home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
DP Tool Club 8
/
CDASC08.ISO
/
NEWS
/
RADIANCE
/
SRC
/
RT
/
RAYTRACE.C
< prev
next >
Wrap
C/C++ Source or Header
|
1993-10-07
|
12KB
|
469 lines
/* Copyright (c) 1991 Regents of the University of California */
#ifndef lint
static char SCCSid[] = "@(#)raytrace.c 2.1 11/12/91 LBL";
#endif
/*
* raytrace.c - routines for tracing and shading rays.
*
* 8/7/85
*/
#include "ray.h"
#include "octree.h"
#include "otypes.h"
#include "otspecial.h"
extern CUBE thescene; /* our scene */
extern int maxdepth; /* maximum recursion depth */
extern double minweight; /* minimum ray weight */
extern int do_irrad; /* compute irradiance? */
long raynum = 0L; /* next unique ray number */
long nrays = 0L; /* number of calls to localhit */
static FLOAT Lambfa[5] = {PI, PI, PI, 0.0, 0.0};
OBJREC Lamb = {
OVOID, MAT_PLASTIC, "Lambertian",
{0, 5, NULL, Lambfa}, NULL, -1,
}; /* a Lambertian surface */
#define MAXLOOP 128 /* modifier loop detection */
#define RAYHIT (-1) /* return value for intercepted ray */
rayorigin(r, ro, rt, rw) /* start new ray from old one */
register RAY *r, *ro;
int rt;
double rw;
{
if ((r->parent = ro) == NULL) { /* primary ray */
r->rlvl = 0;
r->rweight = rw;
r->crtype = r->rtype = rt;
r->rsrc = -1;
r->clipset = NULL;
r->revf = raytrace;
} else { /* spawned ray */
r->rlvl = ro->rlvl;
if (rt & RAYREFL) {
r->rlvl++;
r->rsrc = -1;
r->clipset = ro->clipset;
} else {
r->rsrc = ro->rsrc;
r->clipset = ro->newcset;
}
r->revf = ro->revf;
r->rweight = ro->rweight * rw;
r->crtype = ro->crtype | (r->rtype = rt);
VCOPY(r->rorg, ro->rop);
}
rayclear(r);
return(r->rlvl <= maxdepth && r->rweight >= minweight ? 0 : -1);
}
rayclear(r) /* clear a ray for (re)evaluation */
register RAY *r;
{
r->rno = raynum++;
r->newcset = r->clipset;
r->ro = NULL;
r->rot = FHUGE;
r->pert[0] = r->pert[1] = r->pert[2] = 0.0;
setcolor(r->pcol, 1.0, 1.0, 1.0);
setcolor(r->rcol, 0.0, 0.0, 0.0);
r->rt = 0.0;
}
raytrace(r) /* trace a ray and compute its value */
RAY *r;
{
extern int (*trace)();
if (localhit(r, &thescene))
raycont(r);
else if (sourcehit(r))
rayshade(r, r->ro->omod);
if (trace != NULL)
(*trace)(r); /* trace execution */
}
raycont(r) /* check for clipped object and continue */
register RAY *r;
{
if (r->clipset != NULL && inset(r->clipset, r->ro->omod))
raytrans(r);
else
rayshade(r, r->ro->omod);
}
raytrans(r) /* transmit ray as is */
register RAY *r;
{
RAY tr;
if (rayorigin(&tr, r, TRANS, 1.0) == 0) {
VCOPY(tr.rdir, r->rdir);
rayvalue(&tr);
copycolor(r->rcol, tr.rcol);
r->rt = r->rot + tr.rt;
}
}
rayshade(r, mod) /* shade ray r with material mod */
register RAY *r;
int mod;
{
static int depth = 0;
register OBJREC *m;
/* check for infinite loop */
if (depth++ >= MAXLOOP)
objerror(r->ro, USER, "possible modifier loop");
r->rt = r->rot; /* set effective ray length */
for ( ; mod != OVOID; mod = m->omod) {
m = objptr(mod);
/****** unnecessary test since modifier() is always called
if (!ismodifier(m->otype)) {
sprintf(errmsg, "illegal modifier \"%s\"", m->oname);
error(USER, errmsg);
}
******/
/* hack for irradiance calculation */
if (do_irrad && !(r->crtype & ~(PRIMARY|TRANS))) {
