|idx}..\u|
|00000100| 73 65 70 61 63 6b 61 67 | 65 7b 73 77 32 30 6a 61 |sepackag|e{sw20ja|
|00000110| 72 74 7d 0d 0a 0d 0a 25 | 54 43 49 44 41 54 41 7b |rt}....%|TCIDATA{|
|00000120| 54 43 49 73 74 79 6c 65 | 3d 61 72 74 69 63 6c 65 |TCIstyle|=article|
|00000130| 2f 61 72 74 34 2e 6c 61 | 74 2c 6a 61 72 74 2c 73 |/art4.la|t,jart,s|
|00000140| 77 32 30 6a 61 72 74 7d | 0d 0a 0d 0a 25 54 43 49 |w20jart}|....%TCI|
|00000150| 44 41 54 41 7b 3c 4d 45 | 54 41 20 4e 41 4d 45 3d |DATA{<ME|TA NAME=|
|00000160| 22 56 69 65 77 53 65 74 | 74 69 6e 67 73 22 20 43 |"ViewSet|tings" C|
|00000170| 4f 4e 54 45 4e 54 3d 22 | 33 31 22 3e 7d 0d 0a 25 |ONTENT="|31">}..%|
|00000180| 54 43 49 44 41 54 41 7b | 3c 4d 45 54 41 20 4e 41 |TCIDATA{|<META NA|
|00000190| 4d 45 3d 22 47 72 61 70 | 68 69 63 73 53 61 76 65 |ME="Grap|hicsSave|
|000001a0| 22 20 43 4f 4e 54 45 4e | 54 3d 22 33 32 22 3e 7d |" CONTEN|T="32">}|
|000001b0| 0d 0a 25 54 43 49 44 41 | 54 41 7b 3c 4d 45 54 41 |..%TCIDA|TA{<META|
|000001c0| 20 4e 41 4d 45 3d 22 54 | 69 74 6c 65 22 20 43 4f | NAME="T|itle" CO|
|000001d0| 4e 54 45 4e 54 3d 22 45 | 78 65 72 63 69 73 65 73 |NTENT="E|xercises|
|000001e0| 22 3e 7d 0d 0a 25 54 43 | 49 44 41 54 41 7b 43 72 |">}..%TC|IDATA{Cr|
|000001f0| 65 61 74 65 64 3d 4d 6f | 6e 20 41 75 67 20 31 39 |eated=Mo|n Aug 19|
|00000200| 20 31 34 3a 35 32 3a 32 | 34 20 31 39 39 36 7d 0d | 14:52:2|4 1996}.|
|00000210| 0a 25 54 43 49 44 41 54 | 41 7b 4c 61 73 74 52 65 |.%TCIDAT|A{LastRe|
|00000220| 76 69 73 65 64 3d 54 68 | 75 20 46 65 62 20 31 33 |vised=Th|u Feb 13|
|00000230| 20 31 37 3a 30 32 3a 32 | 30 20 31 39 39 37 7d 0d | 17:02:2|0 1997}.|
|00000240| 0a 25 54 43 49 44 41 54 | 41 7b 4c 61 6e 67 75 61 |.%TCIDAT|A{Langua|
|00000250| 67 65 3d 41 6d 65 72 69 | 63 61 6e 20 45 6e 67 6c |ge=Ameri|can Engl|
|00000260| 69 73 68 7d 0d 0a 25 54 | 43 49 44 41 54 41 7b 43 |ish}..%T|CIDATA{C|
|00000270| 53 54 46 69 6c 65 3d 4d | 61 74 68 48 65 6c 70 2e |STFile=M|athHelp.|
|00000280| 63 73 74 7d 0d 0a 25 54 | 43 49 44 41 54 41 7b 3c |cst}..%T|CIDATA{<|
|00000290| 4c 49 4e 4b 20 52 45 4c | 3d 22 61 75 74 68 6f 72 |LINK REL|="author|
|000002a0| 22 20 48 52 45 46 3d 22 | 44 4d 30 2d 31 2e 74 65 |" HREF="|DM0-1.te|
|000002b0| 78 22 3e 7d 0d 0a 25 54 | 43 49 44 41 54 41 7b 3c |x">}..%T|CIDATA{<|
|000002c0| 4c 49 4e 4b 20 52 45 4c | 3d 22 66 69 72 73 74 22 |LINK REL|="first"|
|000002d0| 20 48 52 45 46 3d 22 44 | 4d 35 2d 31 2e 74 65 78 | HREF="D|M5-1.tex|
|000002e0| 22 3e 7d 0d 0a 25 54 43 | 49 44 41 54 41 7b 3c 4c |">}..%TC|IDATA{<L|
|000002f0| 49 4e 4b 20 52 45 4c 3d | 22 63 6f 6e 74 65 6e 74 |INK REL=|"content|
|00000300| 73 22 20 48 52 45 46 3d | 22 44 4d 30 2d 30 2e 74 |s" HREF=|"DM0-0.t|
|00000310| 65 78 22 3e 7d 0d 0a 25 | 54 43 49 44 41 54 41 7b |ex">}..%|TCIDATA{|
|00000320| 3c 4c 49 4e 4b 20 52 45 | 4c 3d 22 63 6f 70 79 72 |<LINK RE|L="copyr|
|00000330| 69 67 68 74 22 20 48 52 | 45 46 3d 22 44 4d 30 2d |ight" HR|EF="DM0-|
|00000340| 32 2e 74 65 78 22 3e 7d | 0d 0a 25 54 43 49 44 41 |2.tex">}|..%TCIDA|
|00000350| 54 41 7b 3c 4c 49 4e 4b | 20 52 45 4c 3d 22 65 6e |TA{<LINK| REL="en|
|00000360| 64 22 20 48 52 45 46 3d | 22 44 4d 35 2d 37 2e 74 |d" HREF=|"DM5-7.t|
|00000370| 65 78 22 3e 7d 0d 0a 25 | 54 43 49 44 41 54 41 7b |ex">}..%|TCIDATA{|
|00000380| 3c 4c 49 4e 4b 20 52 45 | 4c 3d 22 69 6e 64 65 78 |<LINK RE|L="index|
|00000390| 22 20 48 52 45 46 3d 22 | 44 4d 49 6e 64 65 78 2e |" HREF="|DMIndex.|
|000003a0| 74 65 78 22 3e 7d 0d 0a | 25 54 43 49 44 41 54 41 |tex">}..|%TCIDATA|
|000003b0| 7b 3c 4c 49 4e 4b 20 52 | 45 4c 3d 22 6e 65 78 74 |{<LINK R|EL="next|
|000003c0| 22 20 48 52 45 46 3d 22 | 44 4d 36 2d 31 2e 54 45 |" HREF="|DM6-1.TE|
|000003d0| 58 22 3e 7d 0d 0a 25 54 | 43 49 44 41 54 41 7b 3c |X">}..%T|CIDATA{<|
|000003e0| 4c 49 4e 4b 20 52 45 4c | 3d 22 70 61 72 65 6e 74 |LINK REL|="parent|
|000003f0| 22 20 48 52 45 46 3d 22 | 44 4d 35 2e 74 65 78 22 |" HREF="|DM5.tex"|
|00000400| 3e 7d 0d 0a 25 54 43 49 | 44 41 54 41 7b 3c 4c 49 |>}..%TCI|DATA{<LI|
|00000410| 4e 4b 20 52 45 4c 3d 22 | 70 72 65 76 69 6f 75 73 |NK REL="|previous|
|00000420| 22 20 48 52 45 46 3d 22 | 44 4d 35 2d 36 2e 74 65 |" HREF="|DM5-6.te|
|00000430| 78 22 3e 7d 0d 0a 25 54 | 43 49 44 41 54 41 7b 3c |x">}..%T|CIDATA{<|
|00000440| 4c 49 4e 4b 20 52 45 4c | 3d 22 74 6f 70 22 20 48 |LINK REL|="top" H|
|00000450| 52 45 46 3d 22 44 4d 30 | 2d 30 2e 74 65 78 22 3e |REF="DM0|-0.tex">|
|00000460| 7d 0d 0a 0d 0a 5c 69 6e | 70 75 74 7b 74 63 69 6c |}....\in|put{tcil|
|00000470| 61 74 65 78 7d 0d 0a 5c | 62 65 67 69 6e 7b 64 6f |atex}..\|begin{do|
|00000480| 63 75 6d 65 6e 74 7d 0d | 0a 0d 0a 0d 0a 5c 73 65 |cument}.|.....\se|
|00000490| 63 74 69 6f 6e 7b 45 78 | 65 72 63 69 73 65 73 5c |ction{Ex|ercises\|
|000004a0| 6c 61 62 65 6c 7b 45 78 | 65 72 63 69 73 65 73 7d |label{Ex|ercises}|
|000004b0| 7d 0d 0a 0d 0a 5c 62 65 | 67 69 6e 7b 65 6e 75 6d |}....\be|gin{enum|
|000004c0| 65 72 61 74 65 7d 0d 0a | 5c 69 74 65 6d 5b 31 2e |erate}..|\item[1.|
|000004d0| 5d 20 20 5c 74 65 78 74 | 73 66 7b 44 65 66 69 6e |] \text|sf{Defin|
|000004e0| 65 7d 20 24 61 3d 35 24 | 2e 20 5c 74 65 78 74 73 |e} $a=5$|. \texts|
|000004f0| 66 7b 44 65 66 69 6e 65 | 7d 20 24 62 3d 61 5e 7b |f{Define|} $b=a^{|
|00000500| 32 7d 24 2e 20 5c 74 65 | 78 74 73 66 7b 45 76 61 |2}$. \te|xtsf{Eva|
|00000510| 6c 75 61 74 65 25 0d 0a | 7d 20 24 62 24 2e 20 4e |luate%..|} $b$. N|
|00000520| 6f 77 20 5c 74 65 78 74 | 73 66 7b 44 65 66 69 6e |ow \text|sf{Defin|
