home *** CD-ROM | disk | FTP | other *** search
Text File | 2002-10-03 | 106.7 KB | 1,717 lines |
-
-
-
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS)))) IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
-
-
-
- NNNNAAAAMMMMEEEE
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK - Introduction to LAPACK solvers for dense linear systems
-
- IIIIMMMMPPPPLLLLEEEEMMMMEEEENNNNTTTTAAAATTTTIIIIOOOONNNN
- See individual man pages for implementation details
-
- These routines are part of the SCSL Scientific Library and can be loaded
- using either the ----llllssssccccssss or the ----llllssssccccssss____mmmmpppp option. The ----llllssssccccssss____mmmmpppp option
- directs the linker to use the multi-processor version of the library.
-
- When linking to SCSL with ----llllssssccccssss or ----llllssssccccssss____mmmmpppp, the default integer size is
- 4 bytes (32 bits). Another version of SCSL is available in which integers
- are 8 bytes (64 bits). This version allows the user access to larger
- memory sizes and helps when porting legacy Cray codes. It can be loaded
- by using the ----llllssssccccssss____iiii8888 option or the ----llllssssccccssss____iiii8888____mmmmpppp option. A program may use
- only one of the two versions; 4-byte integer and 8-byte integer library
- calls cannot be mixed.
-
- DDDDEEEESSSSCCCCRRRRIIIIPPPPTTTTIIIIOOOONNNN
- The preferred solvers for dense linear systems are those parts of the
- LAPACK package that are included in the current version of the SGI
- Scientific Computing Software Library (SCSL).
-
- LLLLAAAAPPPPAAAACCCCKKKK RRRRoooouuuuttttiiiinnnneeeessss
- LAPACK is a public domain library of subroutines for solving dense linear
- algebra problems, including the following:
-
- * Systems of linear equations
-
- * Linear least squares problems
-
- * Eigenvalue problems
-
- * Singular value decomposition (SVD) problems
-
- For details about which routines are supported, see "LAPACK Routines
- Contained in the Scientific Library," which follows.
-
- The LAPACK package is designed to be the successor to the older LINPACK
- and EISPACK packages. It uses today's high-performance computers more
- efficiently than the older packages. It also extends the functionality
- of these packages by including equilibration, iterative refinement, error
- bounds, and driver routines for linear systems, routines for computing
- and reordering the Schur factorization, and condition estimation routines
- for eigenvalue problems.
-
- Performance issues are addressed by implementing the most
- computationally-intensive algorithms by using the Level 2 and 3 Basic
- Linear Algebra Subprograms (BLAS). Because most of the BLAS were
- optimized in single- and multiple-processor environments, these
- algorithms give near optimal performance.
-
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS)))) IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
-
-
-
- The original Fortran programs are described in the _L_A_P_A_C_K _U_s_e_r'_s _G_u_i_d_e by
- E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A.
- Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen,
- published by the Society for Industrial and Applied Mathematics (SIAM),
- Philadelphia, 1992. The manual is also available online at
- hhhhttttttttpppp::::////////wwwwwwwwwwww....nnnneeeettttlllliiiibbbb....oooorrrrgggg////llllaaaappppaaaacccckkkk////lllluuuugggg////iiiinnnnddddeeeexxxx....hhhhttttmmmmllll.
-
- LLLLAAAAPPPPAAAACCCCKKKK RRRRoooouuuuttttiiiinnnneeeessss CCCCoooonnnnttttaaaaiiiinnnneeeedddd iiiinnnn tttthhhheeee SSSScccciiiieeeennnnttttiiiiffffiiiicccc LLLLiiiibbbbrrrraaaarrrryyyy
- All of the real and complex routines from LAPACK 3.0 are supported in
- SCSL. This includes driver routines and computational routines for
- solving linear systems, least squares problems, and eigenvalue and
- singular value problems. Selected auxiliary routines for generating and
- manipulating elementary orthogonal transformations are also supported.
-
- The LAPACK routines in SCSL are described online in man pages. For
- example, to see a description of the arguments to the expert driver
- routine for solving a general system of equations, enter the following
- command:
-
- % man sgesvx
-
-
- The user interface to all supported LAPACK routines is exactly the same
- as the standard LAPACK interface.
-
- Tuning parameters for the block algorithms provided in the SCSL are set
- within the LAPACK routine IIIILLLLAAAAEEEENNNNVVVV(3S). IIIILLLLAAAAEEEENNNNVVVV(3S) is an integer function
- subprogram that accepts information about the problem type and
- dimensions, and it returns one integer parameter, such as the optimal
- block size, the minimum block size for which a block algorithm should be
- used, or the crossover point (the problem size at which it becomes more
- efficient to switch to an unblocked algorithm). The setting of tuning
- parameters occurs without user intervention, but users may call
- IIIILLLLAAAAEEEENNNNVVVV(3S) directly to discover the values that will be used (for
- example, to determine how much workspace to provide).
-
- CCCCaaaalllllllliiiinnnngggg LLLLAAAAPPPPAAAACCCCKKKK RRRRoooouuuuttttiiiinnnneeeessss ffffrrrroooommmm CCCC
- Although LAPACK is a library of Fortran 77 subroutines, C and C++ users
- have full access to LAPACK functionality provided that they follow
- conventions documented in Chapter 8 of the MMMMIIIIPPPPSSSSpppprrrroooo 7777 FFFFoooorrrrttttrrrraaaannnn 99990000 CCCCoooommmmmmmmaaaannnnddddssss
- aaaannnndddd DDDDiiiirrrreeeeccccttttiiiivvvveeeessss RRRReeeeffffeeeerrrreeeennnncccceeee MMMMaaaannnnuuuuaaaallll, "Interlanguage Calling" (available from
- hhhhttttttttpppp::::////////tttteeeecccchhhhppppuuuubbbbssss....ssssggggiiii....ccccoooommmm////). The large majority of LAPACK routines can be
- called from C/C++ using the following four rules:
-
- * The name of the LAPACK subprogram must be declared in the C/C++
- program using all lowercase letters, appended with a trailing
- underscore.
-
- * The correspondence between Fortran and C data types is as follows:
-
- Fortran C/C++
- ------- -----
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-
-
-
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS)))) IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
-
-
-
- INTEGER int (32-bit integer library)
- long long (64-bit integer library)
- LOGICAL int (32-bit integer library)
- long long (64-bit integer library)
- REAL float
- DOUBLE PRECISION double
- COMPLEX struct{float real, imag;};
- DOUBLE COMPLEX struct{double real, imag;};
- CHARACTER char
-
-
- * All subroutine arguments should be passed by reference.
-
- * The LAPACK routines expect multidimensional arrays to be stored in
- column-major format in a contiguous region of memory.