if (irr_ignore(m->otype)) {
depth--;
raytrans(r);
return;
}
if (!islight(m->otype))
m = &Lamb;
}
(*ofun[m->otype].funp)(m, r); /* execute function */
m->lastrno = r->rno;
if (ismaterial(m->otype)) { /* materials call raytexture */
depth--;
return; /* we're done */
}
}
objerror(r->ro, USER, "material not found");
}
raytexture(r, mod) /* get material modifiers */
RAY *r;
int mod;
{
static int depth = 0;
register OBJREC *m;
/* check for infinite loop */
if (depth++ >= MAXLOOP)
objerror(r->ro, USER, "modifier loop");
/* execute textures and patterns */
for ( ; mod != OVOID; mod = m->omod) {
m = objptr(mod);
if (!istexture(m->otype)) {
sprintf(errmsg, "illegal modifier \"%s\"", m->oname);
error(USER, errmsg);
}
(*ofun[m->otype].funp)(m, r);
m->lastrno = r->rno;
}
depth--; /* end here */
}
raymixture(r, fore, back, coef) /* mix modifiers */
register RAY *r;
OBJECT fore, back;
double coef;
{
FVECT curpert, forepert, backpert;
COLOR curpcol, forepcol, backpcol;
register int i;
/* clip coefficient */
if (coef > 1.0)
coef = 1.0;
else if (coef < 0.0)
coef = 0.0;
/* save current mods */
VCOPY(curpert, r->pert);
copycolor(curpcol, r->pcol);
/* compute new mods */
/* foreground */
r->pert[0] = r->pert[1] = r->pert[2] = 0.0;
setcolor(r->pcol, 1.0, 1.0, 1.0);
if (fore != OVOID && coef > FTINY)
raytexture(r, fore);
VCOPY(forepert, r->pert);
copycolor(forepcol, r->pcol);
/* background */
r->pert[0] = r->pert[1] = r->pert[2] = 0.0;
setcolor(r->pcol, 1.0, 1.0, 1.0);
if (back != OVOID && coef < 1.0-FTINY)
raytexture(r, back);
VCOPY(backpert, r->pert);
copycolor(backpcol, r->pcol);
/* sum perturbations */
for (i = 0; i < 3; i++)
r->pert[i] = curpert[i] + coef*forepert[i] +
(1.0-coef)*backpert[i];
/* multiply colors */
setcolor(r->pcol, coef*colval(forepcol,RED) +
(1.0-coef)*colval(backpcol,RED),
coef*colval(forepcol,GRN) +
(1.0-coef)*colval(backpcol,GRN),
coef*colval(forepcol,BLU) +
(1.0-coef)*colval(backpcol,BLU));
multcolor(r->pcol, curpcol);
}
double
raynormal(norm, r) /* compute perturbed normal for ray */
FVECT norm;
register RAY *r;
{
double newdot;
register int i;
/* The perturbation is added to the surface normal to obtain
* the new normal. If the new normal would affect the surface
* orientation wrt. the ray, a correction is made. The method is
* still fraught with problems since reflected rays and similar
* directions calculated from the surface normal may spawn rays behind
* the surface. The only solution is to curb textures at high
* incidence (namely, keep DOT(rdir,pert) < Rdot).
*/
for (i = 0; i < 3; i++)
norm[i] = r->ron[i] + r->pert[i];
if (normalize(norm) == 0.0) {
objerror(r->ro, WARNING, "illegal normal perturbation");
VCOPY(norm, r->ron);
return(r->rod);
}
newdot = -DOT(norm, r->rdir);
if ((newdot > 0.0) != (r->rod > 0.0)) { /* fix orientation */
for (i = 0; i < 3; i++)
norm[i] += 2.0*newdot*r->rdir[i];
newdot = -newdot;
}
return(newdot);
}
newrayxf(r) /* get new tranformation matrix for ray */
RAY *r;
{
static struct xfn {
struct xfn *next;
FULLXF xf;
} xfseed = { &xfseed }, *xflast = &xfseed;
register struct xfn *xp;
register RAY *rp;
/*
* Search for transform in circular list that
* has no associated ray in the tree.