|00000530| 65 7d 20 24 61 3d 5c 73 | 71 72 74 7b 32 7d 24 2e |e} $a=\s|qrt{2}$.|
|00000540| 20 47 75 65 73 73 20 74 | 68 65 20 76 61 6c 75 65 | Guess t|he value|
|00000550| 20 6f 66 20 24 62 24 20 | 61 6e 64 20 63 68 65 63 | of $b$ |and chec|
|00000560| 6b 0d 0a 79 6f 75 72 20 | 61 6e 73 77 65 72 20 62 |k..your |answer b|
|00000570| 79 20 65 76 61 6c 75 61 | 74 69 6f 6e 2e 0d 0a 0d |y evalua|tion....|
|00000580| 0a 5c 69 74 65 6d 20 20 | 5c 74 65 78 74 73 66 7b |.\item |\textsf{|
|00000590| 44 65 66 69 6e 65 7d 20 | 24 66 28 78 29 3d 78 5e |Define} |$f(x)=x^|
|000005a0| 7b 32 7d 2b 33 78 2b 32 | 24 2e 20 5c 74 65 78 74 |{2}+3x+2|$. \text|
|000005b0| 73 66 7b 45 76 61 6c 75 | 61 74 65 7d 20 0d 0a 5c |sf{Evalu|ate} ..\|
|000005c0| 5b 0d 0a 5c 66 72 61 63 | 7b 66 28 78 2b 68 29 2d |[..\frac|{f(x+h)-|
|000005d0| 66 28 78 29 7d 7b 68 7d | 0d 0a 5c 5d 0d 0a 61 6e |f(x)}{h}|..\]..an|
|000005e0| 64 20 5c 74 65 78 74 73 | 66 7b 53 69 6d 70 6c 69 |d \texts|f{Simpli|
|000005f0| 66 79 7d 20 74 68 65 20 | 72 65 73 75 6c 74 2e 20 |fy} the |result. |
|00000600| 44 6f 20 63 6f 6d 70 75 | 74 61 74 69 6f 6e 73 20 |Do compu|tations |
|00000610| 69 6e 20 70 6c 61 63 65 | 20 74 6f 20 73 68 6f 77 |in place| to show|
|00000620| 0d 0a 69 6e 74 65 72 6d | 65 64 69 61 74 65 20 73 |..interm|ediate s|
|00000630| 74 65 70 73 20 69 6e 20 | 74 68 65 20 73 69 6d 70 |teps in |the simp|
|00000640| 6c 69 66 69 63 61 74 69 | 6f 6e 2e 0d 0a 0d 0a 5c |lificati|on.....\|
|00000650| 69 74 65 6d 20 20 52 65 | 77 72 69 74 65 20 74 68 |item Re|write th|
|00000660| 65 20 66 75 6e 63 74 69 | 6f 6e 20 24 66 28 78 29 |e functi|on $f(x)|
|00000670| 3d 5c 6d 61 78 20 5c 6c | 65 66 74 28 20 78 5e 7b |=\max \l|eft( x^{|
|00000680| 32 7d 2d 31 2c 37 2d 78 | 5e 7b 32 7d 5c 72 69 67 |2}-1,7-x|^{2}\rig|
|00000690| 68 74 29 20 24 20 61 73 | 20 61 0d 0a 70 69 65 63 |ht) $ as| a..piec|
|000006a0| 65 77 69 73 65 2d 64 65 | 66 69 6e 65 64 20 66 75 |ewise-de|fined fu|
|000006b0| 6e 63 74 69 6f 6e 2e 0d | 0a 0d 0a 5c 69 74 65 6d |nction..|...\item|
|000006c0| 20 20 45 78 70 65 72 69 | 6d 65 6e 74 20 77 69 74 | Experi|ment wit|
|000006d0| 68 20 74 68 65 20 45 75 | 6c 65 72 20 70 68 69 20 |h the Eu|ler phi |
|000006e0| 66 75 6e 63 74 69 6f 6e | 20 24 5c 76 61 72 70 68 |function| $\varph|
|000006f0| 69 20 28 6e 29 24 2c 20 | 77 68 69 63 68 20 63 6f |i (n)$, |which co|
|00000700| 75 6e 74 73 0d 0a 74 68 | 65 20 6e 75 6d 62 65 72 |unts..th|e number|
|00000710| 20 6f 66 20 70 6f 73 69 | 74 69 76 65 20 69 6e 74 | of posi|tive int|
|00000720| 65 67 65 72 73 20 24 6b | 5c 6c 65 71 20 6e 24 20 |egers $k|\leq n$ |
|00000730| 73 75 63 68 20 74 68 61 | 74 20 24 5c 67 63 64 20 |such tha|t $\gcd |
|00000740| 28 6b 2c 6e 29 3d 31 24 | 2e 20 55 73 65 25 0d 0a |(k,n)=1$|. Use%..|
|00000750| 5c 74 65 78 74 73 66 7b | 5c 20 44 65 66 69 6e 65 |\textsf{|\ Define|
|00000760| 20 2b 20 44 65 66 69 6e | 65 20 4d 61 70 6c 65 20 | + Defin|e Maple |
|00000770| 4e 61 6d 65 7d 20 74 6f | 20 6f 70 65 6e 20 61 20 |Name} to| open a |
|00000780| 64 69 61 6c 6f 67 20 62 | 6f 78 2e 20 54 79 70 65 |dialog b|ox. Type|
|00000790| 20 5c 74 65 78 74 74 74 | 7b 25 0d 0a 70 68 69 28 | \texttt|{%..phi(|
|000007a0| 6e 29 7d 20 61 73 20 74 | 68 65 20 4d 61 70 6c 65 |n)} as t|he Maple|
|000007b0| 20 6e 61 6d 65 2c 20 24 | 5c 76 61 72 70 68 69 20 | name, $|\varphi |
|000007c0| 28 6e 29 24 20 61 73 20 | 74 68 65 20 5c 74 65 78 |(n)$ as |the \tex|
|000007d0| 74 73 6c 7b 53 63 69 65 | 6e 74 69 66 69 63 20 4e |tsl{Scie|ntific N|
|000007e0| 6f 74 65 62 6f 6f 6b 7d | 0d 0a 6e 61 6d 65 2c 20 |otebook}|..name, |
|000007f0| 61 6e 64 20 63 68 65 63 | 6b 20 74 68 65 20 5c 74 |and chec|k the \t|
|00000800| 65 78 74 73 66 7b 4d 61 | 70 6c 65 20 4c 69 62 72 |extsf{Ma|ple Libr|
|00000810| 61 72 79 20 4e 75 6d 74 | 68 65 6f 72 79 7d 20 62 |ary Numt|heory} b|
|00000820| 6f 78 2e 20 54 65 73 74 | 20 74 68 65 20 73 74 61 |ox. Test| the sta|
|00000830| 74 65 6d 65 6e 74 0d 0a | 60 60 49 66 20 24 5c 67 |tement..|``If $\g|
|00000840| 63 64 20 28 6e 2c 6d 29 | 3d 31 24 20 74 68 65 6e |cd (n,m)|=1$ then|
|00000850| 20 24 5c 76 61 72 70 68 | 69 20 28 6e 6d 29 3d 5c | $\varph|i (nm)=\|
|00000860| 76 61 72 70 68 69 20 28 | 6e 29 5c 76 61 72 70 68 |varphi (|n)\varph|
|00000870| 69 20 28 6d 29 24 27 27 | 20 66 6f 72 20 73 65 76 |i (m)$''| for sev|
|00000880| 65 72 61 6c 0d 0a 73 70 | 65 63 69 66 69 63 20 63 |eral..sp|ecific c|
|00000890| 68 6f 69 63 65 73 20 6f | 66 20 24 6e 24 20 61 6e |hoices o|f $n$ an|
|000008a0| 64 20 24 6d 24 2e 0d 0a | 0d 0a 5c 69 74 65 6d 20 |d $m$...|..\item |
|000008b0| 20 44 65 66 69 6e 65 20 | 24 64 28 6e 29 24 20 62 | Define |$d(n)$ b|
|000008c0| 79 20 74 79 70 69 6e 67 | 20 5c 74 65 78 74 74 74 |y typing| \texttt|
|000008d0| 7b 64 69 76 69 73 6f 72 | 73 28 6e 29 7d 20 61 73 |{divisor|s(n)} as|
|000008e0| 20 74 68 65 20 4d 61 70 | 6c 65 20 6e 61 6d 65 2c | the Map|le name,|
|000008f0| 20 24 64 28 6e 29 24 0d | 0a 61 73 20 74 68 65 5c | $d(n)$.|.as the\|
|00000900| 74 65 78 74 73 6c 7b 5c | 20 53 63 69 65 6e 74 69 |textsl{\| Scienti|
|00000910| 66 69 63 20 4e 6f 74 65 | 62 6f 6f 6b 7d 20 6e 61 |fic Note|book} na|
|00000920| 6d 65 2c 20 61 6e 64 20 | 63 68 65 63 6b 20 74 68 |me, and |check th|
|00000930| 65 20 5c 74 65 78 74 73 | 66 7b 4d 61 70 6c 65 0d |e \texts|f{Maple.|
|00000940| 0a 4c 69 62 72 61 72 79 | 20 4e 75 6d 74 68 65 6f |.Library| Numtheo|
|00000950| 72 79 7d 20 62 6f 78 2e | 20 45 78 70 6c 61 69 6e |ry} box.| Explain|
|00000960| 20 77 68 61 74 20 74 68 | 65 20 66 75 6e 63 74 69 | what th|e functi|
