home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
OS/2 Shareware BBS: 10 Tools
/
10-Tools.zip
/
octa21fb.zip
/
octave
/
SCRIPTS.ZIP
/
scripts.fat
/
control
/
dare.m
< prev
next >
Wrap
Text File
|
1999-12-24
|
3KB
|
124 lines
## Copyright (C) 1996, 1997 Auburn University. All Rights Reserved.
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2, or (at your option)
## any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, write to the Free
## Software Foundation, 59 Temple Place - Suite 330, Boston, MA
## 02111-1307, USA.
## -*- texinfo -*-
## @deftypefn {Function File} {} dare (@var{a}, @var{b}, @var{c}, @var{r}, @var{opt})
##
## Return the solution, @var{x} of the discrete-time algebraic Riccati
## equation
## @iftex
## @tex
## $$
## A^TXA - X + A^TXB (R + B^TXB)^{-1} B^TXA + C = 0
## $$
## @end tex
## @end iftex
## @ifinfo
## @example
## a' x a - x + a' x b (r + b' x b)^(-1) b' x a + c = 0
## @end example
## @end ifinfo
## @noindent
##
## @strong{Inputs}
## @table @var
## @item a
## @var{n} by @var{n}.
##
## @item b
## @var{n} by @var{m}.
##
## @item c
## @var{n} by @var{n}, symmetric positive semidefinite, or @var{p} by @var{n}.
## In the latter case @math{c:=c'*c} is used.
##
## @item r
## @var{m} by @var{m}, symmetric positive definite (invertible).
##
## @item opt
## (optional argument; default = @code{"B"}):
## String option passed to @code{balance} prior to ordered @var{QZ} decomposition.
## @end table
##
## @strong{Outputs}
## @var{x} solution of DARE.
##
## @strong{Method}
## Generalized eigenvalue approach (Van Dooren; SIAM J.
## Sci. Stat. Comput., Vol 2) applied to the appropriate symplectic pencil.
##
## See also: Ran and Rodman, "Stable Hermitian Solutions of Discrete
## Algebraic Riccati Equations," Mathematics of Control, Signals and
## Systems, Vol 5, no 2 (1992) pp 165-194.
##
## @end deftypefn
## See also: balance, are
## Author: A. S. Hodel <scotte@eng.auburn.edu>
## Created: August 1993
## Adapted-By: jwe
function x = dare (a, b, c, r, opt)
if (nargin == 4 | nargin == 5)
if (nargin == 5)
if (opt != "N" || opt != "P" || opt != "S" || opt != "B")
warning ("dare: opt has an invalid value -- setting to B");
opt = "B";
endif
else
opt = "B";
endif
## dimension checks are done in is_contr, is_obsrv
if (is_contr (a, b) == 0)
warning ("dare: a,b are not controllable");
elseif (is_obsrv (a, c) == 0)
warning ("dare: a,c are not observable");
endif
if ((p = is_sqr (c)) == 0)
c = c'*c;
p = rows (c);
endif
## Check r dimensions.
n = rows(a);
m = columns(b);
if ((m1 = is_sqr (r)) == 0)
warning ("dare: r is not square");
elseif (m1 != m)
warning ("b,r are not conformable");
endif
s1 = [a, zeros(n) ; -c, eye(n)];
s2 = [eye(n), (b/r)*b' ; zeros(n), a'];
[c,d,s1,s2] = balance(s1,s2,opt);
[aa,bb,u,lam] = qz(s1,s2,"S");
u = d*u;
n1 = n+1;
n2 = 2*n;
x = u (n1:n2, 1:n)/u(1:n, 1:n);
else
usage ("x = dare (a, b, c, r {,opt})");
endif
endfunction