-
- Note that the list above represents a subset of the general set of
- interlanguage calling conventions described in the Fortran 90 reference
- manual. Character strings, in particular, require special handling when
- passed as subroutine arguments or when returned from a function: if a
- string is longer than one character in extent, its length must be passed
- as an additional argument. Since most LAPACK subprograms employ
- character strings of length one, however, this special case can usually
- be ignored. Two important exceptions, IIIILLLLAAAAEEEENNNNVVVV(3S) and XXXXEEEERRRRBBBBLLLLAAAA(3S), are
- discussed more fully below.
-
- To call the double precision Cholesky factorization routine DDDDPPPPOOOOTTTTRRRRFFFF(3S),
- for example, the following prototype and code might apply:
-
- void dpotrf_(char *, int *, double *, int *, int *);
-
- char uplo;
- int info, lda, n;
- double a[1000][1001];
-
- uplo = 'U';
- lda = 1001;
- n = 1000;
- dpotrf_(&uplo, &n, (double *) a, &lda, &info);
-
- Or, to calculate the eigenvalues and eigenvectors of a double complex
- Hermitian matrix using ZZZZHHHHEEEEEEEEVVVVDDDD(3S) from the 64-bit integer version of
- SCSL, one might have:
-
- typedef struct {double real, imag;} zomplex;
-
- void zheevd_(char *, char *, long long *, zomplex *,
- long long *, double *, zomplex *, long long *,
- double *, long long *, long long *, long long *,
- long long *);
-
- char jobz, uplo;
-
-
-
- PPPPaaaaggggeeee 3333
-
-
-
-
-
-
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS)))) IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
-
-
-
- long long info, lda, liwork, lrwork, lwork, n;
- long long *iwork;
- double *rwork, *w;
- zomplex *a, *work;
-
- ...
- (array allocations and variable assignments)
- ...
-
- zheevd_(&jobz, &uplo, &n, a, &lda, w, work, &lwork, rwork,
- &lrwork iwork, &liwork, &info);
-
- Two LAPACK routines involving character string arguments are XXXXEEEERRRRBBBBLLLLAAAA(3S)
- and IIIILLLLAAAAEEEENNNNVVVV(3S). The corresponding C/C++ prototypes, assuming 32-bit
- integers in the former case and 64-bit integers in the latter, would be
-
- void xerbla_(char *, int *, const int);
-
- long long ilaenv_(long long *, char *str1, char *str2, long long *,
- long long *, long long *, long long *,
- const int len_str1, const int len_str2);
-
- Here the lengths of the strings are passed as implicit arguments, in
- order of use, following the explicit argument list. Note that,
- regardless of the default integer size in the version of SCSL one uses,
- the length of the character string is always passed as type int.
-
- NNNNaaaammmmiiiinnnngggg SSSScccchhhheeeemmmmeeee
- The name of each LAPACK routine is a coded specification of its function
- (within the limits of the FORTRAN 77 standard for six-character names).
-
- All driver and computational routines have five- or six-character names
- of the form _X_Y_Y_Z_Z or _X_Y_Y_Z_Z_Z.
-
- The first letter in each name, _X, indicates the data type, as follows:
-
- SSSS RRRREEEEAAAALLLL
-
- DDDD DDDDOOOOUUUUBBBBLLLLEEEE PPPPRRRREEEECCCCIIIISSSSIIIIOOOONNNN
-
- CCCC CCCCOOOOMMMMPPPPLLLLEEEEXXXX
-
- ZZZZ DDDDOOOOUUUUBBBBLLLLEEEE CCCCOOOOMMMMPPPPLLLLEEEEXXXX
-
- The next two letters, _Y_Y, indicate the type of matrix (or the
- most-significant matrix). Most of these two-letter codes apply to both
- real and complex matrices, but a few apply specifically to only one or
- the other. The matrix types are as follows:
-
- BBBBDDDD BiDiagonal
-
-
-
-
-
- PPPPaaaaggggeeee 4444
-
-
-
-
-
-
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS)))) IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
-
-
-
- DDDDIIII Diagonal
-
- GGGGBBBB General Band
-
- GGGGEEEE GEneral (nonsymmetric)
-
- GGGGGGGG General matrices, Generalized problem
-
- GGGGTTTT General Tridiagonal
-
- HHHHBBBB Hermitian Band (complex only)
-
- HHHHEEEE HErmitian (possibly indefinite) (complex only)
-
- HHHHGGGG Hessenberg matrix, Generalized problem
-
- HHHHPPPP Hermitian Packed (possibly indefinite) (complex only)
-
- HHHHSSSS upper HeSsenberg
-
- OOOOPPPP Orthogonal Packed (real only)
-
- OOOORRRR ORthogonal (real only)
-
- PPPPBBBB Positive definite Band (symmetric or Hermitian)
-
- PPPPOOOO POsitive definite (symmetric or Hermitian)
-
- PPPPPPPP Positive definite Packed (symmetric or Hermitian)
-
- PPPPTTTT Positive definite Tridiagonal (symmetric or Hermitian)
-
- SSSSBBBB Symmetric Band (real only)
-
- SSSSPPPP Symmetric Packed (possibly indefinite)
-
- SSSSTTTT Symmetric Tridiagonal
-
- SSSSYYYY SYmmetric (possibly indefinite)
-
- TTTTBBBB Triangular Band
-
- TTTTGGGG Triangular matrices, Generalized problem
-
- TTTTPPPP Triangular Packed
-
- TTTTRRRR TRiangular
-
- TTTTZZZZ TrapeZoidal
-
-
-
-
-
-
- PPPPaaaaggggeeee 5555
-
-
-
-
-
-
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS)))) IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
-
-
-
- UUUUNNNN UNitary (complex only)
-
- UUUUPPPP Unitary Packed (complex only)
-
- The last two or three letters, _Z_Z or _Z_Z_Z, indicate the computation
- performed. For example, SSSSGGGGEEEETTTTRRRRFFFF performs a TTTTRRRRiangular FFFFactorization of a
- SSSSingle-precision (real) GGGGEEEEneral matrix; CCCCGGGGEEEETTTTRRRRFFFF performs the factorization
- of a CCCComplex GGGGEEEEneral matrix.
-
- LLLLiiiissssttttssss ooooffff AAAAvvvvaaaaiiiillllaaaabbbblllleeee LLLLAAAAPPPPAAAACCCCKKKK RRRRoooouuuuttttiiiinnnneeeessss
- The following pages contain lists of driver and computational routines
- from LAPACK available in the SCSL Scientific Library. For details about
- the argument lists and usage of these routines, see the individual online
- man pages or the _L_A_P_A_C_K _U_s_e_r'_s _G_u_i_d_e.
-
- These routines are listed in alphabetical order.
-
- * CCCCHHHHEEEESSSSVVVV, ZZZZHHHHEEEESSSSVVVV: Solves a complex Hermitian indefinite system of linear
- equations _A_X = _B.