|00000970| 6f 6e 20 24 64 28 6e 29 | 24 20 70 72 6f 64 75 63 |on $d(n)|$ produc|
|00000980| 65 73 2e 20 54 68 69 73 | 20 69 73 0d 0a 61 6e 20 |es. This| is..an |
|00000990| 65 78 61 6d 70 6c 65 20 | 6f 66 20 61 20 5c 65 6d |example |of a \em|
|000009a0| 70 68 7b 73 65 74 2d 76 | 61 6c 75 65 64 20 66 75 |ph{set-v|alued fu|
|000009b0| 6e 63 74 69 6f 6e 7d 2c | 20 73 69 6e 63 65 20 74 |nction},| since t|
|000009c0| 68 65 20 66 75 6e 63 74 | 69 6f 6e 20 76 61 6c 75 |he funct|ion valu|
|000009d0| 65 73 20 61 72 65 0d 0a | 73 65 74 73 20 69 6e 73 |es are..|sets ins|
|000009e0| 74 65 61 64 20 6f 66 20 | 6e 75 6d 62 65 72 73 2e |tead of |numbers.|
|000009f0| 0d 0a 5c 65 6e 64 7b 65 | 6e 75 6d 65 72 61 74 65 |..\end{e|numerate|
|00000a00| 7d 0d 0a 0d 0a 5c 73 65 | 63 74 69 6f 6e 7b 5c 6c |}....\se|ction{\l|
|00000a10| 61 62 65 6c 7b 53 6f 6c | 75 74 69 6f 6e 73 7d 53 |abel{Sol|utions}S|
|00000a20| 6f 6c 75 74 69 6f 6e 73 | 7d 0d 0a 0d 0a 5c 62 65 |olutions|}....\be|
|00000a30| 67 69 6e 7b 65 6e 75 6d | 65 72 61 74 65 7d 0d 0a |gin{enum|erate}..|
|00000a40| 5c 69 74 65 6d 20 20 49 | 66 20 24 61 3d 35 24 20 |\item I|f $a=5$ |
|00000a50| 74 68 65 6e 20 64 65 66 | 69 6e 69 6e 67 20 24 62 |then def|ining $b|
|00000a60| 3d 61 5e 7b 32 7d 24 20 | 70 72 6f 64 75 63 65 73 |=a^{2}$ |produces|
|00000a70| 20 24 62 3d 32 35 2e 24 | 20 4e 6f 77 20 64 65 66 | $b=25.$| Now def|
|00000a80| 69 6e 65 20 24 61 3d 5c | 73 71 72 74 7b 25 0d 0a |ine $a=\|sqrt{%..|
|00000a90| 32 7d 24 2e 20 54 68 65 | 20 76 61 6c 75 65 20 6f |2}$. The| value o|
|00000aa0| 66 20 24 62 24 20 69 73 | 20 6e 6f 77 20 24 62 3d |f $b$ is| now $b=|
|00000ab0| 5c 61 6c 6c 6f 77 62 72 | 65 61 6b 20 32 24 2e 0d |\allowbr|eak 2$..|
|00000ac0| 0a 0d 0a 5c 69 74 65 6d | 20 20 45 76 61 6c 75 61 |...\item| Evalua|
|00000ad0| 74 65 20 66 6f 6c 6c 6f | 77 65 64 20 62 79 20 53 |te follo|wed by S|
|00000ae0| 69 6d 70 6c 69 66 79 20 | 79 69 65 6c 64 73 20 0d |implify |yields .|
|00000af0| 0a 5c 62 65 67 69 6e 7b | 65 71 6e 61 72 72 61 79 |.\begin{|eqnarray|
|00000b00| 2a 7d 0d 0a 5c 66 72 61 | 63 7b 66 28 78 2b 68 29 |*}..\fra|c{f(x+h)|
|00000b10| 2d 66 28 78 29 7d 7b 68 | 7d 20 26 3d 26 5c 61 6c |-f(x)}{h|} &=&\al|
|00000b20| 6c 6f 77 62 72 65 61 6b | 20 5c 66 72 61 63 7b 5c |lowbreak| \frac{\|
|00000b30| 6c 65 66 74 28 20 78 2b | 68 5c 72 69 67 68 74 29 |left( x+|h\right)|
|00000b40| 20 5e 7b 32 7d 2b 33 68 | 2d 78 5e 7b 32 7d 7d 7b | ^{2}+3h|-x^{2}}{|
|00000b50| 68 25 0d 0a 7d 20 5c 5c | 0d 0a 26 3d 26 5c 61 6c |h%..} \\|..&=&\al|
|00000b60| 6c 6f 77 62 72 65 61 6b | 20 32 78 2b 68 2b 33 0d |lowbreak| 2x+h+3.|
|00000b70| 0a 5c 65 6e 64 7b 65 71 | 6e 61 72 72 61 79 2a 7d |.\end{eq|narray*}|
|00000b80| 0d 0a 53 65 6c 65 63 74 | 20 74 68 65 20 65 78 70 |..Select| the exp|
|00000b90| 72 65 73 73 69 6f 6e 20 | 24 3d 5c 61 6c 6c 6f 77 |ression |$=\allow|
|00000ba0| 62 72 65 61 6b 20 5c 66 | 72 61 63 7b 5c 6c 65 66 |break \f|rac{\lef|
|00000bb0| 74 28 20 78 2b 68 5c 72 | 69 67 68 74 29 20 5e 7b |t( x+h\r|ight) ^{|
|00000bc0| 32 7d 2b 33 68 2d 78 5e | 7b 32 7d 7d 7b 68 7d 0d |2}+3h-x^|{2}}{h}.|
|00000bd0| 0a 24 20 61 6e 64 20 77 | 69 74 68 20 74 68 65 20 |.$ and w|ith the |
|00000be0| 5c 74 65 78 74 73 63 7b | 63 74 72 6c 20 7d 20 6b |\textsc{|ctrl } k|
|00000bf0| 65 79 20 64 6f 77 6e 20 | 64 72 61 67 20 74 68 65 |ey down |drag the|
|00000c00| 20 65 78 70 72 65 73 73 | 69 6f 6e 20 74 6f 20 63 | express|ion to c|
|00000c10| 72 65 61 74 65 20 61 20 | 63 6f 70 79 2e 0d 0a 53 |reate a |copy...S|
|00000c20| 65 6c 65 63 74 20 74 68 | 65 20 65 78 70 72 65 73 |elect th|e expres|
|00000c30| 73 69 6f 6e 20 24 5c 6c | 65 66 74 28 20 78 2b 68 |sion $\l|eft( x+h|
|00000c40| 5c 72 69 67 68 74 29 20 | 5e 7b 32 7d 24 20 61 6e |\right) |^{2}$ an|
|00000c50| 64 20 77 69 74 68 20 74 | 68 65 20 5c 74 65 78 74 |d with t|he \text|
|00000c60| 73 63 7b 63 74 72 6c 20 | 7d 0d 0a 6b 65 79 20 64 |sc{ctrl |}..key d|
|00000c70| 6f 77 6e 20 63 68 6f 6f | 73 65 20 5c 74 65 78 74 |own choo|se \text|
|00000c80| 73 66 7b 45 78 70 61 6e | 64 7d 2e 20 41 64 64 20 |sf{Expan|d}. Add |
|00000c90| 73 69 6d 69 6c 61 72 20 | 73 74 65 70 73 20 28 75 |similar |steps (u|
|00000ca0| 73 65 20 5c 74 65 78 74 | 73 66 7b 46 61 63 74 6f |se \text|sf{Facto|
|00000cb0| 72 7d 20 74 6f 0d 0a 72 | 65 77 72 69 74 65 20 24 |r} to..r|ewrite $|
|00000cc0| 32 78 68 2b 68 5e 7b 32 | 7d 2b 33 68 24 29 20 75 |2xh+h^{2|}+3h$) u|
|00000cd0| 6e 74 69 6c 20 79 6f 75 | 20 68 61 76 65 20 74 68 |ntil you| have th|
|00000ce0| 65 20 66 6f 6c 6c 6f 77 | 69 6e 67 3a 20 0d 0a 5c |e follow|ing: ..\|
|00000cf0| 62 65 67 69 6e 7b 65 71 | 6e 61 72 72 61 79 2a 7d |begin{eq|narray*}|
|00000d00| 0d 0a 5c 66 72 61 63 7b | 66 28 78 2b 68 29 2d 66 |..\frac{|f(x+h)-f|
|00000d10| 28 78 29 7d 7b 68 7d 20 | 26 3d 26 5c 61 6c 6c 6f |(x)}{h} |&=&\allo|
|00000d20| 77 62 72 65 61 6b 20 5c | 66 72 61 63 7b 5c 6c 65 |wbreak \|frac{\le|
|00000d30| 66 74 28 20 78 2b 68 5c | 72 69 67 68 74 29 20 5e |ft( x+h\|right) ^|
|00000d40| 7b 32 7d 2b 33 68 2d 78 | 5e 7b 32 7d 7d 7b 68 25 |{2}+3h-x|^{2}}{h%|
|00000d50| 0d 0a 7d 20 5c 5c 0d 0a | 26 3d 26 5c 61 6c 6c 6f |..} \\..|&=&\allo|
|00000d60| 77 62 72 65 61 6b 20 5c | 66 72 61 63 7b 78 5e 7b |wbreak \|frac{x^{|
|00000d70| 32 7d 2b 32 78 68 2b 68 | 5e 7b 32 7d 2b 33 68 2d |2}+2xh+h|^{2}+3h-|
|00000d80| 78 5e 7b 32 7d 7d 7b 68 | 7d 20 5c 5c 0d 0a 26 3d |x^{2}}{h|} \\..&=|
|00000d90| 26 5c 61 6c 6c 6f 77 62 | 72 65 61 6b 20 5c 66 72 |&\allowb|reak \fr|
