home *** CD-ROM | disk | FTP | other *** search
- C
- C ..................................................................
- C
- C SUBROUTINE DQL32
- C
- C PURPOSE
- C TO COMPUTE INTEGRAL(EXP(-X)*FCT(X), SUMMED OVER X
- C FROM 0 TO INFINITY).
- C
- C USAGE
- C CALL DQL32 (FCT,Y)
- C PARAMETER FCT REQUIRES AN EXTERNAL STATEMENT
- C
- C DESCRIPTION OF PARAMETERS
- C FCT - THE NAME OF AN EXTERNAL DOUBLE PRECISION FUNCTION
- C SUBPROGRAM USED.
- C Y - THE RESULTING DOUBLE PRECISION INTEGRAL VALUE.
- C
- C REMARKS
- C NONE
- C
- C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
- C THE EXTERNAL DOUBLE PRECISION FUNCTION SUBPROGRAM FCT(X)
- C MUST BE FURNISHED BY THE USER.
- C
- C METHOD
- C EVALUATION IS DONE BY MEANS OF 32-POINT GAUSSIAN-LAGUERRE
- C QUADRATURE FORMULA, WHICH INTEGRATES EXACTLY,
- C WHENEVER FCT(X) IS A POLYNOMIAL UP TO DEGREE 63.
- C FOR REFERENCE, SEE
- C SHAO/CHEN/FRANK, TABLES OF ZEROS AND GAUSSIAN WEIGHTS OF
- C CERTAIN ASSOCIATED LAGUERRE POLYNOMIALS AND THE RELATED
- C GENERALIZED HERMITE POLYNOMIALS, IBM TECHNICAL REPORT
- C TR00.1100 (MARCH 1964), PP.24-25.
- C
- C ..................................................................
- C
- SUBROUTINE DQL32(FCT,Y)
- C
- C
- DOUBLE PRECISION X,Y,FCT
- C
- X=.11175139809793770D3
- Y=.45105361938989742D-47*FCT(X)
- X=.9882954286828397D2
- Y=Y+.13386169421062563D-41*FCT(X)
- X=.8873534041789240D2
- Y=Y+.26715112192401370D-37*FCT(X)
- X=.8018744697791352D2
- Y=Y+.11922487600982224D-33*FCT(X)
- X=.7268762809066271D2
- Y=Y+.19133754944542243D-30*FCT(X)
- X=.65975377287935053D2
- Y=Y+.14185605454630369D-27*FCT(X)
- X=.59892509162134018D2
- Y=Y+.56612941303973594D-25*FCT(X)
- X=.54333721333396907D2
- Y=Y+.13469825866373952D-22*FCT(X)
- X=.49224394987308639D2
- Y=Y+.20544296737880454D-20*FCT(X)
- X=.44509207995754938D2
- Y=Y+.21197922901636186D-18*FCT(X)
- X=.40145719771539442D2
- Y=Y+.15421338333938234D-16*FCT(X)
- X=.36100494805751974D2
- Y=Y+.8171823443420719D-15*FCT(X)
- X=.32346629153964737D2
- Y=Y+.32378016577292665D-13*FCT(X)
- X=.28862101816323475D2
- Y=Y+.9799379288727094D-12*FCT(X)
- X=.25628636022459248D2
- Y=Y+.23058994918913361D-10*FCT(X)
- X=.22630889013196774D2
- Y=Y+.42813829710409289D-9*FCT(X)
- X=.19855860940336055D2
- Y=Y+.63506022266258067D-8*FCT(X)
- X=.17292454336715315D2
- Y=Y+.7604567879120781D-7*FCT(X)
- X=.14931139755522557D2
- Y=Y+.7416404578667552D-6*FCT(X)
- X=.12763697986742725D2
- Y=Y+.59345416128686329D-5*FCT(X)
- X=.10783018632539972D2
- Y=Y+.39203419679879472D-4*FCT(X)
- X=.8982940924212596D1
- Y=Y+.21486491880136419D-3*FCT(X)
- X=.7358126733186241D1
- Y=Y+.9808033066149551D-3*FCT(X)
- X=.59039585041742439D1
- Y=Y+.37388162946115248D-2*FCT(X)
- X=.46164567697497674D1
- Y=Y+.11918214834838557D-1*FCT(X)
- X=.34922132730219945D1
- Y=Y+.31760912509175070D-1*FCT(X)
- X=.25283367064257949D1
- Y=Y+.70578623865717442D-1*FCT(X)
- X=.17224087764446454D1
- Y=Y+.12998378628607176D0*FCT(X)
- X=.10724487538178176D1
- Y=Y+.19590333597288104D0*FCT(X)
- X=.57688462930188643D0
- Y=Y+.23521322966984801D0*FCT(X)
- X=.23452610951961854D0
- Y=Y+.21044310793881323D0*FCT(X)
- X=.44489365833267018D-1
- Y=Y+.10921834195238497D0*FCT(X)
- RETURN
- END