home *** CD-ROM | disk | FTP | other *** search
- TRSV(3F) Last changed: 11-2-98
-
-
- NNAAMMEE
- SSTTRRSSVV, DDTTRRSSVV, CCTTRRSSVV, ZZTTRRSSVV - Solves a real or complex triangular
- system of equations
-
- SSYYNNOOPPSSIISS
- Real
-
- CCAALLLL SSTTRRSSVV ((_u_p_l_o,, _t_r_a_n_s,, _d_i_a_g,, _n,, _a,, _l_d_a,, _x,, _i_n_c_x))
-
- Double precision
-
- CCAALLLL DDTTRRSSVV ((_u_p_l_o,, _t_r_a_n_s,, _d_i_a_g,, _n,, _a,, _l_d_a,, _x,, _i_n_c_x))
-
- Complex
-
- CCAALLLL CCTTRRSSVV ((_u_p_l_o,, _t_r_a_n_s,, _d_i_a_g,, _n,, _a,, _l_d_a,, _x,, _i_n_c_x))
-
- Double complex
-
- CCAALLLL ZZTTRRSSVV ((_u_p_l_o,, _t_r_a_n_s,, _d_i_a_g,, _n,, _a,, _l_d_a,, _x,, _i_n_c_x))
-
- IIMMPPLLEEMMEENNTTAATTIIOONN
- IRIX systems
-
- DDEESSCCRRIIPPTTIIOONN
- SSTTRRSSVV and DDTTRRSSVV solve a real triangular system of equations.
-
- CCTTRRSSVV and ZZTTRRSSVV solve a complex triangular system of equations.
-
- These routines solve one of the following systems of equations, using
- the operation associated with each:
-
- EEqquuaattiioonnss OOppeerraattiioonn
- -_1
- _A_x=_b _x <- _A _x
- _T -_T
- _A _x=_b _x <- _A _x
- _H -_H
- _A _x=_b _x <- _A _x (CCTTRRSSVV, ZZTTRRSSVV only)
-
- where
-
- * _b and _x are _n-element vectors
-
- * _A is either a unit or nonunit _n-by-_n upper or lower triangular
- matrix
- -_1
- * _A is the inverse of _A
- _T
- * _A is the transpose of _A
- -_T _T
- * _A is the inverse of _A
- _H
- * _A is the conjugate transpose of _A
- -_H _H
- * _A is the inverse of _A
-
- On input, the right-hand side vector _b is stored in array argument _x.
- On output, the solution vector _x overwrites _b in the same array
- argument _x.
-
- These routines have the following arguments:
-
- _u_p_l_o Character*1. (input)
- Specifies whether the matrix is an upper or lower triangular
- matrix, as follows:
-
- _u_p_l_o = 'U' or 'u': _A is an upper triangular matrix.
- _u_p_l_o = 'L' or 'l': _A is a lower triangular matrix.
-
- _t_r_a_n_s Character *1. (input)
- Specifies the operation to be performed, as follows:
- -_1
- _t_r_a_n_s = 'N' or 'n': _x <- _A _x
-
- -_T
- _t_r_a_n_s = 'T' or 't': _x <- _A _x
-
- -_T
- _t_r_a_n_s = 'C' or 'c': _x <- _A _x (SSTTRRSSVV, DDTTRRSSVV), or
- -_H
- _x <- _A _x (CCTTRRSSVV, ZZTTRRSSVV)
-
- _d_i_a_g Character *1. (input)
- Specifies whether _A is unit triangular, as follows:
-
- _d_i_a_g = 'U' or 'u': _A is assumed to be unit triangular.
- _d_i_a_g = 'N' or 'n': _A is not assumed to be unit triangular.
-
- _n Integer. (input)
- Specifies the order of matrix _A. _n >= 0.
-
- _a Array of dimension (_l_d_a,_n). (input)
- SSTTRRSSVV: Real array.
- DDTTRRSSVV: Double precision array.
- CCTTRRSSVV: Complex array.
- ZZTTRRSSVV: Double complex array.
-
- Before entry with _u_p_l_o = 'U' or 'u', the leading _n-by-_n
- upper triangular part of array _a must contain the upper
- triangular matrix. The strictly lower triangular part of _a
- is not referenced.
-
- Before entry with _u_p_l_o = 'L' or 'l', the leading _n-by-_n
- lower triangular part of array _a must contain the lower
- triangular matrix. The strictly upper triangular part of _a
- is not referenced.
-
- When _d_i_a_g = 'U' or 'u', these routines assume that all
- elements of array _a that represent diagonal elements of
- matrix _A are 1. In this case, neither of these routines
- will reference any of the diagonal elements.
-
- _l_d_a Integer. (input)
- Specifies the first dimension of _a as declared in the
- calling program. _l_d_a >= MMAAXX(1,_n).
-
- _x Array of dimension 1+(_n-1) * |_i_n_c_x|. (input and output)
- SSTTRRSSVV: Real array.
- DDTTRRSSVV: Double precision array.
- CCTTRRSSVV: Complex array.
- ZZTTRRSSVV: Double complex array.
-
- On input, _x contains the right-hand side vector _b. On
- output, _x is overwritten with the solution vector _x.
-
- _i_n_c_x Integer. (input)
- Specifies the increment for the elements of _x. _i_n_c_x must
- not be 0.
-
- NNOOTTEESS
- Tests for singularity or near-singularity are not included in these
- routines. You must perform such tests before calling either routine.
-
- These routines are Level 2 Basic Linear Algebra Subprograms (Level 2
- BLAS).
-
- When working backward (_i_n_c_x < 0), each routine starts at the end of
- the vector and moves backward, as follows:
-
- _x(1-_i_n_c_x * (_n-1)), _x(1-_i_n_c_x * (_n-2)), ..., _x(1)
-
- SSEEEE AALLSSOO
- This man page is available only online.
-