|00000da0| 61 63 7b 32 78 68 2b 68 | 5e 7b 32 7d 2b 33 68 7d |ac{2xh+h|^{2}+3h}|
|00000db0| 7b 68 7d 20 5c 5c 0d 0a | 26 3d 26 5c 61 6c 6c 6f |{h} \\..|&=&\allo|
|00000dc0| 77 62 72 65 61 6b 20 5c | 66 72 61 63 7b 68 5c 6c |wbreak \|frac{h\l|
|00000dd0| 65 66 74 28 20 32 78 2b | 68 2b 33 5c 72 69 67 68 |eft( 2x+|h+3\righ|
|00000de0| 74 29 20 7d 7b 68 7d 20 | 5c 5c 0d 0a 26 3d 26 5c |t) }{h} |\\..&=&\|
|00000df0| 61 6c 6c 6f 77 62 72 65 | 61 6b 20 32 78 2b 68 2b |allowbre|ak 2x+h+|
|00000e00| 33 0d 0a 5c 65 6e 64 7b | 65 71 6e 61 72 72 61 79 |3..\end{|eqnarray|
|00000e10| 2a 7d 0d 0a 0d 0a 5c 69 | 74 65 6d 20 20 54 6f 20 |*}....\i|tem To |
|00000e20| 72 65 77 72 69 74 65 20 | 24 66 28 78 29 3d 5c 6d |rewrite |$f(x)=\m|
|00000e30| 61 78 20 5c 6c 65 66 74 | 28 20 78 5e 7b 32 7d 2d |ax \left|( x^{2}-|
|00000e40| 31 2c 37 2d 78 5e 7b 32 | 7d 5c 72 69 67 68 74 29 |1,7-x^{2|}\right)|
|00000e50| 20 24 20 61 73 20 61 0d | 0a 70 69 65 63 65 77 69 | $ as a.|.piecewi|
|00000e60| 73 65 2d 64 65 66 69 6e | 65 64 20 66 75 6e 63 74 |se-defin|ed funct|
|00000e70| 69 6f 6e 2c 20 66 69 72 | 73 74 20 6e 6f 74 65 20 |ion, fir|st note |
|00000e80| 74 68 61 74 20 74 68 65 | 20 65 71 75 61 74 69 6f |that the| equatio|
|00000e90| 6e 20 24 78 5e 7b 32 7d | 2d 31 3d 37 2d 78 5e 7b |n $x^{2}|-1=7-x^{|
|00000ea0| 32 7d 24 0d 0a 68 61 73 | 20 74 68 65 20 73 6f 6c |2}$..has| the sol|
|00000eb0| 75 74 69 6f 6e 73 20 24 | 78 3d 2d 32 24 20 61 6e |utions $|x=-2$ an|
|00000ec0| 64 20 24 78 3d 32 24 2e | 20 54 68 65 20 66 75 6e |d $x=2$.| The fun|
|00000ed0| 63 74 69 6f 6e 20 24 66 | 24 20 69 73 20 67 69 76 |ction $f|$ is giv|
|00000ee0| 65 6e 20 62 79 20 0d 0a | 5c 5b 0d 0a 67 28 78 29 |en by ..|\[..g(x)|
|00000ef0| 3d 5c 6c 65 66 74 5c 7b | 20 0d 0a 5c 62 65 67 69 |=\left\{| ..\begi|
|00000f00| 6e 7b 61 72 72 61 79 7d | 7b 6c 6c 6c 7d 0d 0a 78 |n{array}|{lll}..x|
|00000f10| 5e 7b 32 7d 2d 31 20 26 | 20 5c 74 65 78 74 7b 69 |^{2}-1 &| \text{i|
|00000f20| 66 7d 20 26 20 78 3c 2d | 32 20 5c 5c 20 0d 0a 37 |f} & x<-|2 \\ ..7|
|00000f30| 2d 78 5e 7b 32 7d 20 26 | 20 5c 74 65 78 74 7b 69 |-x^{2} &| \text{i|
|00000f40| 66 7d 20 26 20 2d 32 5c | 6c 65 71 20 78 5c 6c 65 |f} & -2\|leq x\le|
|00000f50| 71 20 32 20 5c 5c 20 0d | 0a 78 5e 7b 32 7d 2d 31 |q 2 \\ .|.x^{2}-1|
|00000f60| 20 26 20 5c 74 65 78 74 | 7b 69 66 7d 20 26 20 78 | & \text|{if} & x|
|00000f70| 3e 32 0d 0a 5c 65 6e 64 | 7b 61 72 72 61 79 7d 0d |>2..\end|{array}.|
|00000f80| 0a 5c 72 69 67 68 74 2e | 20 0d 0a 5c 5d 0d 0a 41 |.\right.| ..\]..A|
|00000f90| 73 20 61 20 63 68 65 63 | 6b 2c 20 6e 6f 74 65 20 |s a chec|k, note |
|00000fa0| 74 68 61 74 20 24 66 28 | 2d 35 29 3d 5c 61 6c 6c |that $f(|-5)=\all|
|00000fb0| 6f 77 62 72 65 61 6b 20 | 32 34 24 2c 20 24 67 28 |owbreak |24$, $g(|
|00000fc0| 2d 35 29 3d 5c 61 6c 6c | 6f 77 62 72 65 61 6b 20 |-5)=\all|owbreak |
|00000fd0| 32 34 24 2c 20 24 25 0d | 0a 66 28 31 29 3d 5c 61 |24$, $%.|.f(1)=\a|
|00000fe0| 6c 6c 6f 77 62 72 65 61 | 6b 20 36 24 2c 20 24 67 |llowbrea|k 6$, $g|
|00000ff0| 28 31 29 3d 5c 61 6c 6c | 6f 77 62 72 65 61 6b 20 |(1)=\all|owbreak |
|00001000| 36 24 2c 20 24 66 28 33 | 29 3d 5c 61 6c 6c 6f 77 |6$, $f(3|)=\allow|
|00001010| 62 72 65 61 6b 20 38 24 | 2c 20 61 6e 64 20 24 25 |break 8$|, and $%|
|00001020| 0d 0a 67 28 33 29 3d 5c | 61 6c 6c 6f 77 62 72 65 |..g(3)=\|allowbre|
|00001030| 61 6b 20 38 24 2e 0d 0a | 0d 0a 5c 69 74 65 6d 20 |ak 8$...|..\item |
|00001040| 20 43 6f 6e 73 74 72 75 | 63 74 20 74 68 65 20 66 | Constru|ct the f|
|00001050| 6f 6c 6c 6f 77 69 6e 67 | 20 74 61 62 6c 65 3a 20 |ollowing| table: |
|00001060| 0d 0a 5c 5b 0d 0a 5c 62 | 65 67 69 6e 7b 74 61 62 |..\[..\b|egin{tab|
|00001070| 75 6c 61 72 7d 7b 72 72 | 72 72 72 72 72 72 7d 0d |ular}{rr|rrrrrr}.|
|00001080| 0a 24 6e 24 20 26 20 24 | 5c 76 61 72 70 68 69 20 |.$n$ & $|\varphi |
|00001090| 28 6e 29 24 20 26 20 20 | 26 20 24 6e 24 20 26 20 |(n)$ & |& $n$ & |
|000010a0| 24 5c 76 61 72 70 68 69 | 20 28 6e 29 24 20 26 20 |$\varphi| (n)$ & |
|000010b0| 20 26 20 24 6e 24 20 26 | 20 24 5c 76 61 72 70 68 | & $n$ &| $\varph|
|000010c0| 69 20 28 6e 29 24 20 5c | 5c 20 0d 0a 5c 68 6c 69 |i (n)$ \|\ ..\hli|
|000010d0| 6e 65 0d 0a 24 31 24 20 | 26 20 24 31 24 20 26 20 |ne..$1$ |& $1$ & |
|000010e0| 20 26 20 24 31 31 24 20 | 26 20 24 31 30 24 20 26 | & $11$ |& $10$ &|
|000010f0| 20 20 26 20 24 32 31 24 | 20 26 20 24 31 32 24 20 | & $21$| & $12$ |
|00001100| 5c 5c 20 0d 0a 24 32 24 | 20 26 20 24 31 24 20 26 |\\ ..$2$| & $1$ &|
|00001110| 20 20 26 20 24 31 32 24 | 20 26 20 24 34 24 20 26 | & $12$| & $4$ &|
|00001120| 20 20 26 20 24 32 32 24 | 20 26 20 24 31 30 24 20 | & $22$| & $10$ |
|00001130| 5c 5c 20 0d 0a 24 33 24 | 20 26 20 24 32 24 20 26 |\\ ..$3$| & $2$ &|
|00001140| 20 20 26 20 24 31 33 24 | 20 26 20 24 31 32 24 20 | & $13$| & $12$ |
|00001150| 26 20 20 26 20 24 32 33 | 24 20 26 20 24 32 32 24 |& & $23|$ & $22$|
|00001160| 20 5c 5c 20 0d 0a 24 34 | 24 20 26 20 24 32 24 20 | \\ ..$4|$ & $2$ |
|00001170| 26 20 20 26 20 24 31 34 | 24 20 26 20 24 36 24 20 |& & $14|$ & $6$ |
|00001180| 26 20 20 26 20 24 32 34 | 24 20 26 20 24 38 24 20 |& & $24|$ & $8$ |
|00001190| 5c 5c 20 0d 0a 24 35 24 | 20 26 20 24 34 24 20 26 |\\ ..$5$| & $4$ &|
|000011a0| 20 20 26 20 24 31 35 24 | 20 26 20 24 38 24 20 26 | & $15$| & $8$ &|
|000011b0| 20 20 26 20 24 32 35 24 | 20 26 20 24 32 30 24 20 | & $25$| & $20$ |
|000011c0| 5c 5c 20 0d 0a 24 36 24 | 20 26 20 24 32 24 20 26 |\\ ..$6$| & $2$ &|
|000011d0| 20 20 26 20 24 31 36 24 | 20 26 20 24 38 24 20 26 | & $16$| & $8$ &|
