home *** CD-ROM | disk | FTP | other *** search
- ## Copyright (C) 1996 Auburn University. All Rights Reserved
- ##
- ## This file is part of Octave.
- ##
- ## Octave is free software; you can redistribute it and/or modify it
- ## under the terms of the GNU General Public License as published by the
- ## Free Software Foundation; either version 2, or (at your option) any
- ## later version.
- ##
- ## Octave is distributed in the hope that it will be useful, but WITHOUT
- ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- ## for more details.
- ##
- ## You should have received a copy of the GNU General Public License
- ## along with Octave; see the file COPYING. If not, write to the Free
- ## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA.
-
- ## -*- texinfo -*-
- ## @deftypefn {Function File} {} tzero (@var{a}, @var{b}, @var{c}, @var{d}@{, @var{opt}@})
- ## @deftypefnx {Function File} {} tzero (@var{sys}@{,@var{opt}@})
- ## Compute transmission zeros of a continuous
- ## @example
- ## .
- ## x = Ax + Bu
- ## y = Cx + Du
- ## @end example
- ## or discrete
- ## @example
- ## x(k+1) = A x(k) + B u(k)
- ## y(k) = C x(k) + D u(k)
- ## @end example
- ## system.
- ## @strong{Outputs}
- ## @table @var
- ## @item zer
- ## transmission zeros of the system
- ## @item gain
- ## leading coefficient (pole-zero form) of SISO transfer function
- ## returns gain=0 if system is multivariable
- ## @end table
- ## @strong{References}
- ## @enumerate
- ## @item Emami-Naeini and Van Dooren, Automatica, 1982.
- ## @item Hodel, "Computation of Zeros with Balancing," 1992 Lin. Alg. Appl.
- ## @end enumerate
- ## @end deftypefn
-
-
- function [zer, gain] = tzero (A, B, C, D)
-
- ## R. Bruce Tenison July 4, 1994
- ## A. S. Hodel Aug 1995: allow for MIMO and system data structures
-
- ## get A,B,C,D and Asys variables, regardless of initial form
- if(nargin == 4)
- Asys = ss2sys(A,B,C,D);
- elseif( (nargin == 1) && (! is_struct(A)))
- usage("[zer,gain] = tzero(A,B,C,D) or zer = tzero(Asys)");
- elseif(nargin != 1)
- usage("[zer,gain] = tzero(A,B,C,D) or zer = tzero(Asys)");
- else
- Asys = A;
- [A,B,C,D] = sys2ss(Asys);
- endif
-
- Ao = Asys; # save for leading coefficient
- siso = is_siso(Asys);
- digital = is_digital(Asys); # check if it's mixed or not
-
- ## see if it's a gain block
- if(isempty(A))
- zer = [];
- gain = D;
- return;
- endif
-
- ## First, balance the system via the zero computation generalized eigenvalue
- ## problem balancing method (Hodel and Tiller, Linear Alg. Appl., 1992)
-
- Asys = zgpbal(Asys); [A,B,C,D] = sys2ss(Asys); # balance coefficients
- meps = 2*eps*norm([A, B; C, D],'fro');
- Asys = zgreduce(Asys,meps); [A, B, C, D] = sys2ss(Asys); # ENVD algorithm
- if(!isempty(A))
- ## repeat with dual system
- Asys = ss2sys(A', C', B', D'); Asys = zgreduce(Asys,meps);
-
- ## transform back
- [A,B,C,D] = sys2ss(Asys); Asys = ss2sys(A', C', B', D');
- endif
-
- zer = []; # assume none
- [A,B,C,D] = sys2ss(Asys);
- if( !isempty(C) )
- [W,r,Pi] = qr([C, D]');
- [nonz,ztmp] = zgrownorm(r,meps);
- if(nonz)
- ## We can now solve the generalized eigenvalue problem.
- [pp,mm] = size(D);
- nn = rows(A);
- Afm = [A , B ; C, D] * W';
- Bfm = [eye(nn), zeros(nn,mm); zeros(pp,nn+mm)]*W';
-
- jdx = (mm+1):(mm+nn);
- Af = Afm(1:nn,jdx);
- Bf = Bfm(1:nn,jdx);
- zer = qz(Af,Bf);
- endif
- endif
-
- mz = length(zer);
- [A,B,C,D] = sys2ss(Ao); # recover original system
- ## compute leading coefficient
- if ( (nargout == 2) && siso)
- n = rows(A);
- if ( mz == n)
- gain = D;
- elseif ( mz < n )
- gain = C*(A^(n-1-mz))*B;
- endif
- else
- gain = [];
- endif
- endfunction
-
-