-
- * CCCCHHHHEEEESSSSVVVVXXXX, ZZZZHHHHEEEESSSSVVVVXXXX: Solves a complex Hermitian indefinite system of
- linear equations _A_X = _B and provides an estimate of the condition
- number and error bounds on the solution.
-
- * CCCCHHHHPPPPSSSSVVVV, ZZZZHHHHPPPPSSSSVVVV: Solves a complex Hermitian indefinite system of linear
- equations _A_X = _B; _A is held in packed storage.
-
- * CCCCHHHHPPPPSSSSVVVVXXXX, ZZZZHHHHPPPPSSSSVVVVXXXX: Solves a complex Hermitian indefinite system of
- linear equations _A_X = _B (_A is held in packed storage) and provides an
- estimate of the condition number and error bounds on the solution.
-
- * SSSSGGGGBBBBSSSSVVVV, DDDDGGGGBBBBSSSSVVVV, CCCCGGGGBBBBSSSSVVVV, ZZZZGGGGBBBBSSSSVVVV: Solves a general banded system of linear
- equations _A_X = _B.
-
- * SSSSGGGGBBBBSSSSVVVVXXXX, DDDDGGGGBBBBSSSSVVVVXXXX, CCCCGGGGBBBBSSSSVVVVXXXX, ZZZZGGGGBBBBSSSSVVVVXXXX: Solves any of the following general
- banded systems of linear equations and provides an estimate of the
- condition number and error bounds on the solution.
-
- A X = B
-
- T
- A = B
-
- H
- A X = B
-
-
- * SSSSGGGGEEEEEEEESSSS, DDDDGGGGEEEEEEEESSSS, CCCCGGGGEEEEEEEESSSS, ZZZZGGGGEEEEEEEESSSS: Computes eigenvalues, Schur form, and
- Schur vectors of a general matrix.
-
-
-
-
-
-
- PPPPaaaaggggeeee 6666
-
-
-
-
-
-
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS)))) IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
-
-
-
- * SSSSGGGGEEEEEEEESSSSXXXX, DDDDGGGGEEEEEEEESSSSXXXX, CCCCGGGGEEEEEEEESSSSXXXX, ZZZZGGGGEEEEEEEESSSSXXXX: Computes eigenvalues, Schur form,
- Schur vectors, and condition numbers of a general matrix.
-
- * SSSSGGGGEEEEEEEEVVVV, DDDDGGGGEEEEEEEEVVVV, CCCCGGGGEEEEEEEEVVVV, ZZZZGGGGEEEEEEEEVVVV: Computes eigenvalues and eigenvectors of
- a general matrix.
-
- * SSSSGGGGEEEEEEEEVVVVXXXX, DDDDGGGGEEEEEEEEVVVVXXXX, CCCCGGGGEEEEEEEEVVVVXXXX, ZZZZGGGGEEEEEEEEVVVVXXXX: Compute eigenvalues, eigenvectors,
- and condition numbers of a general matrix.
-
- * SSSSGGGGEEEEGGGGSSSS, DDDDGGGGEEEEGGGGSSSS, CCCCGGGGEEEEGGGGSSSS, ZZZZGGGGEEEEGGGGSSSS: Computes the generalized Schur
- factorization of a matrix pair (A,B).
-
- * SSSSGGGGEEEEGGGGVVVV, DDDDGGGGEEEEGGGGVVVV, CCCCGGGGEEEEGGGGVVVV, ZZZZGGGGEEEEGGGGVVVV: Computes the eigenvalues and
- eigenvectors of a matrix pair (A,B).
-
- * SSSSGGGGEEEELLLLSSSS, DDDDGGGGEEEELLLLSSSS, CCCCGGGGEEEELLLLSSSS, ZZZZGGGGEEEELLLLSSSS: Finds a least squares or minimum norm
- solution of an overdetermined or underdetermined linear. system.
-
- * SSSSGGGGEEEELLLLSSSSDDDD, DDDDGGGGEEEELLLLSSSSDDDD, CCCCGGGGEEEELLLLSSSSDDDD, ZZZZGGGGEEEELLLLSSSSDDDD: Solves linear least squares problem
- using divide-and-conquer.
-
- * SSSSGGGGEEEELLLLSSSSSSSS, DDDDGGGGEEEELLLLSSSSSSSS, CCCCGGGGEEEELLLLSSSSSSSS, ZZZZGGGGEEEELLLLSSSSSSSS: Solves linear least squares problem
- using SVD.
-
- * SSSSGGGGEEEELLLLSSSSYYYY, DDDDGGGGEEEELLLLSSSSYYYY, CCCCGGGGEEEELLLLSSSSYYYY, ZZZZGGGGEEEELLLLSSSSYYYY: Computes a minimum norm solution of
- a linear least squares problem using a complete orthogonal
- factorization.
-
- * SSSSGGGGEEEESSSSDDDDDDDD, DDDDGGGGEEEESSSSDDDDDDDD, CCCCGGGGEEEESSSSDDDDDDDD, ZZZZGGGGEEEESSSSDDDDDDDD: Computes the singular value
- decomposition (SVD) of a general matrix using divide-and-conquer.
-
- * SSSSGGGGEEEESSSSVVVV, DDDDGGGGEEEESSSSVVVV, CCCCGGGGEEEESSSSVVVV, ZZZZGGGGEEEESSSSVVVV: Solves a general system of linear
- equations _A_X = _B.
-
- * SSSSGGGGEEEESSSSVVVVDDDD, DDDDGGGGEEEESSSSVVVVDDDD, CCCCGGGGEEEESSSSVVVVDDDD, ZZZZGGGGEEEESSSSVVVVDDDD: Computes the singular value
- decomposition (SVD) of a general matrix.
-
- * SSSSGGGGEEEESSSSVVVVXXXX, DDDDGGGGEEEESSSSVVVVXXXX, CCCCGGGGEEEESSSSVVVVXXXX, ZZZZGGGGEEEESSSSVVVVXXXX: Solves any of the following general
- systems of linear equations and provides an estimate of the condition
- number and error bounds on the solution.
-
- A X = B
-
- T
- A X = B
-
- H
- A X = B
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 7777
-
-
-
-
-
-
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS)))) IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
-
-
-
- * SSSSGGGGGGGGEEEESSSS, DDDDGGGGGGGGEEEESSSS, CCCCGGGGGGGGEEEESSSS, ZZZZGGGGGGGGEEEESSSS: Computes the generalized Schur
- factorization of a matrix pair (A,B).
-
- * SSSSGGGGGGGGEEEESSSSXXXX, DDDDGGGGGGGGEEEESSSSXXXX, CCCCGGGGGGGGEEEESSSSXXXX, ZZZZGGGGGGGGEEEESSSSXXXX: Computes the generalized Schur
- factorization of a matrix pair (A,B), expert driver.