*/
xp = xflast;
for (rp = r->parent; rp != NULL; rp = rp->parent)
if (rp->rox == &xp->xf) { /* xp in use */
xp = xp->next; /* move to next */
if (xp == xflast) { /* need new one */
xp = (struct xfn *)bmalloc(sizeof(struct xfn));
if (xp == NULL)
error(SYSTEM,
"out of memory in newrayxf");
/* insert in list */
xp->next = xflast->next;
xflast->next = xp;
break; /* we're done */
}
rp = r; /* start check over */
}
/* got it */
r->rox = &xp->xf;
xflast = xp;
}
flipsurface(r) /* reverse surface orientation */
register RAY *r;
{
r->rod = -r->rod;
r->ron[0] = -r->ron[0];
r->ron[1] = -r->ron[1];
r->ron[2] = -r->ron[2];
r->pert[0] = -r->pert[0];
r->pert[1] = -r->pert[1];
r->pert[2] = -r->pert[2];
}
localhit(r, scene) /* check for hit in the octree */
register RAY *r;
register CUBE *scene;
{
FVECT curpos; /* current cube position */
int sflags; /* sign flags */
double t, dt;
register int i;
nrays++; /* increment trace counter */
sflags = 0;
for (i = 0; i < 3; i++) {
curpos[i] = r->rorg[i];
if (r->rdir[i] > FTINY)
sflags |= 1 << i;
else if (r->rdir[i] < -FTINY)
sflags |= 0x10 << i;
}
if (sflags == 0)
error(CONSISTENCY, "zero ray direction in localhit");
t = 0.0;
if (!incube(scene, curpos)) {
/* find distance to entry */
for (i = 0; i < 3; i++) {
/* plane in our direction */
if (sflags & 1<<i)
dt = scene->cuorg[i];
else if (sflags & 0x10<<i)
dt = scene->cuorg[i] + scene->cusize;
else
continue;
/* distance to the plane */
dt = (dt - r->rorg[i])/r->rdir[i];
if (dt > t)
t = dt; /* farthest face is the one */
}
t += FTINY; /* fudge to get inside cube */
/* advance position */
for (i = 0; i < 3; i++)
curpos[i] += r->rdir[i]*t;
if (!incube(scene, curpos)) /* non-intersecting ray */
return(0);
}
return(raymove(curpos, sflags, r, scene) == RAYHIT);
}
static int
raymove(pos, dirf, r, cu) /* check for hit as we move */
FVECT pos; /* modified */
int dirf; /* direction indicators to speed tests */
register RAY *r;
register CUBE *cu;
{
int ax;
double dt, t;
if (istree(cu->cutree)) { /* recurse on subcubes */
CUBE cukid;
register int br, sgn;
cukid.cusize = cu->cusize * 0.5; /* find subcube */
VCOPY(cukid.cuorg, cu->cuorg);
br = 0;
if (pos[0] >= cukid.cuorg[0]+cukid.cusize) {
cukid.cuorg[0] += cukid.cusize;
br |= 1;
}
if (pos[1] >= cukid.cuorg[1]+cukid.cusize) {
cukid.cuorg[1] += cukid.cusize;
br |= 2;
}
if (pos[2] >= cukid.cuorg[2]+cukid.cusize) {
cukid.cuorg[2] += cukid.cusize;
br |= 4;
}
for ( ; ; ) {
cukid.cutree = octkid(cu->cutree, br);
if ((ax = raymove(pos,dirf,r,&cukid)) == RAYHIT)
return(RAYHIT);
sgn = 1 << ax;
if (sgn & dirf) /* positive axis? */
if (sgn & br)
return(ax); /* overflow */
else {
cukid.cuorg[ax] += cukid.cusize;
br |= sgn;
}
else
if (sgn & br) {
cukid.cuorg[ax] -= cukid.cusize;
br &= ~sgn;
} else
return(ax); /* underflow */
}
/*NOTREACHED*/
}
if (isfull(cu->cutree) && checkhit(r, cu))
return(RAYHIT);
/* advance to next cube */
if (dirf&0x11) {
dt = dirf&1 ? cu->cuorg[0] + cu->cusize : cu->cuorg[0];
t = (dt - pos[0])/r->rdir[0];
ax = 0;
} else
t = FHUGE;
if (dirf&0x22) {
dt = dirf&2 ? cu->cuorg[1] + cu->cusize : cu->cuorg[1];
dt = (dt - pos[1])/r->rdir[1];
if (dt < t) {
t = dt;
ax = 1;
}
}
if (dirf&0x44) {
dt = dirf&4 ? cu->cuorg[2] + cu->cusize : cu->cuorg[2];
dt = (dt - pos[2])/r->rdir[2];
if (dt < t) {
t = dt;
ax = 2;
}
}
pos[0] += r->rdir[0]*t;
pos[1] += r->rdir[1]*t;
pos[2] += r->rdir[2]*t;
return(ax);
}
static
checkhit(r, cu) /* check for hit in full cube */
register RAY *r;
CUBE *cu;
{
OBJECT oset[MAXSET+1];
register OBJREC *o;
register int i;
objset(oset, cu->cutree);
for (i = oset[0]; i > 0; i--) {
o = objptr(oset[i]);
if (o->lastrno == r->rno) /* checked already? */
continue;
(*ofun[o->otype].funp)(o, r);
o->lastrno = r->rno;
}
if (r->ro == NULL)
return(0); /* no scores yet */
return(incube(cu, r->rop)); /* hit OK if in current cube */
}