home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
OS/2 Shareware BBS: 10 Tools
/
10-Tools.zip
/
octa21eb.zip
/
octave
/
SCRIPTS.ZIP
/
scripts.fat
/
control
/
dlqg.m
< prev
next >
Wrap
Text File
|
1999-04-29
|
4KB
|
125 lines
# Copyright (C) 1996 A. Scottedward Hodel
#
# This file is part of Octave.
#
# Octave is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version.
#
# Octave is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License
# along with Octave; see the file COPYING. If not, write to the Free
# Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
function [K,Q,P,Ee,Er] = dlqg(A,B,C,G,Sigw, Sigv,Q,R)
#
#
# O B S O L E T E * * * D O N O T U S E!
#
# Use lqg instead.
#
# function [K,Q,P,Ee,Er] = dlqg(A,B,C,G,Sigw,Sigv,Q,R)
# function [K,Q,P,Ee,Er] = dlqg(Sys,Sigw,Sigv,Q,R)
#
# design a discrete-time linear quadratic gaussian optimal controller
# for the system
#
# x(k+1) = A x(k) + B u(k) + G w(k) [w]=N(0,[Sigw 0 ])
# y(k) = C x(k) + v(k) [v] ( 0 Sigv ])
#
# Outputs:
# K: system data structure format LQG optimal controller
# P: Solution of control (state feedback) algebraic Riccati equation
# Q: Solution of estimation algebraic Riccati equation
# Ee: estimator poles
# Es: controller poles
# inputs:
# A,B,C,G, or Sys: state space representation of system.
# Sigw, Sigv: covariance matrices of independent Gaussian noise processes
# (as above)
# Q, R: state, control weighting matrices for dlqr call respectively.
#
# See also: lqg, dlqe, dlqr
# Written by A. S. Hodel August 1995
warning("dlqg: obsolete. use lqg instead (system data structure format)");
if (nargin == 5)
# system data structure format
# check that it really is system data structure
if(! is_struct(A) )
error("dlqg: 5 arguments, first argument is not a system data structure structure")
endif
sys = sysupdat(sys,"ss"); # make sure in proper form
[ncstates,ndstates,nin,nout] = sysdimen(sys);
if(ndstates == -1)
error("this message should never appear: bad system dimensions");
endif
if(ncstates)
error("dlqg: system has continuous-time states (try lqg?)")
elseif(ndstates < 1)
error("dlqg: system has no discrete time states")
elseif(nin <= columns(Sigw))
error(["dlqg: ",num2str(nin)," inputs provided, noise dimension is ", ...
num2str(columns(Sigw))])
elseif(nout != columns(Sigv))
error(["dlqg: number of outputs (",num2str(nout),") incompatible with ", ...
"dimension of Sigv (",num2str(columns(Sigv)),")"])
endif
# put parameters into correct variables
R = Sigw;
Q = G;
Sigv = C;
Sigw = B;
[A,B,C,D] = sys2ss(Sys)
[n,m] = size(B)
m1 = columns(Sigw);
m2 = m1+1;
G = B(:,1:m1);
B = B(:,m2:m);
elseif (nargin == 8)
# state-space format
m = columns(B);
m1 = columns(G);
p = rows(C);
n = abcddim(A,B,C,zeros(p,m));
n1 = abcddim(A,G,C,zeros(p,m1));
if( (n == -1) || (n1 == -1))
error("dlqg: A,B,C,G incompatibly dimensioned");
elseif(p != columns(Sigv))
error("dlqg: C, Sigv incompatibly dimensioned");
elseif(m1 != columns(Sigw))
error("dlqg: G, Sigw incompatibly dimensioned");
endif
else
error("dlqg: illegal number of arguments")
endif
if (! (is_sqr(Sigw) && is_sqr(Sigv) ) )
error("dlqg: Sigw, Sigv must be square");
endif
# now we can just do the design; call dlqr and dlqe, since all matrices
# are not given in Cholesky factor form (as in h2syn case)
[Ks, P, Er] = dlqr(A,B,Q,R);
[Ke, Q, jnk, Ee] = dlqe(A,G,C,Sigw,Sigv);
Ac = A - Ke*C - B*Ks;
Bc = Ke;
Cc = -Ks;
Dc = zeros(rows(Cc),columns(Bc));
K = ss2sys(Ac,Bc,Cc,Dc,1);
disp("HODEL: need to add names to this guy!")
endfunction