-
- * SSSSGGGGGGGGEEEEVVVV, DDDDGGGGGGGGEEEEVVVV, CCCCGGGGGGGGEEEEVVVV, ZZZZGGGGGGGGEEEEVVVV: Computes the eigenvalues and eigenvectors
- of a matrix pair (A,B).
-
- * SSSSGGGGGGGGEEEEVVVVXXXX, DDDDGGGGGGGGEEEEVVVVXXXX, CCCCGGGGGGGGEEEEVVVVXXXX, ZZZZGGGGGGGGEEEEVVVVXXXX: Computes the eigenvalues and
- eigenvectors of a matrix pair (A,B), expert driver.
-
- * SSSSGGGGGGGGLLLLSSSSEEEE, DDDDGGGGGGGGLLLLSSSSEEEE, CCCCGGGGGGGGLLLLSSSSEEEE, ZZZZGGGGGGGGLLLLSSSSEEEE: Solves a linear equality-constrained
- least squares problem (LSE) using GRQ.
-
- * SSSSGGGGGGGGGGGGLLLLMMMM, DDDDGGGGGGGGGGGGLLLLMMMM, CCCCGGGGGGGGGGGGLLLLMMMM, ZZZZGGGGGGGGGGGGLLLLMMMM: Solves a general (Gauss-Markov)
- linear model problem (GLM) using GQR.
-
- * SSSSGGGGGGGGSSSSVVVVDDDD, DDDDGGGGGGGGSSSSVVVVDDDD, CCCCGGGGGGGGSSSSVVVVDDDD, ZZZZGGGGGGGGSSSSVVVVDDDD: Computes the generalized singular
- value decomposition (SVD) of a matrix pair (A,B).
-
- * SSSSGGGGTTTTSSSSVVVV, DDDDGGGGTTTTSSSSVVVV, CCCCGGGGTTTTSSSSVVVV, ZZZZGGGGTTTTSSSSVVVV: Solves a general tridiagonal system of
- linear equations _A_X = _B.
-
- * SSSSGGGGTTTTSSSSVVVVXXXX, DDDDGGGGTTTTSSSSVVVVXXXX, CCCCGGGGTTTTSSSSVVVVXXXX, ZZZZGGGGTTTTSSSSVVVVXXXX: Solves any of the following general
- tridiagonal systems of linear equations and provides an estimate of
- the condition number and error bounds on the solution.
-
- A X = B
-
- T
- A = B
-
- H
- A X = B
-
-
- * SSSSPPPPBBBBSSSSVVVV, DDDDPPPPBBBBSSSSVVVV, CCCCPPPPBBBBSSSSVVVV, ZZZZPPPPBBBBSSSSVVVV: Solves a symmetric or Hermitian positive
- definite banded system of linear equations _A_X = _B.
-
- * SSSSPPPPBBBBSSSSVVVVXXXX, DDDDPPPPBBBBSSSSVVVVXXXX, CCCCPPPPBBBBSSSSVVVVXXXX, ZZZZPPPPBBBBSSSSVVVVXXXX: Solves a symmetric or Hermitian
- positive definite banded system of linear equations _A_X = _B and
- provides an estimate of the condition number and error bounds on the
- solution.
-
- * SSSSPPPPOOOOSSSSVVVV, DDDDPPPPOOOOSSSSVVVV, CCCCPPPPOOOOSSSSVVVV, ZZZZPPPPOOOOSSSSVVVV: Solves a symmetric or Hermitian positive
- definite system of linear equations _A_X = _B.
-
- * SSSSPPPPOOOOSSSSVVVVXXXX, DDDDPPPPOOOOSSSSVVVVXXXX, CCCCPPPPOOOOSSSSVVVVXXXX, ZZZZPPPPOOOOSSSSVVVVXXXX: Solves a symmetric or Hermitian
- positive definite system of linear equations _A_X = _B and provides an
- estimate of the condition number and error bounds on the solution.
-
-
-
-
- PPPPaaaaggggeeee 8888
-
-
-
-
-
-
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS)))) IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
-
-
-
- * SSSSPPPPPPPPSSSSVVVV, DDDDPPPPPPPPSSSSVVVV, CCCCPPPPPPPPSSSSVVVV, ZZZZPPPPPPPPSSSSVVVV: Solves a symmetric or Hermitian positive
- definite system of linear equations _A_X = _B; _A is held in packed
- storage.
-
- * SSSSPPPPPPPPSSSSVVVVXXXX, DDDDPPPPPPPPSSSSVVVVXXXX, CCCCPPPPPPPPSSSSVVVVXXXX, ZZZZPPPPPPPPSSSSVVVVXXXX: Solves a symmetric or Hermitian
- positive definite system of linear equations _A_X = _B (_A is held in
- packed storage) and provides an estimate of the condition number and
- error bounds on the solution.
-
- * SSSSPPPPTTTTSSSSVVVV, DDDDPPPPTTTTSSSSVVVV, CCCCPPPPTTTTSSSSVVVV, ZZZZPPPPTTTTSSSSVVVV: Solves a symmetric or Hermitian positive
- definite tridiagonal system of linear equations _A_X = _B.
-
- * SSSSPPPPTTTTSSSSVVVVXXXX, DDDDPPPPTTTTSSSSVVVVXXXX, CCCCPPPPTTTTSSSSVVVVXXXX, ZZZZPPPPTTTTSSSSVVVVXXXX: Solves a symmetric or Hermitian
- positive definite tridiagonal system of linear equations _A_X = _B and
- provides an estimate of the condition number and error bounds on the
- solution.
-
- * SSSSSSSSBBBBEEEEVVVV, DDDDSSSSBBBBEEEEVVVV, CCCCHHHHBBBBEEEEVVVV, ZZZZHHHHBBBBEEEEVVVV: Compute all eigenvalues and eigenvectors
- of a symmetric or Hermitian band matrix.
-
- * SSSSSSSSBBBBEEEEVVVVDDDD, DDDDSSSSBBBBEEEEVVVVDDDD, CCCCHHHHBBBBEEEEVVVVDDDD, ZZZZHHHHBBBBEEEEVVVVDDDD: Compute all eigenvalues and
- eigenvectors of a symmetric or Hermitian band matrix using divide-
- and-conquer.
-
- * SSSSSSSSBBBBEEEEVVVVXXXX, DDDDSSSSBBBBEEEEVVVVXXXX, CCCCHHHHBBBBEEEEVVVVXXXX, ZZZZHHHHBBBBEEEEVVVVXXXX: Compute selected eigenvalues and
- eigenvectors of a symmetric or Hermitian band matrix.
-
- * SSSSSSSSBBBBGGGGVVVV, DDDDSSSSBBBBGGGGVVVV, CCCCHHHHBBBBGGGGVVVV, ZZZZHHHHBBBBGGGGVVVV: Computes all eigenvalues and
- eigenvectors of a generalized symmetric-definite or Hermitian-
- definite banded eigenproblem.
