home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
OS/2 Shareware BBS: 10 Tools
/
10-Tools.zip
/
octa21eb.zip
/
octave
/
SCRIPTS.ZIP
/
scripts.fat
/
control
/
tzero.m
< prev
next >
Wrap
Text File
|
1999-04-29
|
3KB
|
114 lines
# Copyright (C) 1996 A. Scottedward Hodel
#
# This file is part of Octave.
#
# Octave is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version.
#
# Octave is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License
# along with Octave; see the file COPYING. If not, write to the Free
# Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
function [zer, gain] = tzero(A,B,C,D)
# [zer{,gain}] = tzero(A,B,C,D) -or-
# [zer{,gain}] = tzero(Asys)
# Compute transmission zeros of a continuous
# .
# x = Ax + Bu
# y = Cx + Du
#
# or discrete
# x(k+1) = A x(k) + B u(k)
# y(k) = C x(k) + D u(k)
#
# system.
#
# outputs:
# zer: transmission zeros of the system
# gain: leading coefficient (pole-zero form) of SISO transfer function
# returns gain=0 if system is multivariable
# References:
# Hodel, "Computation of Zeros with Balancing," 1992 Lin. Alg. Appl.
# R. Bruce Tenison July 4, 1994
# A. S. Hodel Aug 1995: allow for MIMO and system data structures
# get A,B,C,D and Asys variables, regardless of initial form
if(nargin == 4)
Asys = ss2sys(A,B,C,D);
elseif( (nargin == 1) && (! is_struct(A)))
usage("[zer,gain] = tzero(A,B,C,D) or zer = tzero(Asys)");
elseif(nargin != 1)
usage("[zer,gain] = tzero(A,B,C,D) or zer = tzero(Asys)");
else
Asys = A;
[A,B,C,D] = sys2ss(Asys);
endif
Ao = Asys; # save for leading coefficient
siso = is_siso(Asys);
digital = is_digit(Asys); # check if it's mixed or not
# see if it's a gain block
if(isempty(A))
zer = [];
gain = D;
return;
endif
# First, balance the system via the zero computation generalized eigenvalue
# problem balancing method (Hodel and Tiller, Linear Alg. Appl., 1992)
Asys = zgpbal(Asys); [A,B,C,D] = sys2ss(Asys); # balance coefficients
meps = 2*eps*norm([A, B; C, D],'fro');
Asys = zgreduce(Asys,meps); [A, B, C, D] = sys2ss(Asys); # ENVD algorithm
if(!isempty(A))
# repeat with dual system
Asys = ss2sys(A', C', B', D'); Asys = zgreduce(Asys,meps);
# transform back
[A,B,C,D] = sys2ss(Asys); Asys = ss2sys(A', C', B', D');
endif
zer = []; # assume none
[A,B,C,D] = sys2ss(Asys);
if( !isempty(C) )
[W,r,Pi] = qr([C, D]');
[nonz,ztmp] = zgrownor(r,meps);
if(nonz)
# We can now solve the generalized eigenvalue problem.
[pp,mm] = size(D);
nn = rows(A);
Afm = [A , B ; C, D] * W';
Bfm = [eye(nn), zeros(nn,mm); zeros(pp,nn+mm)]*W';
jdx = (mm+1):(mm+nn);
Af = Afm(1:nn,jdx);
Bf = Bfm(1:nn,jdx);
zer = qz(Af,Bf);
endif
endif
mz = length(zer);
[A,B,C,D] = sys2ss(Ao); # recover original system
#compute leading coefficient
if ( (nargout == 2) && siso)
n = rows(A);
if ( mz == n)
gain = D;
elseif ( mz < n )
gain = C*(A^(n-1-mz))*B;
endif
else
gain = [];
endif
endfunction