|000011e0| 20 20 26 20 24 32 36 24 | 20 26 20 24 31 32 24 20 | & $26$| & $12$ |
|000011f0| 5c 5c 20 0d 0a 24 37 24 | 20 26 20 24 36 24 20 26 |\\ ..$7$| & $6$ &|
|00001200| 20 20 26 20 24 31 37 24 | 20 26 20 24 31 36 24 20 | & $17$| & $16$ |
|00001210| 26 20 20 26 20 24 32 37 | 24 20 26 20 24 31 38 24 |& & $27|$ & $18$|
|00001220| 20 5c 5c 20 0d 0a 24 38 | 24 20 26 20 24 34 24 20 | \\ ..$8|$ & $4$ |
|00001230| 26 20 20 26 20 24 31 38 | 24 20 26 20 24 36 24 20 |& & $18|$ & $6$ |
|00001240| 26 20 20 26 20 24 32 38 | 24 20 26 20 24 31 32 24 |& & $28|$ & $12$|
|00001250| 20 5c 5c 20 0d 0a 24 39 | 24 20 26 20 24 36 24 20 | \\ ..$9|$ & $6$ |
|00001260| 26 20 20 26 20 24 31 39 | 24 20 26 20 24 31 38 24 |& & $19|$ & $18$|
|00001270| 20 26 20 20 26 20 24 32 | 39 24 20 26 20 24 32 38 | & & $2|9$ & $28|
|00001280| 24 20 5c 5c 20 0d 0a 24 | 31 30 24 20 26 20 24 34 |$ \\ ..$|10$ & $4|
|00001290| 24 20 26 20 20 26 20 24 | 32 30 24 20 26 20 24 38 |$ & & $|20$ & $8|
|000012a0| 24 20 26 20 20 26 20 24 | 33 30 24 20 26 20 24 38 |$ & & $|30$ & $8|
|000012b0| 24 25 0d 0a 5c 65 6e 64 | 7b 74 61 62 75 6c 61 72 |$%..\end|{tabular|
|000012c0| 7d 0d 0a 5c 5d 0d 0a 4e | 6f 74 69 63 65 2c 20 66 |}..\]..N|otice, f|
|000012d0| 6f 72 20 65 78 61 6d 70 | 6c 65 2c 20 74 68 61 74 |or examp|le, that|
|000012e0| 20 0d 0a 5c 62 65 67 69 | 6e 7b 65 71 6e 61 72 72 | ..\begi|n{eqnarr|
|000012f0| 61 79 2a 7d 0d 0a 5c 76 | 61 72 70 68 69 20 28 34 |ay*}..\v|arphi (4|
|00001300| 5c 63 64 6f 74 20 35 29 | 20 26 3d 26 5c 61 6c 6c |\cdot 5)| &=&\all|
|00001310| 6f 77 62 72 65 61 6b 20 | 38 3d 5c 76 61 72 70 68 |owbreak |8=\varph|
|00001320| 69 20 28 34 29 5c 76 61 | 72 70 68 69 20 28 35 29 |i (4)\va|rphi (5)|
|00001330| 20 5c 5c 0d 0a 5c 76 61 | 72 70 68 69 20 28 34 5c | \\..\va|rphi (4\|
|00001340| 63 64 6f 74 20 37 29 20 | 26 3d 26 5c 61 6c 6c 6f |cdot 7) |&=&\allo|
|00001350| 77 62 72 65 61 6b 20 31 | 32 3d 5c 76 61 72 70 68 |wbreak 1|2=\varph|
|00001360| 69 20 28 34 29 5c 76 61 | 72 70 68 69 20 28 37 29 |i (4)\va|rphi (7)|
|00001370| 20 5c 5c 0d 0a 5c 76 61 | 72 70 68 69 20 28 33 5c | \\..\va|rphi (3\|
|00001380| 63 64 6f 74 20 38 29 20 | 26 3d 26 5c 61 6c 6c 6f |cdot 8) |&=&\allo|
|00001390| 77 62 72 65 61 6b 20 38 | 3d 5c 76 61 72 70 68 69 |wbreak 8|=\varphi|
|000013a0| 20 28 33 29 5c 76 61 72 | 70 68 69 20 28 38 29 0d | (3)\var|phi (8).|
|000013b0| 0a 5c 65 6e 64 7b 65 71 | 6e 61 72 72 61 79 2a 7d |.\end{eq|narray*}|
|000013c0| 0d 0a 0d 0a 5c 69 74 65 | 6d 20 20 57 65 20 68 61 |....\ite|m We ha|
|000013d0| 76 65 20 74 68 65 20 66 | 6f 6c 6c 6f 77 69 6e 67 |ve the f|ollowing|
|000013e0| 20 74 61 62 6c 65 3a 20 | 0d 0a 5c 5b 0d 0a 5c 62 | table: |..\[..\b|
|000013f0| 65 67 69 6e 7b 74 61 62 | 75 6c 61 72 7d 7b 6c 6c |egin{tab|ular}{ll|
|00001400| 6c 6c 6c 6c 7d 0d 0a 24 | 6e 24 20 26 20 24 64 28 |llll}..$|n$ & $d(|
|00001410| 6e 29 24 20 26 20 24 6e | 24 20 26 20 24 64 28 6e |n)$ & $n|$ & $d(n|
|00001420| 29 24 20 26 20 24 6e 24 | 20 26 20 24 64 28 6e 29 |)$ & $n$| & $d(n)|
|00001430| 24 20 5c 5c 20 5c 68 6c | 69 6e 65 0d 0a 5c 6d 75 |$ \\ \hl|ine..\mu|
|00001440| 6c 74 69 63 6f 6c 75 6d | 6e 7b 31 7d 7b 72 7d 7b |lticolum|n{1}{r}{|
|00001450| 24 31 24 7d 20 26 20 5c | 6d 75 6c 74 69 63 6f 6c |$1$} & \|multicol|
|00001460| 75 6d 6e 7b 31 7d 7b 63 | 7d 7b 24 5c 6c 65 66 74 |umn{1}{c|}{$\left|
|00001470| 5c 7b 20 31 5c 72 69 67 | 68 74 5c 7d 20 24 7d 20 |\{ 1\rig|ht\} $} |
|00001480| 26 20 0d 0a 5c 6d 75 6c | 74 69 63 6f 6c 75 6d 6e |& ..\mul|ticolumn|
|00001490| 7b 31 7d 7b 72 7d 7b 24 | 31 31 24 7d 20 26 20 5c |{1}{r}{$|11$} & \|
|000014a0| 6d 75 6c 74 69 63 6f 6c | 75 6d 6e 7b 31 7d 7b 63 |multicol|umn{1}{c|
|000014b0| 7d 7b 24 5c 6c 65 66 74 | 5c 7b 20 31 2c 31 31 5c |}{$\left|\{ 1,11\|
|000014c0| 72 69 67 68 74 5c 7d 20 | 24 7d 20 26 20 0d 0a 5c |right\} |$} & ..\|
|000014d0| 6d 75 6c 74 69 63 6f 6c | 75 6d 6e 7b 31 7d 7b 72 |multicol|umn{1}{r|
|000014e0| 7d 7b 24 32 31 24 7d 20 | 26 20 5c 6d 75 6c 74 69 |}{$21$} |& \multi|
|000014f0| 63 6f 6c 75 6d 6e 7b 31 | 7d 7b 63 7d 7b 24 5c 6c |column{1|}{c}{$\l|
|00001500| 65 66 74 5c 7b 20 31 2c | 33 2c 37 2c 32 31 5c 72 |eft\{ 1,|3,7,21\r|
|00001510| 69 67 68 74 5c 7d 20 24 | 7d 0d 0a 5c 5c 20 0d 0a |ight\} $|}..\\ ..|
|00001520| 5c 6d 75 6c 74 69 63 6f | 6c 75 6d 6e 7b 31 7d 7b |\multico|lumn{1}{|
|00001530| 72 7d 7b 24 32 24 7d 20 | 26 20 5c 6d 75 6c 74 69 |r}{$2$} |& \multi|
|00001540| 63 6f 6c 75 6d 6e 7b 31 | 7d 7b 63 7d 7b 24 5c 6c |column{1|}{c}{$\l|
|00001550| 65 66 74 5c 7b 20 31 2c | 32 5c 72 69 67 68 74 5c |eft\{ 1,|2\right\|
|00001560| 7d 20 24 7d 20 26 20 0d | 0a 5c 6d 75 6c 74 69 63 |} $} & .|.\multic|
|00001570| 6f 6c 75 6d 6e 7b 31 7d | 7b 72 7d 7b 24 31 32 24 |olumn{1}|{r}{$12$|
|00001580| 7d 20 26 20 5c 6d 75 6c | 74 69 63 6f 6c 75 6d 6e |} & \mul|ticolumn|
|00001590| 7b 31 7d 7b 63 7d 7b 24 | 5c 6c 65 66 74 5c 7b 20 |{1}{c}{$|\left\{ |
|000015a0| 31 2c 32 2c 33 2c 34 2c | 36 2c 31 32 5c 72 69 67 |1,2,3,4,|6,12\rig|
|000015b0| 68 74 5c 7d 20 24 25 0d | 0a 7d 20 26 20 5c 6d 75 |ht\} $%.|.} & \mu|
|000015c0| 6c 74 69 63 6f 6c 75 6d | 6e 7b 31 7d 7b 72 7d 7b |lticolum|n{1}{r}{|
|000015d0| 24 32 32 24 7d 20 26 20 | 5c 6d 75 6c 74 69 63 6f |$22$} & |\multico|
|000015e0| 6c 75 6d 6e 7b 31 7d 7b | 63 7d 7b 24 5c 6c 65 66 |lumn{1}{|c}{$\lef|
|000015f0| 74 5c 7b 20 31 2c 32 2c | 31 31 2c 32 32 5c 72 69 |t\{ 1,2,|11,22\ri|
|00001600| 67 68 74 5c 7d 20 0d 0a | 24 7d 20 5c 5c 20 0d 0a |ght\} ..|$} \\ ..|
|00001610| 5c 6d 75 6c 74 69 63 6f | 6c 75 6d 6e 7b 31 7d 7b |\multico|lumn{1}{|