-
- * SSSSSSSSBBBBGGGGVVVVDDDD, DDDDSSSSBBBBGGGGVVVVDDDD, CCCCHHHHBBBBGGGGVVVVDDDD, ZZZZHHHHBBBBGGGGVVVVDDDD: Computes all eigenvalues and
- eigenvectors of a generalized symmetric-definite or Hermitian-
- definite banded eigenproblem using divide-and-conquer.
-
- * SSSSSSSSBBBBGGGGVVVVXXXX, DDDDSSSSBBBBGGGGVVVVXXXX, CCCCHHHHBBBBGGGGVVVVXXXX, ZZZZHHHHBBBBGGGGVVVVXXXX: Computes all eigenvalues and
- eigenvectors of a generalized symmetric-definite or Hermitian-
- definite banded eigenproblem expert driver.
-
- * SSSSSSSSPPPPEEEEVVVV, DDDDSSSSPPPPEEEEVVVV, CCCCHHHHPPPPEEEEVVVV, ZZZZHHHHPPPPEEEEVVVV: Computes all eigenvalues and
- eigenvectors of a symmetric or Hermitian packed matrix.
-
- * SSSSSSSSPPPPEEEEVVVVDDDD, DDDDSSSSPPPPEEEEVVVVDDDD, CCCCHHHHPPPPEEEEVVVVDDDD, ZZZZHHHHPPPPEEEEVVVVDDDD: Computes all eigenvalues and
- eigenvectors of a symmetric or Hermitian packed matrix using divide-
- and-conquer.
-
- * SSSSSSSSPPPPEEEEVVVVXXXX, DDDDSSSSPPPPEEEEVVVVXXXX, CCCCHHHHPPPPEEEEVVVVXXXX, ZZZZHHHHPPPPEEEEVVVVXXXX: Computes selected eigenvalues and
- eigenvectors of a symmetric or Hermitian packed matrix.
-
- * SSSSSSSSPPPPGGGGVVVV, DDDDSSSSPPPPGGGGVVVV, CCCCHHHHPPPPGGGGVVVV, ZZZZHHHHPPPPGGGGVVVV: Computes all eigenvalues and
- eigenvectors of a generalized symmetric-definite or
- Hermitian-definite packed eigenproblem.
-
-
-
- PPPPaaaaggggeeee 9999
-
-
-
-
-
-
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS)))) IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
-
-
-
- * SSSSSSSSPPPPSSSSVVVV, DDDDSSSSPPPPSSSSVVVV, CCCCSSSSPPPPSSSSVVVV, ZZZZSSSSPPPPSSSSVVVV: Solves a real or complex symmetric
- indefinite system of linear equations _A_X = _B; _A is held in packed
- storage.
-
- * SSSSSSSSPPPPSSSSVVVVXXXX, DDDDSSSSPPPPSSSSVVVVXXXX, CCCCSSSSPPPPSSSSVVVVXXXX, ZZZZSSSSPPPPSSSSVVVVXXXX: Solves a real or complex symmetric
- indefinite system of linear equations _A_X = _B (_A is held in packed
- storage) and provides an estimate of the condition number and error
- bounds on the solution.
-
- * SSSSSSSSTTTTEEEEVVVV, DDDDSSSSTTTTEEEEVVVV: Compute all eigenvalues and eigenvectors of a real
- symmetric tridiagonal matrix.
-
- * SSSSSSSSTTTTEEEEVVVVDDDD, DDDDSSSSTTTTEEEEVVVVDDDD: Compute all eigenvalues and eigenvectors of a real
- symmetric tridiagonal matrix using divide-and-conquer.
-
- * SSSSSSSSTTTTEEEEVVVVRRRR, DDDDSSSSTTTTEEEEVVVVRRRR: Compute all eigenvalues and eigenvectors of a real
- symmetric tridiagonal matrix using RRR (relatively robust
- representation).
-
- * SSSSSSSSTTTTEEEEVVVVXXXX, DDDDSSSSTTTTEEEEVVVVXXXX: Computes selected eigenvalues and eigenvectors of a
- real symmetric tridiagonal matrix.
-
- * SSSSSSSSYYYYEEEEVVVV, DDDDSSSSYYYYEEEEVVVV, CCCCHHHHEEEEEEEEVVVV, ZZZZHHHHEEEEEEEEVVVV: Computes all eigenvalues and
- eigenvectors of a symmetric or Hermitian matrix.
-
- * SSSSSSSSYYYYEEEEVVVVDDDD, DDDDSSSSYYYYEEEEVVVVDDDD, CCCCHHHHEEEEEEEEVVVVDDDD, ZZZZHHHHEEEEEEEEVVVVDDDD: Computes all eigenvalues and
- eigenvectors of a symmetric or Hermitian matrix using divide-and-
- conquer.
-
- * SSSSSSSSYYYYEEEEVVVVRRRR, DDDDSSSSYYYYEEEEVVVVRRRR, CCCCHHHHEEEEEEEEVVVVRRRR, ZZZZHHHHEEEEEEEEVVVVRRRR: Computes all eigenvalues and
- eigenvectors of a symmetric or Hermitian matrix using RRR (relatively
- robust representation).
-
- * SSSSSSSSYYYYEEEEVVVVXXXX, DDDDSSSSYYYYEEEEVVVVXXXX, CCCCHHHHEEEEEEEEVVVVXXXX, ZZZZHHHHEEEEEEEEVVVVXXXX: Computes selected eigenvalues and
- eigenvectors of a symmetric or Hermitian matrix.
-
- * SSSSSSSSYYYYGGGGVVVV, DDDDSSSSYYYYGGGGVVVV, CCCCHHHHEEEEGGGGVVVV, ZZZZHHHHEEEEGGGGVVVV: Computes all eigenvalues and
- eigenvectors of a generalized symmetric-definite or
- Hermitian-definite eigenproblem.
-
- * SSSSSSSSYYYYGGGGVVVVDDDD, DDDDSSSSYYYYGGGGVVVVDDDD, CCCCHHHHEEEEGGGGVVVVDDDD, ZZZZHHHHEEEEGGGGVVVVDDDD: Computes all eigenvalues and
- eigenvectors of a generalized symmetric-definite or Hermitian-
- definite eigenproblem using divide-and-conquer.
-
- * SSSSSSSSYYYYGGGGVVVVXXXX, DDDDSSSSYYYYGGGGVVVVXXXX, CCCCHHHHEEEEGGGGVVVVXXXX, ZZZZHHHHEEEEGGGGVVVVXXXX: Computes all eigenvalues and
- eigenvectors of a generalized symmetric-definite or Hermitian-
- definite eigenproblem expert driver.
