home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
DP Tool Club 8
/
CDASC08.ISO
/
NEWS
/
RADIANCE
/
SRC
/
RT
/
RAYINIT.CAL
< prev
next >
Wrap
Text File
|
1993-10-07
|
4KB
|
155 lines
{ SCCSid "@(#)rayinit.cal 2.4 8/17/92 LBL" }
{
Initialization file for Radiance.
The following are predefined:
Dx, Dy, Dz - ray direction
Nx, Ny, Nz - surface normal
Px, Py, Pz - intersection point
T - distance from start
Ts - single ray (shadow) distance
Rdot - ray dot product
S - world scale
Tx, Ty, Tz - world origin
Ix, Iy, Iz - world i unit vector
Jx, Jy, Jz - world j unit vector
Kx, Ky, Kz - world k unit vector
arg(n) - real arguments, arg(0) is count
For brdf functions, the following are also available:
NxP, NyP, NzP - perturbed surface normal
RdotP - perturbed ray dot product
CrP, CgP, CbP - perturbed material color
Library functions:
if(a, b, c) - if a positive, return b, else c
select(N, a1, a2, ..) - return aN
sqrt(x) - square root function
sin(x), cos(x), tan(x),
asin(x), acos(x),
atan(x), atan2(y,x) - standard trig functions
floor(x), ceil(x) - g.l.b. & l.u.b.
exp(x), log(x), log10(x) - exponent and log functions
erf(z), erfc(z) - error functions
rand(x) - pseudo-random function (0 to 1)
hermite(p0,p1,r0,r1,t) - 1-dimensional hermite polynomial
noise3(x,y,z), noise3a(x,y,z),
noise3b(x,y,z), noise3c(x,y,z) - noise function with gradient (-1 to 1)
fnoise3(x,y,z) - fractal noise function (-1 to 1)
}
{ Backward compatibility }
AC = arg(0);
A1 = arg(1); A2 = arg(2); A3 = arg(3); A4 = arg(4); A5 = arg(5);
A6 = arg(6); A7 = arg(7); A8 = arg(8); A9 = arg(9); A10 = arg(10);
{ Forward compatibility (?) }
D(i) = select(i, Dx, Dy, Dz);
N(i) = select(i, Nx, Ny, Nz);
P(i) = select(i, Px, Py, Pz);
noise3d(i,x,y,z) = select(i, noise3a(x,y,z), noise3b(x,y,z), noise3c(x,y,z));
{ More robust versions of library functions }
bound(a,x,b) : if(a-x, a, if(x-b, b, x));
Acos(x) : acos(bound(-1,x,1));
Asin(x) : asin(bound(-1,x,1));
Exp(x) : if(-x-100, 0, exp(x));
Sqrt(x) : if(x, sqrt(x), 0);
{ Useful constants }
PI : 3.14159265358979323846;
DEGREE : PI/180;
FTINY : 1e-7;
{ Useful functions }
and(a,b) : if( a, b, a );
or(a,b) : if( a, a, b );
not(a) : if( a, -1, 1 );
abs(x) : if( x, x, -x );
sgn(x) : if( x, 1, if(-x, -1, 0) );
sq(x) : x*x;
max(a,b) : if( a-b, a, b );
min(a,b) : if( a-b, b, a );
inside(a,x,b) : and(x-a,b-x);
frac(x) : x - floor(x);
mod(n,d) : n - floor(n/d)*d;
tri(n,d) : abs( d - mod(n-d,2*d) );
linterp(t,p0,p1) : (1-t)*p0 + t*p1;
noop(v) = v;
clip(v) = bound(0,v,1);
noneg(v) = if(v,v,0);
red(r,g,b) = if(r,r,0);
green(r,g,b) = if(g,g,0);
blue(r,g,b) = if(b,b,0);
grey(r,g,b) = noneg(.263*r + .655*g + .082*b);
clip_r(r,g,b) = bound(0,r,1);
clip_g(r,g,b) = bound(0,g,1);
clip_b(r,g,b) = bound(0,b,1);
clipgrey(r,g,b) = bound(0,grey(r,g,b),1);
dot(v1,v2) : v1(1)*v2(1) + v1(2)*v2(2) + v1(3)*v2(3);
cross(i,v1,v2) : select(i, v1(2)*v2(3) - v1(3)*v2(2),
v1(3)*v2(1) - v1(1)*v2(3),
v1(1)*v2(2) - v1(2)*v2(1));
fade(near_val,far_val,dist) = far_val +
if (16-dist, (near_val-far_val)/(1+dist*dist), 0);
bezier(p1, p2, p3, p4, t) = p1 * (1+t*(-3+t*(3-t))) +
p2 * 3*t*(1+t*(-2+t)) +
p3 * 3*t*t*(1-t) +
p4 * t*t*t ;
bspline(pp, p0, p1, pn, t) = pp * (1/6+t*(-.5+t*(.5-1/6*t))) +
p0 * (2/3+t*t*(-1+.5*t)) +
p1 * (1/6+t*(.5+t*(.5-.5*t))) +
pn * (1/6*t*t*t) ;
turbulence(x,y,z,s) = if( s-1.01, 0, abs(noise3(x/s,y/s,z/s)*s) +
turbulence(x,y,z,2*s) );
turbulencea(x,y,z,s) = if( s-1.01, 0,
sgn(noise3(x/s,y/s,z/s))*noise3a(x/s,y/s,z/s) +
turbulencea(x,y,z,2*s) );
turbulenceb(x,y,z,s) = if( s-1.01, 0,
sgn(noise3(x/s,y/s,z/s))*noise3b(x/s,y/s,z/s) +
turbulenceb(x,y,z,2*s) );
turbulencec(x,y,z,s) = if( s-1.01, 0,
sgn(noise3(x/s,y/s,z/s))*noise3c(x/s,y/s,z/s) +
turbulencec(x,y,z,2*s) );
{ Normal distribution from uniform range (0,1) }
un2`private(t) : t - (2.515517+t*(.802853+t*.010328))/
(1+t*(1.432788+t*(.189269+t*.001308))) ;
un1`private(p) : un2`private(sqrt(-2*log(p))) ;
unif2norm(p) : if( .5-p, un1`private(p), -un1`private(1-p) ) ;
nrand(x) = unif2norm(rand(x));
{ Local (u,v) coordinates for planar surfaces }
crosslen`private = Nx*Nx + Ny*Ny;
{ U is distance from origin in XY-plane }
U = if( crosslen`private - FTINY,
(Py*Nx - Px*Ny)/crosslen`private,
Px);
{ V is defined so that N = U x V }
V = if( crosslen`private - FTINY,
Pz - Nz*(Px*Nx + Py*Ny)/crosslen`private,
Py);