|00001620| 72 7d 7b 24 33 24 7d 20 | 26 20 5c 6d 75 6c 74 69 |r}{$3$} |& \multi|
|00001630| 63 6f 6c 75 6d 6e 7b 31 | 7d 7b 63 7d 7b 24 5c 6c |column{1|}{c}{$\l|
|00001640| 65 66 74 5c 7b 20 31 2c | 33 5c 72 69 67 68 74 5c |eft\{ 1,|3\right\|
|00001650| 7d 20 24 7d 20 26 20 0d | 0a 5c 6d 75 6c 74 69 63 |} $} & .|.\multic|
|00001660| 6f 6c 75 6d 6e 7b 31 7d | 7b 72 7d 7b 24 31 33 24 |olumn{1}|{r}{$13$|
|00001670| 7d 20 26 20 5c 6d 75 6c | 74 69 63 6f 6c 75 6d 6e |} & \mul|ticolumn|
|00001680| 7b 31 7d 7b 63 7d 7b 24 | 5c 6c 65 66 74 5c 7b 20 |{1}{c}{$|\left\{ |
|00001690| 31 2c 31 33 5c 72 69 67 | 68 74 5c 7d 20 24 7d 20 |1,13\rig|ht\} $} |
|000016a0| 26 20 0d 0a 5c 6d 75 6c | 74 69 63 6f 6c 75 6d 6e |& ..\mul|ticolumn|
|000016b0| 7b 31 7d 7b 72 7d 7b 24 | 32 33 24 7d 20 26 20 5c |{1}{r}{$|23$} & \|
|000016c0| 6d 75 6c 74 69 63 6f 6c | 75 6d 6e 7b 31 7d 7b 63 |multicol|umn{1}{c|
|000016d0| 7d 7b 24 5c 6c 65 66 74 | 5c 7b 20 31 2c 32 33 5c |}{$\left|\{ 1,23\|
|000016e0| 72 69 67 68 74 5c 7d 20 | 24 7d 20 5c 5c 20 0d 0a |right\} |$} \\ ..|
|000016f0| 5c 6d 75 6c 74 69 63 6f | 6c 75 6d 6e 7b 31 7d 7b |\multico|lumn{1}{|
|00001700| 72 7d 7b 24 34 24 7d 20 | 26 20 5c 6d 75 6c 74 69 |r}{$4$} |& \multi|
|00001710| 63 6f 6c 75 6d 6e 7b 31 | 7d 7b 63 7d 7b 24 5c 6c |column{1|}{c}{$\l|
|00001720| 65 66 74 5c 7b 20 31 2c | 32 2c 34 5c 72 69 67 68 |eft\{ 1,|2,4\righ|
|00001730| 74 5c 7d 20 24 7d 20 26 | 20 0d 0a 5c 6d 75 6c 74 |t\} $} &| ..\mult|
|00001740| 69 63 6f 6c 75 6d 6e 7b | 31 7d 7b 72 7d 7b 24 31 |icolumn{|1}{r}{$1|
|00001750| 34 24 7d 20 26 20 5c 6d | 75 6c 74 69 63 6f 6c 75 |4$} & \m|ulticolu|
|00001760| 6d 6e 7b 31 7d 7b 63 7d | 7b 24 5c 6c 65 66 74 5c |mn{1}{c}|{$\left\|
|00001770| 7b 20 31 2c 32 2c 37 2c | 31 34 5c 72 69 67 68 74 |{ 1,2,7,|14\right|
|00001780| 5c 7d 20 24 7d 20 26 20 | 0d 0a 5c 6d 75 6c 74 69 |\} $} & |..\multi|
|00001790| 63 6f 6c 75 6d 6e 7b 31 | 7d 7b 72 7d 7b 24 32 34 |column{1|}{r}{$24|
|000017a0| 24 7d 20 26 20 5c 6d 75 | 6c 74 69 63 6f 6c 75 6d |$} & \mu|lticolum|
|000017b0| 6e 7b 31 7d 7b 63 7d 7b | 24 5c 6c 65 66 74 5c 7b |n{1}{c}{|$\left\{|
|000017c0| 0d 0a 31 2c 32 2c 33 2c | 34 2c 36 2c 38 2c 31 32 |..1,2,3,|4,6,8,12|
|000017d0| 2c 32 34 5c 72 69 67 68 | 74 5c 7d 20 24 7d 20 5c |,24\righ|t\} $} \|
|000017e0| 5c 20 0d 0a 5c 6d 75 6c | 74 69 63 6f 6c 75 6d 6e |\ ..\mul|ticolumn|
|000017f0| 7b 31 7d 7b 72 7d 7b 24 | 35 24 7d 20 26 20 5c 6d |{1}{r}{$|5$} & \m|
|00001800| 75 6c 74 69 63 6f 6c 75 | 6d 6e 7b 31 7d 7b 63 7d |ulticolu|mn{1}{c}|
|00001810| 7b 24 5c 6c 65 66 74 5c | 7b 20 31 2c 35 5c 72 69 |{$\left\|{ 1,5\ri|
|00001820| 67 68 74 5c 7d 20 24 7d | 20 26 20 0d 0a 5c 6d 75 |ght\} $}| & ..\mu|
|00001830| 6c 74 69 63 6f 6c 75 6d | 6e 7b 31 7d 7b 72 7d 7b |lticolum|n{1}{r}{|
|00001840| 24 31 35 24 7d 20 26 20 | 5c 6d 75 6c 74 69 63 6f |$15$} & |\multico|
|00001850| 6c 75 6d 6e 7b 31 7d 7b | 63 7d 7b 24 5c 6c 65 66 |lumn{1}{|c}{$\lef|
|00001860| 74 5c 7b 20 31 2c 33 2c | 35 2c 31 35 5c 72 69 67 |t\{ 1,3,|5,15\rig|
|00001870| 68 74 5c 7d 20 24 7d 20 | 26 20 0d 0a 5c 6d 75 6c |ht\} $} |& ..\mul|
|00001880| 74 69 63 6f 6c 75 6d 6e | 7b 31 7d 7b 72 7d 7b 24 |ticolumn|{1}{r}{$|
|00001890| 32 35 24 7d 20 26 20 5c | 6d 75 6c 74 69 63 6f 6c |25$} & \|multicol|
|000018a0| 75 6d 6e 7b 31 7d 7b 63 | 7d 7b 24 5c 6c 65 66 74 |umn{1}{c|}{$\left|
|000018b0| 5c 7b 20 31 2c 35 2c 32 | 35 5c 72 69 67 68 74 5c |\{ 1,5,2|5\right\|
|000018c0| 7d 20 24 7d 20 5c 5c 20 | 0d 0a 5c 6d 75 6c 74 69 |} $} \\ |..\multi|
|000018d0| 63 6f 6c 75 6d 6e 7b 31 | 7d 7b 72 7d 7b 24 36 24 |column{1|}{r}{$6$|
|000018e0| 7d 20 26 20 5c 6d 75 6c | 74 69 63 6f 6c 75 6d 6e |} & \mul|ticolumn|
|000018f0| 7b 31 7d 7b 63 7d 7b 24 | 5c 6c 65 66 74 5c 7b 20 |{1}{c}{$|\left\{ |
|00001900| 31 2c 32 2c 33 2c 36 5c | 72 69 67 68 74 5c 7d 20 |1,2,3,6\|right\} |
|00001910| 24 7d 20 26 20 0d 0a 5c | 6d 75 6c 74 69 63 6f 6c |$} & ..\|multicol|
|00001920| 75 6d 6e 7b 31 7d 7b 72 | 7d 7b 24 31 36 24 7d 20 |umn{1}{r|}{$16$} |
|00001930| 26 20 5c 6d 75 6c 74 69 | 63 6f 6c 75 6d 6e 7b 31 |& \multi|column{1|
|00001940| 7d 7b 63 7d 7b 24 5c 6c | 65 66 74 5c 7b 20 31 2c |}{c}{$\l|eft\{ 1,|
|00001950| 32 2c 34 2c 38 2c 31 36 | 5c 72 69 67 68 74 5c 7d |2,4,8,16|\right\}|
|00001960| 20 24 7d 0d 0a 26 20 5c | 6d 75 6c 74 69 63 6f 6c | $}..& \|multicol|
|00001970| 75 6d 6e 7b 31 7d 7b 72 | 7d 7b 24 32 36 24 7d 20 |umn{1}{r|}{$26$} |
|00001980| 26 20 5c 6d 75 6c 74 69 | 63 6f 6c 75 6d 6e 7b 31 |& \multi|column{1|
|00001990| 7d 7b 63 7d 7b 24 5c 6c | 65 66 74 5c 7b 20 31 2c |}{c}{$\l|eft\{ 1,|
|000019a0| 32 2c 31 33 2c 32 36 5c | 72 69 67 68 74 5c 7d 20 |2,13,26\|right\} |
|000019b0| 24 7d 0d 0a 5c 5c 20 0d | 0a 5c 6d 75 6c 74 69 63 |$}..\\ .|.\multic|
|000019c0| 6f 6c 75 6d 6e 7b 31 7d | 7b 72 7d 7b 24 37 24 7d |olumn{1}|{r}{$7$}|
|000019d0| 20 26 20 5c 6d 75 6c 74 | 69 63 6f 6c 75 6d 6e 7b | & \mult|icolumn{|
|000019e0| 31 7d 7b 63 7d 7b 24 5c | 6c 65 66 74 5c 7b 20 31 |1}{c}{$\|left\{ 1|
|000019f0| 2c 37 5c 72 69 67 68 74 | 5c 7d 20 24 7d 20 26 20 |,7\right|\} $} & |
|00001a00| 0d 0a 5c 6d 75 6c 74 69 | 63 6f 6c 75 6d 6e 7b 31 |..\multi|column{1|
|00001a10| 7d 7b 72 7d 7b 24 31 37 | 24 7d 20 26 20 5c 6d 75 |}{r}{$17|$} & \mu|
|00001a20| 6c 74 69 63 6f 6c 75 6d | 6e 7b 31 7d 7b 63 7d 7b |lticolum|n{1}{c}{|
|00001a30| 24 5c 6c 65 66 74 5c 7b | 20 31 2c 31 37 5c 72 69 |$\left\{| 1,17\ri|
|00001a40| 67 68 74 5c 7d 20 24 7d | 20 26 20 0d 0a 5c 6d 75 |ght\} $}| & ..\mu|