-
- * SSSSSSSSYYYYSSSSVVVV, DDDDSSSSYYYYSSSSVVVV, CCCCSSSSYYYYSSSSVVVV, ZZZZSSSSYYYYSSSSVVVV: Solves a real or complex symmetric
- indefinite system of linear equations _A_X = _B.
-
-
-
-
-
- PPPPaaaaggggeeee 11110000
-
-
-
-
-
-
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS)))) IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
-
-
-
- * SSSSSSSSYYYYSSSSVVVVXXXX, DDDDSSSSYYYYSSSSVVVVXXXX, CCCCSSSSYYYYSSSSVVVVXXXX, ZZZZSSSSYYYYSSSSVVVVXXXX: Solves a real or complex symmetric
- indefinite system of linear equations _A_X = _B and provides an estimate
- of the condition number and error bounds on the solution.
-
- These computational routines are listed in alphabetical order, with real
- matrix routines and complex matrix routines grouped together as
- appropriate.
-
- * CCCCHHHHEEEECCCCOOOONNNN, ZZZZHHHHEEEECCCCOOOONNNN: Estimates the reciprocal of the condition number of
- a complex Hermitian indefinite matrix, using the factorization
- computed by CCCCHHHHEEEETTTTRRRRFFFF.
-
- * CCCCHHHHEEEERRRRFFFFSSSS, ZZZZHHHHEEEERRRRFFFFSSSS: Improves the computed solution to a complex
- Hermitian indefinite system of linear equations _A_X = _B and provides
- error bounds for the solution.
-
- * CCCCHHHHEEEETTTTRRRRFFFF, ZZZZHHHHEEEETTTTRRRRFFFF: Computes the factorization of a complex Hermitian
- indefinite matrix, using the diagonal pivoting method.
-
- * CCCCHHHHEEEETTTTRRRRIIII, ZZZZHHHHEEEETTTTRRRRIIII: Computes the inverse of a complex Hermitian
- indefinite matrix, using the factorization computed by CCCCHHHHEEEETTTTRRRRFFFF.
-
- * CCCCHHHHEEEETTTTRRRRSSSS, ZZZZHHHHEEEETTTTRRRRSSSS: Solves a complex Hermitian indefinite system of
- linear equations _A_X = _B, using the factorization computed by CCCCHHHHEEEETTTTRRRRFFFF.
-
- * CCCCHHHHPPPPCCCCOOOONNNN, ZZZZHHHHPPPPCCCCOOOONNNN: Estimates the reciprocal of the condition number of
- a complex Hermitian indefinite matrix in packed storage, using the
- factorization computed by CCCCHHHHPPPPTTTTRRRRFFFF.
-
- * CCCCHHHHPPPPRRRRFFFFSSSS, ZZZZHHHHPPPPRRRRFFFFSSSS: Improves the computed solution to a complex
- Hermitian indefinite system of linear equations _A_X = _B (_A is held in
- packed storage) and provides error bounds for the solution.
-
- * CCCCHHHHPPPPTTTTRRRRFFFF, ZZZZHHHHPPPPTTTTRRRRFFFF: Computes the factorization of a complex Hermitian
- indefinite matrix in packed storage, using the diagonal pivoting
- method.
-
- * CCCCHHHHPPPPTTTTRRRRIIII, ZZZZHHHHPPPPTTTTRRRRIIII: Computes the inverse of a complex Hermitian
- indefinite matrix in packed storage, using the factorization computed
- by CCCCHHHHPPPPTTTTRRRRFFFF.
-
- * CCCCHHHHPPPPTTTTRRRRSSSS, ZZZZHHHHPPPPTTTTRRRRSSSS: Solves a complex Hermitian indefinite system of
- linear equations _A_X = _B (_A is held in packed storage) using the
- factorization computed by CCCCHHHHPPPPTTTTRRRRFFFF.
-
- * IIIILLLLAAAAEEEENNNNVVVV: Determines tuning parameters (such as the block size).
-
- * SSSSBBBBDDDDSSSSDDDDCCCC, DDDDBBBBDDDDSSSSDDDDCCCC, CCCCBBBBDDDDSSSSDDDDCCCC, ZZZZBBBBDDDDSSSSDDDDCCCC: Compute the singular value
- decomposition of a general matrix reduced to bidiagonal form using
- divide-and-conquer.
-
-
-
-
-
- PPPPaaaaggggeeee 11111111
-
-
-
-
-
-
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS)))) IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
-
-
-
- * SSSSBBBBDDDDSSSSQQQQRRRR, DDDDBBBBDDDDSSSSQQQQRRRR, CCCCBBBBDDDDSSSSQQQQRRRR, ZZZZBBBBDDDDSSSSQQQQRRRR: Compute the singular value
- decomposition of a general matrix reduced to bidiagonal form
-
- * SSSSDDDDIIIISSSSNNNNAAAA, DDDDDDDDIIIISSSSNNNNAAAA, CCCCDDDDIIIISSSSNNNNAAAA, ZZZZDDDDIIIISSSSNNNNAAAA: Computes the reciprocal condition
- numbers for the eigenvectors of a real symmetric or complex Hermitian
- matrix or for the left or right singular vectors of a general matrix.
-
- * SSSSGGGGBBBBBBBBRRRRDDDD, DDDDGGGGBBBBBBBBRRRRDDDD, CCCCGGGGBBBBBBBBRRRRDDDD, ZZZZGGGGBBBBBBBBRRRRDDDD: Reduces a general band matrix to real
- upper bidiagonal form by an orthogonal/unitary transformation.
-
- * SSSSGGGGBBBBCCCCOOOONNNN, DDDDGGGGBBBBCCCCOOOONNNN, CCCCGGGGBBBBCCCCOOOONNNN, ZZZZGGGGBBBBCCCCOOOONNNN: Estimates the reciprocal of the
- condition number of a general band matrix, in either the 1-norm or
- the infinity-norm, using the _L_U factorization computed by SSSSGGGGBBBBTTTTRRRRFFFF or
- CCCCGGGGBBBBTTTTRRRRFFFF.
-
- * SSSSGGGGBBBBEEEEQQQQUUUU, DDDDGGGGBBBBEEEEQQQQUUUU, CCCCGGGGBBBBEEEEQQQQUUUU, ZZZZGGGGBBBBEEEEQQQQUUUU: Computes row and column scalings to
- equilibrate a general band matrix and reduce its condition number.
- Does not multiprocess or call any multiprocessing routines.
-
- * SSSSGGGGBBBBRRRRFFFFSSSS, DDDDGGGGBBBBRRRRFFFFSSSS, CCCCGGGGBBBBRRRRFFFFSSSS, ZZZZGGGGBBBBRRRRFFFFSSSS: Improves the computed solution to
- any of the following general banded systems of linear equations and
- provides error bounds for the solution.
