home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
DP Tool Club 8
/
CDASC08.ISO
/
NEWS
/
RADIANCE
/
SRC
/
RT
/
DIELECTR.C
< prev
next >
Wrap
C/C++ Source or Header
|
1993-10-07
|
9KB
|
324 lines
/* Copyright (c) 1986 Regents of the University of California */
#ifndef lint
static char SCCSid[] = "@(#)dielectric.c 2.2 10/2/92 LBL";
#endif
/*
* dielectric.c - shading function for transparent materials.
*
* 9/6/85
*/
#include "ray.h"
#include "otypes.h"
#ifdef DISPERSE
#include "source.h"
#endif
/*
* Explicit calculations for Fresnel's equation are performed,
* but only one square root computation is necessary.
* The index of refraction is given as a Hartmann equation
* with lambda0 equal to zero. If the slope of Hartmann's
* equation is non-zero, the material disperses light upon
* refraction. This condition is examined on rays traced to
* light sources. If a ray is exiting a dielectric material, we
* check the sources to see if any would cause bright color to be
* directed to the viewer due to dispersion. This gives colorful
* sparkle to crystals, etc. (Only if DISPERSE is defined!)
*
* Arguments for MAT_DIELECTRIC are:
* red grn blu rndx Hartmann
*
* Arguments for MAT_INTERFACE are:
* red1 grn1 blu1 rndx1 red2 grn2 blu2 rndx2
*
* The primaries are material transmission per unit length.
* MAT_INTERFACE uses dielectric1 for inside and dielectric2 for
* outside.
*/
#define MLAMBDA 500 /* mean lambda */
#define MAXLAMBDA 779 /* maximum lambda */
#define MINLAMBDA 380 /* minimum lambda */
#define MINCOS 0.997 /* minimum dot product for dispersion */
m_dielectric(m, r) /* color a ray which hit something transparent */
OBJREC *m;
register RAY *r;
{
double cos1, cos2, nratio;
COLOR mcolor;
double mabsorp;
double refl, trans;
FVECT dnorm;
double d1, d2;
RAY p;
register int i;
if (m->oargs.nfargs != (m->otype==MAT_DIELECTRIC ? 5 : 8))
objerror(m, USER, "bad arguments");
r->rt = r->rot; /* just use ray length */
raytexture(r, m->omod); /* get modifiers */
cos1 = raynormal(dnorm, r); /* cosine of theta1 */
/* index of refraction */
if (m->otype == MAT_DIELECTRIC)
nratio = m->oargs.farg[3] + m->oargs.farg[4]/MLAMBDA;
else
nratio = m->oargs.farg[3] / m->oargs.farg[7];
if (cos1 < 0.0) { /* inside */
cos1 = -cos1;
dnorm[0] = -dnorm[0];
dnorm[1] = -dnorm[1];
dnorm[2] = -dnorm[2];
setcolor(mcolor, pow(m->oargs.farg[0], r->rot),
pow(m->oargs.farg[1], r->rot),
pow(m->oargs.farg[2], r->rot));
} else { /* outside */
nratio = 1.0 / nratio;
if (m->otype == MAT_INTERFACE)
setcolor(mcolor, pow(m->oargs.farg[4], r->rot),
pow(m->oargs.farg[5], r->rot),
pow(m->oargs.farg[6], r->rot));
else
setcolor(mcolor, 1.0, 1.0, 1.0);
}
mabsorp = bright(mcolor);
d2 = 1.0 - nratio*nratio*(1.0 - cos1*cos1); /* compute cos theta2 */
if (d2 < FTINY) /* total reflection */
refl = 1.0;
else { /* refraction occurs */
/* compute Fresnel's equations */
cos2 = sqrt(d2);
d1 = cos1;
d2 = nratio*cos2;
d1 = (d1 - d2) / (d1 + d2);
refl = d1 * d1;
d1 = 1.0 / cos1;
d2 = nratio / cos2;
d1 = (d1 - d2) / (d1 + d2);
refl += d1 * d1;
refl /= 2.0;
trans = 1.0 - refl;
if (rayorigin(&p, r, REFRACTED, mabsorp*trans) == 0) {
/* compute refracted ray */
d1 = nratio*cos1 - cos2;
for (i = 0; i < 3; i++)
p.rdir[i] = nratio*r->rdir[i] + d1*dnorm[i];
#ifdef DISPERSE
if (m->otype != MAT_DIELECTRIC
|| r->rod > 0.0
|| r->crtype & SHADOW
|| directinvis
|| m->oargs.farg[4] == 0.0
|| !disperse(m, r, p.rdir, trans))
#endif
{
rayvalue(&p);
multcolor(mcolor, r->pcol); /* modify */
scalecolor(p.rcol, trans);
addcolor(r->rcol, p.rcol);
}
}
}
if (!(r->crtype & SHADOW) &&
rayorigin(&p, r, REFLECTED, mabsorp*refl) == 0) {
/* compute reflected ray */
for (i = 0; i < 3; i++)
p.rdir[i] = r->rdir[i] + 2.0*cos1*dnorm[i];
rayvalue(&p); /* reflected ray value */
scalecolor(p.rcol, refl); /* color contribution */
addcolor(r->rcol, p.rcol);
}
multcolor(r->rcol, mcolor); /* multiply by transmittance */
}
#ifdef DISPERSE
static
disperse(m, r, vt, tr) /* check light sources for dispersion */
OBJREC *m;
RAY *r;
FVECT vt;
double tr;
{
RAY sray, *entray;
FVECT v1, v2, n1, n2;
FVECT dv, v2Xdv;
double v2Xdvv2Xdv;
int success = 0;
SRCINDEX si;
FVECT vtmp1, vtmp2;
double dtmp1, dtmp2;
int l1, l2;
COLOR ctmp;
int i;
/*
* This routine computes dispersion to the first order using
* the following assumptions:
*
* 1) The dependency of the index of refraction on wavelength
* is approximated by Hartmann's equation with lambda0
* equal to zero.