|00001a50| 6c 74 69 63 6f 6c 75 6d | 6e 7b 31 7d 7b 72 7d 7b |lticolum|n{1}{r}{|
|00001a60| 24 32 37 24 7d 20 26 20 | 5c 6d 75 6c 74 69 63 6f |$27$} & |\multico|
|00001a70| 6c 75 6d 6e 7b 31 7d 7b | 63 7d 7b 24 5c 6c 65 66 |lumn{1}{|c}{$\lef|
|00001a80| 74 5c 7b 20 31 2c 33 2c | 39 2c 32 37 5c 72 69 67 |t\{ 1,3,|9,27\rig|
|00001a90| 68 74 5c 7d 20 24 7d 0d | 0a 5c 5c 20 0d 0a 5c 6d |ht\} $}.|.\\ ..\m|
|00001aa0| 75 6c 74 69 63 6f 6c 75 | 6d 6e 7b 31 7d 7b 72 7d |ulticolu|mn{1}{r}|
|00001ab0| 7b 24 38 24 7d 20 26 20 | 5c 6d 75 6c 74 69 63 6f |{$8$} & |\multico|
|00001ac0| 6c 75 6d 6e 7b 31 7d 7b | 63 7d 7b 24 5c 6c 65 66 |lumn{1}{|c}{$\lef|
|00001ad0| 74 5c 7b 20 31 2c 32 2c | 34 2c 38 5c 72 69 67 68 |t\{ 1,2,|4,8\righ|
|00001ae0| 74 5c 7d 20 24 7d 20 26 | 20 0d 0a 5c 6d 75 6c 74 |t\} $} &| ..\mult|
|00001af0| 69 63 6f 6c 75 6d 6e 7b | 31 7d 7b 72 7d 7b 24 31 |icolumn{|1}{r}{$1|
|00001b00| 38 24 7d 20 26 20 5c 6d | 75 6c 74 69 63 6f 6c 75 |8$} & \m|ulticolu|
|00001b10| 6d 6e 7b 31 7d 7b 63 7d | 7b 24 5c 6c 65 66 74 5c |mn{1}{c}|{$\left\|
|00001b20| 7b 20 31 2c 32 2c 33 2c | 36 2c 39 2c 31 38 5c 72 |{ 1,2,3,|6,9,18\r|
|00001b30| 69 67 68 74 5c 7d 20 24 | 25 0d 0a 7d 20 26 20 5c |ight\} $|%..} & \|
|00001b40| 6d 75 6c 74 69 63 6f 6c | 75 6d 6e 7b 31 7d 7b 72 |multicol|umn{1}{r|
|00001b50| 7d 7b 24 32 38 24 7d 20 | 26 20 5c 6d 75 6c 74 69 |}{$28$} |& \multi|
|00001b60| 63 6f 6c 75 6d 6e 7b 31 | 7d 7b 63 7d 7b 24 5c 6c |column{1|}{c}{$\l|
|00001b70| 65 66 74 5c 7b 0d 0a 31 | 2c 32 2c 34 2c 37 2c 31 |eft\{..1|,2,4,7,1|
|00001b80| 34 2c 32 38 5c 72 69 67 | 68 74 5c 7d 20 24 7d 20 |4,28\rig|ht\} $} |
|00001b90| 5c 5c 20 0d 0a 5c 6d 75 | 6c 74 69 63 6f 6c 75 6d |\\ ..\mu|lticolum|
|00001ba0| 6e 7b 31 7d 7b 72 7d 7b | 24 39 24 7d 20 26 20 5c |n{1}{r}{|$9$} & \|
|00001bb0| 6d 75 6c 74 69 63 6f 6c | 75 6d 6e 7b 31 7d 7b 63 |multicol|umn{1}{c|
|00001bc0| 7d 7b 24 5c 6c 65 66 74 | 5c 7b 20 31 2c 33 2c 39 |}{$\left|\{ 1,3,9|
|00001bd0| 5c 72 69 67 68 74 5c 7d | 20 24 7d 20 26 20 0d 0a |\right\}| $} & ..|
|00001be0| 5c 6d 75 6c 74 69 63 6f | 6c 75 6d 6e 7b 31 7d 7b |\multico|lumn{1}{|
|00001bf0| 72 7d 7b 24 31 39 24 7d | 20 26 20 5c 6d 75 6c 74 |r}{$19$}| & \mult|
|00001c00| 69 63 6f 6c 75 6d 6e 7b | 31 7d 7b 63 7d 7b 24 5c |icolumn{|1}{c}{$\|
|00001c10| 6c 65 66 74 5c 7b 20 31 | 2c 31 39 5c 72 69 67 68 |left\{ 1|,19\righ|
|00001c20| 74 5c 7d 20 24 7d 20 26 | 20 0d 0a 5c 6d 75 6c 74 |t\} $} &| ..\mult|
|00001c30| 69 63 6f 6c 75 6d 6e 7b | 31 7d 7b 72 7d 7b 24 32 |icolumn{|1}{r}{$2|
|00001c40| 39 24 7d 20 26 20 5c 6d | 75 6c 74 69 63 6f 6c 75 |9$} & \m|ulticolu|
|00001c50| 6d 6e 7b 31 7d 7b 63 7d | 7b 24 5c 6c 65 66 74 5c |mn{1}{c}|{$\left\|
|00001c60| 7b 20 31 2c 32 39 5c 72 | 69 67 68 74 5c 7d 20 24 |{ 1,29\r|ight\} $|
|00001c70| 7d 20 5c 5c 20 0d 0a 5c | 6d 75 6c 74 69 63 6f 6c |} \\ ..\|multicol|
|00001c80| 75 6d 6e 7b 31 7d 7b 72 | 7d 7b 24 31 30 24 7d 20 |umn{1}{r|}{$10$} |
|00001c90| 26 20 5c 6d 75 6c 74 69 | 63 6f 6c 75 6d 6e 7b 31 |& \multi|column{1|
|00001ca0| 7d 7b 63 7d 7b 24 5c 6c | 65 66 74 5c 7b 20 31 2c |}{c}{$\l|eft\{ 1,|
|00001cb0| 32 2c 35 2c 31 30 5c 72 | 69 67 68 74 5c 7d 20 24 |2,5,10\r|ight\} $|
|00001cc0| 7d 20 26 20 0d 0a 5c 6d | 75 6c 74 69 63 6f 6c 75 |} & ..\m|ulticolu|
|00001cd0| 6d 6e 7b 31 7d 7b 72 7d | 7b 24 32 30 24 7d 20 26 |mn{1}{r}|{$20$} &|
|00001ce0| 20 5c 6d 75 6c 74 69 63 | 6f 6c 75 6d 6e 7b 31 7d | \multic|olumn{1}|
|00001cf0| 7b 63 7d 7b 24 5c 6c 65 | 66 74 5c 7b 20 31 2c 32 |{c}{$\le|ft\{ 1,2|
|00001d00| 2c 34 2c 35 2c 31 30 2c | 32 30 5c 72 69 67 68 74 |,4,5,10,|20\right|
|00001d10| 5c 7d 20 0d 0a 24 7d 20 | 26 20 5c 6d 75 6c 74 69 |\} ..$} |& \multi|
|00001d20| 63 6f 6c 75 6d 6e 7b 31 | 7d 7b 72 7d 7b 24 33 30 |column{1|}{r}{$30|
|00001d30| 24 7d 20 26 20 5c 6d 75 | 6c 74 69 63 6f 6c 75 6d |$} & \mu|lticolum|
|00001d40| 6e 7b 31 7d 7b 63 7d 7b | 24 5c 6c 65 66 74 5c 7b |n{1}{c}{|$\left\{|
|00001d50| 0d 0a 31 2c 32 2c 33 2c | 35 2c 36 2c 31 30 2c 31 |..1,2,3,|5,6,10,1|
|00001d60| 35 2c 33 30 5c 72 69 67 | 68 74 5c 7d 20 24 7d 0d |5,30\rig|ht\} $}.|
|00001d70| 0a 5c 65 6e 64 7b 74 61 | 62 75 6c 61 72 7d 0d 0a |.\end{ta|bular}..|
|00001d80| 5c 5d 0d 0a 4e 6f 74 69 | 63 65 20 74 68 61 74 20 |\]..Noti|ce that |
|00001d90| 24 64 28 6e 29 24 20 63 | 6f 6e 73 69 73 74 73 20 |$d(n)$ c|onsists |
|00001da0| 6f 66 20 61 6c 6c 20 74 | 68 65 20 64 69 76 69 73 |of all t|he divis|
|00001db0| 6f 72 73 20 6f 66 20 24 | 6e 24 2e 0d 0a 5c 65 6e |ors of $|n$...\en|
|00001dc0| 64 7b 65 6e 75 6d 65 72 | 61 74 65 7d 0d 0a 0d 0a |d{enumer|ate}....|
|00001dd0| 5c 73 75 62 73 65 63 74 | 69 6f 6e 7b 52 65 6c 61 |\subsect|ion{Rela|
|00001de0| 74 65 64 20 74 6f 70 69 | 63 73 7d 0d 0a 0d 0a 5c |ted topi|cs}....\|
|00001df0| 62 65 67 69 6e 7b 69 74 | 65 6d 69 7a 65 7d 0d 0a |begin{it|emize}..|
|00001e00| 5c 69 74 65 6d 20 20 5c | 68 79 70 65 72 72 65 66 |\item \|hyperref|
|00001e10| 7b 46 75 6e 63 74 69 6f | 6e 20 61 6e 64 20 45 78 |{Functio|n and Ex|
|00001e20| 70 72 65 73 73 69 6f 6e | 20 4e 61 6d 65 73 7d 7b |pression| Names}{|
|00001e30| 7d 7b 7d 7b 44 4d 35 2d | 31 2e 74 65 78 23 46 75 |}{}{DM5-|1.tex#Fu|
|00001e40| 6e 63 74 69 6f 6e 20 6e | 61 6d 65 7d 0d 0a 0d 0a |nction n|ame}....|
|00001e50| 5c 69 74 65 6d 20 20 5c | 68 79 70 65 72 72 65 66 |\item \|hyperref|
|00001e60| 7b 44 65 66 69 6e 69 6e | 67 20 56 61 72 69 61 62 |{Definin|g Variab|
|00001e70| 6c 65 73 20 61 6e 64 20 | 46 75 6e 63 74 69 6f 6e |les and |Function|
|00001e80| 73 7d 7b 7d 7b 7d 7b 44 | 4d 35 2d 32 2e 74 65 78 |s}{}{}{D|M5-2.tex|