-
- A X = B
-
- T
- A X = B
-
- H
- A X = B
-
-
- * SSSSGGGGBBBBTTTTRRRRFFFF, DDDDGGGGBBBBTTTTRRRRFFFF, CCCCGGGGBBBBTTTTRRRRFFFF, ZZZZGGGGBBBBTTTTRRRRFFFF: Computes an _L_U factorization of a
- general band matrix, using partial pivoting with row interchanges.
-
- * SSSSGGGGBBBBTTTTRRRRSSSS, DDDDGGGGBBBBTTTTRRRRSSSS, CCCCGGGGBBBBTTTTRRRRSSSS, ZZZZGGGGBBBBTTTTRRRRSSSS: Solves any of the following general
- banded systems of linear equations using the _L_U factorization
- computed by SSSSGGGGBBBBTTTTRRRRFFFF or CCCCGGGGBBBBTTTTRRRRFFFF.
-
- A X = B
-
- T
- A X = B
-
- H
- A X = B
-
-
- * SSSSGGGGEEEEBBBBAAAAKKKK, DDDDGGGGEEEEBBBBAAAAKKKK, CCCCGGGGEEEEBBBBAAAAKKKK, ZZZZGGGGEEEEBBBBAAAAKKKK: Back transform the eigenvectors of a
- matrix transformed by SSSSGGGGEEEEBBBBAAAALLLL/CCCCGGGGEEEEBBBBAAAALLLL.
-
-
-
-
-
- PPPPaaaaggggeeee 11112222
-
-
-
-
-
-
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS)))) IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
-
-
-
- * SSSSGGGGEEEEBBBBAAAALLLL, DDDDGGGGEEEEBBBBAAAALLLL, CCCCGGGGEEEEBBBBAAAALLLL, ZZZZGGGGEEEEBBBBAAAALLLL: Balances a general matrix _A.
-
- * SSSSGGGGEEEEBBBBRRRRDDDD, DDDDGGGGEEEEBBBBRRRRDDDD, CCCCGGGGEEEEBBBBRRRRDDDD, ZZZZGGGGEEEEBBBBRRRRDDDD: Reduces a general matrix to upper or
- lower bidiagonal form by an orthogonal/unitary transformation.
-
- * SSSSGGGGEEEECCCCOOOONNNN, DDDDGGGGEEEECCCCOOOONNNN, CCCCGGGGEEEECCCCOOOONNNN, ZZZZGGGGEEEECCCCOOOONNNN: Estimates the reciprocal of the
- condition number of a general matrix, in either the 1-norm or the
- infinity-norm, using the _L_U factorization computed by SSSSGGGGEEEETTTTRRRRFFFF or
- CCCCGGGGEEEETTTTRRRRFFFF.
-
- * SSSSGGGGEEEEEEEEQQQQUUUU, DDDDGGGGEEEEEEEEQQQQUUUU, CCCCGGGGEEEEEEEEQQQQUUUU, ZZZZGGGGEEEEEEEEQQQQUUUU: Computes row and column scalings to
- equilibrate a general rectangular matrix and to reduce its condition
- number.
-
- * SSSSGGGGEEEEHHHHRRRRDDDD, DDDDGGGGEEEEHHHHRRRRDDDD, CCCCGGGGEEEEHHHHRRRRDDDD, ZZZZGGGGEEEEHHHHRRRRDDDD: Reduces a general matrix to upper
- Hessenberg form by an orthogonal/unitary transformation.
-
- * SSSSGGGGEEEELLLLQQQQFFFF, DDDDGGGGEEEELLLLQQQQFFFF, CCCCGGGGEEEELLLLQQQQFFFF, ZZZZGGGGEEEELLLLQQQQFFFF: Computes an _L_Q factorization of a
- general rectangular matrix.
-
- * SSSSGGGGEEEEQQQQLLLLFFFF, DDDDGGGGEEEEQQQQLLLLFFFF, CCCCGGGGEEEEQQQQLLLLFFFF, ZZZZGGGGEEEEQQQQLLLLFFFF: Computes a _Q_L factorization of a
- general rectangular matrix.
-
- * SSSSGGGGEEEEQQQQPPPP3333, DDDDGGGGEEEEQQQQPPPP3333, CCCCGGGGEEEEQQQQPPPP3333, ZZZZGGGGEEEEQQQQPPPP3333: Computes a QR factorization with
- column pivoting of a general rectangular matrix using level-3 BLAS.
-
- * SSSSGGGGEEEEQQQQPPPPFFFF, DDDDGGGGEEEEQQQQPPPPFFFF, CCCCGGGGEEEEQQQQPPPPFFFF, ZZZZGGGGEEEEQQQQPPPPFFFF: Computes a QQQQRRRR factorization with
- column pivoting of a general rectangular matrix.
-
- * SSSSGGGGEEEEQQQQRRRRFFFF, DDDDGGGGEEEEQQQQRRRRFFFF, CCCCGGGGEEEEQQQQRRRRFFFF, ZZZZGGGGEEEEQQQQRRRRFFFF: Computes a _Q_R factorization of a
- general rectangular matrix.
-
- * SSSSGGGGEEEERRRRFFFFSSSS, DDDDGGGGEEEERRRRFFFFSSSS, CCCCGGGGEEEERRRRFFFFSSSS, ZZZZGGGGEEEERRRRFFFFSSSS: Improves the computed solution to
- any of the following general systems of linear equations and provides
- error bounds for the solution.
-
- A X = B
-
- T
- A X = B
-
- H
- A X = B
-
-
- * SSSSGGGGEEEERRRRQQQQFFFF, DDDDGGGGEEEERRRRQQQQFFFF, CCCCGGGGEEEERRRRQQQQFFFF, ZZZZGGGGEEEERRRRQQQQFFFF: Computes an _R_Q factorization of a
- general rectangular matrix.
-
- * SSSSGGGGEEEETTTTRRRRFFFF, DDDDGGGGEEEETTTTRRRRFFFF, CCCCGGGGEEEETTTTRRRRFFFF, ZZZZGGGGEEEETTTTRRRRFFFF: Computes an _L_U factorization of a
- general matrix, using partial pivoting with row interchanges.
-
-
-
-
-
- PPPPaaaaggggeeee 11113333
-
-
-
-
-
-
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS)))) IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
-
-
-
- * SSSSGGGGEEEETTTTRRRRIIII, DDDDGGGGEEEETTTTRRRRIIII, CCCCGGGGEEEETTTTRRRRIIII, ZZZZGGGGEEEETTTTRRRRIIII: Computes the inverse of a general
- matrix, using the _L_U factorization computed by SSSSGGGGEEEETTTTRRRRFFFF or CCCCGGGGEEEETTTTRRRRFFFF.
