home *** CD-ROM | disk | FTP | other *** search
- ## Copyright (C) 1993, 1994, 1995 Auburn University. All Rights Reserved
- ##
- ## This file is part of Octave.
- ##
- ## Octave is free software; you can redistribute it and/or modify it
- ## under the terms of the GNU General Public License as published by the
- ## Free Software Foundation; either version 2, or (at your option) any
- ## later version.
- ##
- ## Octave is distributed in the hope that it will be useful, but WITHOUT
- ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- ## for more details.
- ##
- ## You should have received a copy of the GNU General Public License
- ## along with Octave; see the file COPYING. If not, write to the Free
- ## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA.
-
- ## -*- texinfo -*-
- ## @deftypefn {Function File} {[@var{k}, @var{p}, @var{e}] =} lqe (@var{a}, @var{g}, @var{c}, @var{sigw}, @var{sigv}, @var{z})
- ## Construct the linear quadratic estimator (Kalman filter) for the
- ## continuous time system
- ## @iftex
- ## @tex
- ## $$
- ## {dx\over dt} = A x + B u
- ## $$
- ## $$
- ## y = C x + D u
- ## $$
- ## @end tex
- ## @end iftex
- ## @ifinfo
- ##
- ## @example
- ## dx
- ## -- = a x + b u
- ## dt
- ##
- ## y = c x + d u
- ## @end example
- ##
- ## @end ifinfo
- ## where @var{w} and @var{v} are zero-mean gaussian noise processes with
- ## respective intensities
- ##
- ## @example
- ## sigw = cov (w, w)
- ## sigv = cov (v, v)
- ## @end example
- ##
- ## The optional argument @var{z} is the cross-covariance
- ## @code{cov (@var{w}, @var{v})}. If it is omitted,
- ## @code{cov (@var{w}, @var{v}) = 0} is assumed.
- ##
- ## Observer structure is @code{dz/dt = A z + B u + k (y - C z - D u)}
- ##
- ## The following values are returned:
- ##
- ## @table @var
- ## @item k
- ## The observer gain,
- ## @iftex
- ## @tex
- ## $(A - K C)$
- ## @end tex
- ## @end iftex
- ## @ifinfo
- ## (@var{a} - @var{k}@var{c})
- ## @end ifinfo
- ## is stable.
- ##
- ## @item p
- ## The solution of algebraic Riccati equation.
- ##
- ## @item e
- ## The vector of closed loop poles of
- ## @iftex
- ## @tex
- ## $(A - K C)$.
- ## @end tex
- ## @end iftex
- ## @ifinfo
- ## (@var{a} - @var{k}@var{c}).
- ## @end ifinfo
- ## @end table
- ## @end deftypefn
-
- function [k, p, e] = lqe (a, g, c, sigw, sigv, zz)
- ## Written by A. S. Hodel (scotte@eng.auburn.edu) August, 1993.
-
- if ( (nargin != 5) && (nargin != 6))
- error ("lqe: invalid number of arguments");
- endif
-
- ## The problem is dual to the regulator design, so transform to lqr
- ## call.
-
- if (nargin == 5)
- [k, p, e] = lqr (a', c', g*sigw*g', sigv);
- else
- [k, p, e] = lqr (a', c', g*sigw*g', sigv, g*zz);
- endif
-
- k = k';
-
- endfunction
-