|00001e90| 23 44 65 66 69 6e 65 7d | 0d 0a 0d 0a 5c 69 74 65 |#Define}|....\ite|
|00001ea0| 6d 20 20 5c 68 79 70 65 | 72 72 65 66 7b 48 61 6e |m \hype|rref{Han|
|00001eb0| 64 6c 69 6e 67 20 44 65 | 66 69 6e 69 74 69 6f 6e |dling De|finition|
|00001ec0| 73 7d 7b 7d 7b 7d 7b 44 | 4d 35 2d 33 2e 74 65 78 |s}{}{}{D|M5-3.tex|
|00001ed0| 23 44 65 66 69 6e 69 74 | 69 6f 6e 73 7d 0d 0a 0d |#Definit|ions}...|
|00001ee0| 0a 5c 69 74 65 6d 20 20 | 5c 68 79 70 65 72 72 65 |.\item |\hyperre|
|00001ef0| 66 7b 4d 61 70 6c 65 20 | 46 75 6e 63 74 69 6f 6e |f{Maple |Function|
|00001f00| 73 7d 7b 7d 7b 7d 7b 44 | 4d 35 2d 35 2e 74 65 78 |s}{}{}{D|M5-5.tex|
|00001f10| 23 4d 61 70 6c 65 20 66 | 75 6e 63 74 69 6f 6e 73 |#Maple f|unctions|
|00001f20| 7d 0d 0a 0d 0a 5c 69 74 | 65 6d 20 20 5c 68 79 70 |}....\it|em \hyp|
|00001f30| 65 72 72 65 66 7b 54 61 | 62 6c 65 73 20 6f 66 20 |erref{Ta|bles of |
|00001f40| 5c 74 65 78 74 73 6c 7b | 53 63 69 65 6e 74 69 66 |\textsl{|Scientif|
|00001f50| 69 63 20 4e 6f 74 65 62 | 6f 6f 6b 7d 20 45 71 75 |ic Noteb|ook} Equ|
|00001f60| 69 76 61 6c 65 6e 74 73 | 7d 7b 7d 7b 7d 7b 25 0d |ivalents|}{}{}{%.|
|00001f70| 0a 44 4d 35 2d 36 2e 74 | 65 78 23 43 6f 6e 73 74 |.DM5-6.t|ex#Const|
|00001f80| 61 6e 74 73 7d 0d 0a 5c | 65 6e 64 7b 69 74 65 6d |ants}..\|end{item|
|00001f90| 69 7a 65 7d 0d 0a 0d 0a | 5c 72 75 6c 65 7b 30 2e |ize}....|\rule{0.|
|00001fa0| 36 37 69 6e 7d 7b 30 2e | 30 31 69 6e 7d 0d 0a 0d |67in}{0.|01in}...|
|00001fb0| 0a 5c 46 52 41 4d 45 7b | 69 74 62 70 46 7d 7b 33 |.\FRAME{|itbpF}{3|
|00001fc0| 38 2e 38 37 35 70 74 7d | 7b 32 34 2e 35 70 74 7d |8.875pt}|{24.5pt}|
|00001fd0| 7b 36 70 74 7d 7b 7d 7b | 7d 7b 69 6e 64 65 78 2e |{6pt}{}{|}{index.|
|00001fe0| 77 6d 66 7d 7b 5c 73 70 | 65 63 69 61 6c 7b 6c 61 |wmf}{\sp|ecial{la|
|00001ff0| 6e 67 75 61 67 65 0d 0a | 22 53 63 69 65 6e 74 69 |nguage..|"Scienti|
|00002000| 66 69 63 20 57 6f 72 64 | 22 3b 74 79 70 65 20 22 |fic Word|";type "|
|00002010| 47 52 41 50 48 49 43 22 | 3b 6d 61 69 6e 74 61 69 |GRAPHIC"|;maintai|
|00002020| 6e 2d 61 73 70 65 63 74 | 2d 72 61 74 69 6f 20 54 |n-aspect|-ratio T|
|00002030| 52 55 45 3b 64 69 73 70 | 6c 61 79 0d 0a 22 50 49 |RUE;disp|lay.."PI|
|00002040| 43 54 22 3b 76 61 6c 69 | 64 5f 66 69 6c 65 20 22 |CT";vali|d_file "|
|00002050| 46 22 3b 77 69 64 74 68 | 20 33 38 2e 38 37 35 70 |F";width| 38.875p|
|00002060| 74 3b 68 65 69 67 68 74 | 20 32 34 2e 35 70 74 3b |t;height| 24.5pt;|
|00002070| 64 65 70 74 68 20 36 70 | 74 3b 6f 72 69 67 69 6e |depth 6p|t;origin|
|00002080| 61 6c 2d 77 69 64 74 68 | 0d 0a 33 36 2e 38 37 35 |al-width|..36.875|
|00002090| 70 74 3b 6f 72 69 67 69 | 6e 61 6c 2d 68 65 69 67 |pt;origi|nal-heig|
|000020a0| 68 74 20 32 32 2e 35 36 | 32 35 70 74 3b 63 72 6f |ht 22.56|25pt;cro|
|000020b0| 70 6c 65 66 74 20 22 30 | 22 3b 63 72 6f 70 74 6f |pleft "0|";cropto|
|000020c0| 70 20 22 31 22 3b 63 72 | 6f 70 72 69 67 68 74 0d |p "1";cr|opright.|
|000020d0| 0a 22 31 22 3b 63 72 6f | 70 62 6f 74 74 6f 6d 20 |."1";cro|pbottom |
|000020e0| 22 30 22 3b 66 69 6c 65 | 6e 61 6d 65 20 27 69 6e |"0";file|name 'in|
|000020f0| 64 65 78 2e 77 6d 66 27 | 3b 66 69 6c 65 2d 70 72 |dex.wmf'|;file-pr|
|00002100| 6f 70 65 72 74 69 65 73 | 20 22 58 4e 50 45 55 22 |operties| "XNPEU"|
|00002110| 3b 7d 7d 5c 71 75 61 64 | 20 0d 0a 7b 5c 73 6d 61 |;}}\quad| ..{\sma|
|00002120| 6c 6c 20 49 6e 64 65 78 | 20 65 6e 74 72 69 65 73 |ll Index| entries|
|00002130| 3a 20 5c 68 79 70 65 72 | 72 65 66 7b 41 63 63 65 |: \hyper|ref{Acce|
|00002140| 73 73 69 6e 67 20 6d 61 | 70 6c 65 20 66 75 6e 63 |ssing ma|ple func|
|00002150| 74 69 6f 6e 73 7d 7b 7d | 7b 7d 7b 25 0d 0a 44 4d |tions}{}|{}{%..DM|
|00002160| 49 6e 64 65 78 2e 74 65 | 78 23 41 63 63 65 73 73 |Index.te|x#Access|
|00002170| 69 6e 67 20 6d 61 70 6c | 65 20 66 75 6e 63 74 69 |ing mapl|e functi|
|00002180| 6f 6e 73 7d 2c 20 5c 68 | 79 70 65 72 72 65 66 7b |ons}, \h|yperref{|
|00002190| 44 65 66 69 6e 65 7d 7b | 7d 7b 7d 7b 25 0d 0a 44 |Define}{|}{}{%..D|
|000021a0| 4d 49 6e 64 65 78 2e 74 | 65 78 23 44 65 66 69 6e |MIndex.t|ex#Defin|
|000021b0| 65 7d 2c 20 5c 68 79 70 | 65 72 72 65 66 7b 46 75 |e}, \hyp|erref{Fu|
|000021c0| 6e 63 74 69 6f 6e 73 7d | 7b 7d 7b 7d 7b 44 4d 49 |nctions}|{}{}{DMI|
|000021d0| 6e 64 65 78 2e 74 65 78 | 23 46 75 6e 63 74 69 6f |ndex.tex|#Functio|
|000021e0| 6e 73 7d 2c 20 0d 0a 5c | 68 79 70 65 72 72 65 66 |ns}, ..\|hyperref|
|000021f0| 7b 4d 61 70 6c 65 20 63 | 6f 6e 73 74 61 6e 74 73 |{Maple c|onstants|
|00002200| 7d 7b 7d 7b 7d 7b 44 4d | 49 6e 64 65 78 2e 74 65 |}{}{}{DM|Index.te|
|00002210| 78 23 4d 61 70 6c 65 20 | 63 6f 6e 73 74 61 6e 74 |x#Maple |constant|
|00002220| 73 7d 2c 20 5c 68 79 70 | 65 72 72 65 66 7b 4d 61 |s}, \hyp|erref{Ma|
|00002230| 70 6c 65 0d 0a 66 75 6e | 63 74 69 6f 6e 73 7d 7b |ple..fun|ctions}{|
|00002240| 7d 7b 7d 7b 44 4d 49 6e | 64 65 78 2e 74 65 78 23 |}{}{DMIn|dex.tex#|
|00002250| 4d 61 70 6c 65 20 66 75 | 6e 63 74 69 6f 6e 73 7d |Maple fu|nctions}|
|00002260| 2c 20 5c 68 79 70 65 72 | 72 65 66 7b 4d 61 70 6c |, \hyper|ref{Mapl|
|00002270| 65 20 6d 65 6e 75 7d 7b | 7d 7b 7d 7b 25 0d 0a 44 |e menu}{|}{}{%..D|
|00002280| 4d 49 6e 64 65 78 2e 74 | 65 78 23 4d 61 70 6c 65 |MIndex.t|ex#Maple|
|00002290| 20 6d 65 6e 75 20 63 6f | 6d 6d 61 6e 64 73 7d 7d | menu co|mmands}}|
|000022a0| 0d 0a 0d 0a 5c 65 6e 64 | 7b 64 6f 63 75 6d 65 6e |....\end|{documen|
|000022b0| 74 7d 0d 0a | |t}.. | |
+--------+-------------------------+-------------------------+--------+--------+