home *** CD-ROM | disk | FTP | other *** search
- ## Copyright (C) 1996, 1997 Auburn University. All Rights Reserved
- ##
- ## This file is part of Octave.
- ##
- ## Octave is free software; you can redistribute it and/or modify it
- ## under the terms of the GNU General Public License as published by the
- ## Free Software Foundation; either version 2, or (at your option) any
- ## later version.
- ##
- ## Octave is distributed in the hope that it will be useful, but WITHOUT
- ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- ## for more details.
- ##
- ## You should have received a copy of the GNU General Public License
- ## along with Octave; see the file COPYING. If not, write to the Free
- ## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA.
-
- ## -*- texinfo -*-
- ## @deftypefn {Function File } {[@var{K}, @var{Q}, @var{P}, @var{Ee}, @var{Er}] =} lqg(@var{sys}, @var{Sigw}, @var{Sigv}, @var{Q}, @var{R}, @var{in_idx})
- ## Design a linear-quadratic-gaussian optimal controller for the system
- ## @example
- ## dx/dt = A x + B u + G w [w]=N(0,[Sigw 0 ])
- ## y = C x + v [v] ( 0 Sigv ])
- ## @end example
- ## or
- ## @example
- ## x(k+1) = A x(k) + B u(k) + G w(k) [w]=N(0,[Sigw 0 ])
- ## y(k) = C x(k) + v(k) [v] ( 0 Sigv ])
- ## @end example
- ##
- ## @strong{Inputs}
- ## @table @var
- ## @item sys
- ## system data structure
- ## @item Sigw, Sigv
- ## intensities of independent Gaussian noise processes (as above)
- ## @item Q, R
- ## state, control weighting respectively. Control ARE is
- ## @item in_idx
- ## indices of controlled inputs
- ##
- ## default: last dim(R) inputs are assumed to be controlled inputs, all
- ## others are assumed to be noise inputs.
- ## @end table
- ## @strong{Outputs}
- ## @table @var
- ## @item K
- ## system data structure format LQG optimal controller
- ## (Obtain A,B,C matrices with @code{sys2ss}, @code{sys2tf}, or @code{sys2zp} as appropriate)
- ## @item P
- ## Solution of control (state feedback) algebraic Riccati equation
- ## @item Q
- ## Solution of estimation algebraic Riccati equation
- ## @item Ee
- ## estimator poles
- ## @item Es
- ## controller poles
- ## @end table
- ## @end deftypefn
-
- ## See also: h2syn, lqe, lqr
-
- function [K, Q1, P1, Ee, Er] = lqg (sys, Sigw, Sigv, Q, R, input_list)
-
- ## Written by A. S. Hodel August 1995; revised for new system format
- ## August 1996
-
- if ( (nargin < 5) | (nargin > 6))
- usage("[K,Q1,P1,Ee,Er] = lqg(sys,Sigw, Sigv,Q,R{,input_list})");
-
- elseif(!is_struct(sys) )
- error("sys must be in system data structure");
- endif
-
- DIG = is_digital(sys);
- [A,B,C,D,tsam,n,nz,stname,inname,outname] = sys2ss(sys);
- [n,nz,nin,nout] = sysdimensions(sys);
- if(nargin == 5)
- ## construct default input_list
- input_list = (columns(Sigw)+1):nin;
- endif
-
- if( !(n+nz) )
- error(["lqg: 0 states in system"]);
-
- elseif(nin != columns(Sigw)+ columns(R))
- error(["lqg: sys has ",num2str(nin)," inputs, dim(Sigw)=", ...
- num2str(columns(Sigw)),", dim(u)=",num2str(columns(R))])
-
- elseif(nout != columns(Sigv))
- error(["lqg: sys has ",num2str(nout)," outputs, dim(Sigv)=", ...
- num2str(columns(Sigv)),")"])
- elseif(length(input_list) != columns(R))
- error(["lqg: length(input_list)=",num2str(length(input_list)), ...
- ", columns(R)=", num2str(columns(R))]);
- endif
-
- varname = list("Sigw","Sigv","Q","R");
- for kk=1:length(varname);
- eval(sprintf("chk = is_square(%s);",nth(varname,kk)));
- if(! chk ) error("lqg: %s is not square",nth(varname,kk)); endif
- endfor
-
- ## permute (if need be)
- if(nargin == 6)
- all_inputs = sysreorder(nin,input_list);
- B = B(:,all_inputs);
- inname = inname(all_inputs);
- endif
-
- ## put parameters into correct variables
- m1 = columns(Sigw);
- m2 = m1+1;
- G = B(:,1:m1);
- B = B(:,m2:nin);
-
- ## now we can just do the design; call dlqr and dlqe, since all matrices
- ## are not given in Cholesky factor form (as in h2syn case)
- if(DIG)
- [Ks, P1, Er] = dlqr(A,B,Q,R);
- [Ke, Q1, jnk, Ee] = dlqe(A,G,C,Sigw,Sigv);
- else
- [Ks, P1, Er] = lqr(A,B,Q,R);
- [Ke, Q1, Ee] = lqe(A,G,C,Sigw,Sigv);
- endif
- Ac = A - Ke*C - B*Ks;
- Bc = Ke;
- Cc = -Ks;
- Dc = zeros(rows(Cc),columns(Bc));
-
- ## fix state names
- stname1 = strappend(stname,"_e");
-
- ## fix controller output names
- outname1 = strappend(inname(m2:nin),"_K");
-
- ## fix controller input names
- inname1 = strappend(outname,"_K");
-
- if(DIG)
- K = ss2sys(Ac,Bc,Cc,Dc,tsam,n,nz,stname1,inname1,outname1,1:rows(Cc));
- else
- K = ss2sys(Ac,Bc,Cc,Dc,tsam,n,nz,stname,inname1,outname1);
- endif
-
- endfunction
-