* 2) The entry and exit locations are constant with respect
* to dispersion.
*
* The second assumption permits us to model dispersion without
* having to sample refracted directions. We assume that the
* geometry inside the material is constant, and concern ourselves
* only with the relationship between the entering and exiting ray.
* We compute the first derivatives of the entering and exiting
* refraction with respect to the index of refraction. This
* is then used in a first order Taylor series to determine the
* index of refraction necessary to send the exiting ray to each
* light source.
* If an exiting ray hits a light source within the refraction
* boundaries, we sum all the frequencies over the disc of the
* light source to determine the resulting color. A smaller light
* source will therefore exhibit a sharper spectrum.
*/
if (!(r->crtype & REFRACTED)) { /* ray started in material */
VCOPY(v1, r->rdir);
n1[0] = -r->rdir[0]; n1[1] = -r->rdir[1]; n1[2] = -r->rdir[2];
} else {
/* find entry point */
for (entray = r; entray->rtype != REFRACTED;
entray = entray->parent)
;
entray = entray->parent;
if (entray->crtype & REFRACTED) /* too difficult */
return(0);
VCOPY(v1, entray->rdir);
VCOPY(n1, entray->ron);
}
VCOPY(v2, vt); /* exiting ray */
VCOPY(n2, r->ron);
/* first order dispersion approx. */
dtmp1 = DOT(n1, v1);
dtmp2 = DOT(n2, v2);
for (i = 0; i < 3; i++)
dv[i] = v1[i] + v2[i] - n1[i]/dtmp1 - n2[i]/dtmp2;
if (DOT(dv, dv) <= FTINY) /* null effect */
return(0);
/* compute plane normal */
fcross(v2Xdv, v2, dv);
v2Xdvv2Xdv = DOT(v2Xdv, v2Xdv);
/* check sources */
initsrcindex(&si);
while (srcray(&sray, r, &si)) {
if (DOT(sray.rdir, v2) < MINCOS)
continue; /* bad source */
/* adjust source ray */
dtmp1 = DOT(v2Xdv, sray.rdir) / v2Xdvv2Xdv;
sray.rdir[0] -= dtmp1 * v2Xdv[0];
sray.rdir[1] -= dtmp1 * v2Xdv[1];
sray.rdir[2] -= dtmp1 * v2Xdv[2];
l1 = lambda(m, v2, dv, sray.rdir); /* mean lambda */
if (l1 > MAXLAMBDA || l1 < MINLAMBDA) /* not visible */
continue;
/* trace source ray */
normalize(sray.rdir);
rayvalue(&sray);
if (bright(sray.rcol) <= FTINY) /* missed it */
continue;
/*
* Compute spectral sum over diameter of source.
* First find directions for rays going to opposite
* sides of source, then compute wavelengths for each.
*/
fcross(vtmp1, v2Xdv, sray.rdir);
dtmp1 = sqrt(si.dom / v2Xdvv2Xdv / PI);
/* compute first ray */
for (i = 0; i < 3; i++)
vtmp2[i] = sray.rdir[i] + dtmp1*vtmp1[i];
l1 = lambda(m, v2, dv, vtmp2); /* first lambda */
if (l1 < 0)
continue;
/* compute second ray */
for (i = 0; i < 3; i++)
vtmp2[i] = sray.rdir[i] - dtmp1*vtmp1[i];
l2 = lambda(m, v2, dv, vtmp2); /* second lambda */
if (l2 < 0)
continue;
/* compute color from spectrum */
if (l1 < l2)
spec_rgb(ctmp, l1, l2);
else
spec_rgb(ctmp, l2, l1);
multcolor(ctmp, sray.rcol);
scalecolor(ctmp, tr);
addcolor(r->rcol, ctmp);
success++;
}
return(success);
}
static int
lambda(m, v2, dv, lr) /* compute lambda for material */
register OBJREC *m;
FVECT v2, dv, lr;
{
FVECT lrXdv, v2Xlr;
double dtmp, denom;
int i;
fcross(lrXdv, lr, dv);
for (i = 0; i < 3; i++)
if (lrXdv[i] > FTINY || lrXdv[i] < -FTINY)
break;
if (i >= 3)
return(-1);
fcross(v2Xlr, v2, lr);
dtmp = m->oargs.farg[4] / MLAMBDA;
denom = dtmp + v2Xlr[i]/lrXdv[i] * (m->oargs.farg[3] + dtmp);
if (denom < FTINY)
return(-1);
return(m->oargs.farg[4] / denom);
}
#endif /* DISPERSE */