-
- * SSSSGGGGEEEETTTTRRRRSSSS, DDDDGGGGEEEETTTTRRRRSSSS, CCCCGGGGEEEETTTTRRRRSSSS, ZZZZGGGGEEEETTTTRRRRSSSS: Solves any of the following general
- systems of linear equations using the _L_U factorization computed by
- SSSSGGGGEEEETTTTRRRRFFFF or CCCCGGGGEEEETTTTRRRRFFFF.
-
- A X = B
-
- T
- A X = B
-
- H
- A X = B
-
-
- * SSSSGGGGGGGGBBBBAAAAKKKK, DDDDGGGGGGGGBBBBAAAAKKKK, CCCCGGGGGGGGBBBBAAAAKKKK, ZZZZGGGGGGGGBBBBAAAAKKKK: Back transform the eigenvectors of a
- generalized eigenvalue problem transformed by SSSSGGGGGGGGBBBBAAAALLLL
-
- * SSSSGGGGGGGGBBBBAAAALLLL, DDDDGGGGGGGGBBBBAAAALLLL, CCCCGGGGGGGGBBBBAAAALLLL, ZZZZGGGGGGGGBBBBAAAALLLL: Balance a pair of general matrices
- (A,B)
-
- * SSSSGGGGGGGGHHHHRRRRDDDD, DDDDGGGGGGGGHHHHRRRRDDDD, CCCCGGGGGGGGHHHHRRRRDDDD, ZZZZGGGGGGGGHHHHRRRRDDDD: Reduce a pair of matrices (A,B) to
- generalized upper Hessenberg form
-
- * SSSSGGGGGGGGQQQQRRRRFFFF, DDDDGGGGGGGGQQQQRRRRFFFF, CCCCGGGGGGGGQQQQRRRRFFFF, ZZZZGGGGGGGGQQQQRRRRFFFF: Computes a generalized QR
- factorization of a pair of matrices (A,B).
-
- * SSSSGGGGGGGGRRRRQQQQFFFF, DDDDGGGGGGGGRRRRQQQQFFFF, CCCCGGGGGGGGRRRRQQQQFFFF, ZZZZGGGGGGGGRRRRQQQQFFFF: Computes a generalized RQ
- factorization of a pair of matrices (A,B).
-
- * SSSSGGGGGGGGSSSSVVVVPPPP, DDDDGGGGGGGGSSSSVVVVPPPP, CCCCGGGGGGGGSSSSVVVVPPPP, ZZZZGGGGGGGGSSSSVVVVPPPP: Computes orthogonal/unitary matrices
- U, V, and Q as the preprocessing step for computing the generalized
- singular value decomposition (GSVD).
-
- * SSSSGGGGTTTTCCCCOOOONNNN, DDDDGGGGTTTTCCCCOOOONNNN, CCCCGGGGTTTTCCCCOOOONNNN, ZZZZGGGGTTTTCCCCOOOONNNN: Estimates the reciprocal of the
- condition number of a general tridiagonal matrix, in either the 1-
- norm or the infinity-norm, using the _L_U factorization computed by
- SSSSGGGGTTTTTTTTRRRRFFFF or CCCCGGGGTTTTTTTTRRRRFFFF.
-
- * SSSSGGGGTTTTRRRRFFFFSSSS, DDDDGGGGTTTTRRRRFFFFSSSS, CCCCGGGGTTTTRRRRFFFFSSSS, ZZZZGGGGTTTTRRRRFFFFSSSS: Improves the computed solution to
- any of the following general tridiagonal systems of linear equations
- and provides error bounds for the solution.
-
- A X = B
-
- T
- A X = B
-
- H
- A X = B
-
-
-
-
- PPPPaaaaggggeeee 11114444
-
-
-
-
-
-
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS)))) IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
-
-
-
- * SSSSGGGGTTTTTTTTRRRRFFFF, DDDDGGGGTTTTTTTTRRRRFFFF, CCCCGGGGTTTTTTTTRRRRFFFF, ZZZZGGGGTTTTTTTTRRRRFFFF: Computes an _L_U factorization of a
- general tridiagonal matrix, using partial pivoting with row
- interchanges.
-
- * SSSSGGGGTTTTTTTTRRRRSSSS, DDDDGGGGTTTTTTTTRRRRSSSS, CCCCGGGGTTTTTTTTRRRRSSSS, ZZZZGGGGTTTTTTTTRRRRSSSS: Solves a general tridiagonal system
- of linear equations using the _L_U factorization computed by SSSSGGGGTTTTTTTTRRRRFFFF or
- CCCCGGGGTTTTTTTTRRRRFFFF.
-
- A X = B
-
- T
- A X = B
-
- H
- A X = B
-
-
- * SSSSHHHHGGGGEEEEQQQQZZZZ, DDDDHHHHGGGGEEEEQQQQZZZZ, CCCCHHHHGGGGEEEEQQQQZZZZ, ZZZZHHHHGGGGEEEEQQQQZZZZ: Compute the eigenvalues of a matrix
- pair (A,B) in generalized upper Hessenberg form using the QZ method
-
- * SSSSHHHHSSSSEEEEIIIINNNN, DDDDHHHHSSSSEEEEIIIINNNN, CCCCHHHHSSSSEEEEIIIINNNN, ZZZZHHHHSSSSEEEEIIIINNNN: Compute eigenvectors of a upper
- Hessenberg matrix by inverse iteration
-
- * SSSSHHHHSSSSEEEEQQQQRRRR, DDDDHHHHSSSSEEEEQQQQRRRR, CCCCHHHHSSSSEEEEQQQQRRRR, ZZZZHHHHSSSSEEEEQQQQRRRR: Compute eigenvalues, Schur form, and
- Schur vectors of a upper Hessenberg matrix
-
- * SSSSLLLLAAAAMMMMCCCCHHHH, DDDDLLLLAAAAMMMMCCCCHHHH: Computes machine-specific constants.
-
- * SSSSLLLLAAAARRRRFFFF, DDDDLLLLAAAARRRRFFFF, CCCCLLLLAAAARRRRFFFF, ZZZZLLLLAAAARRRRFFFF: Applies an elementary reflector.
-
- * SSSSLLLLAAAARRRRFFFFBBBB, DDDDLLLLAAAARRRRFFFFBBBB, CCCCLLLLAAAARRRRFFFFBBBB, ZZZZLLLLAAAARRRRFFFFBBBB: Applies a block reflector.
-
- * SSSSLLLLAAAARRRRFFFFGGGG, DDDDLLLLAAAARRRRFFFFGGGG, CCCCLLLLAAAARRRRFFFFGGGG, ZZZZLLLLAAAARRRRFFFFGGGG: Generates an elementary reflector.
-
- * SSSSLLLLAAAARRRRFFFFTTTT, DDDDLLLLAAAARRRRFFFFTTTT, CCCCLLLLAAAARRRRFFFFTTTT, ZZZZLLLLAAAARRRRFFFFTTTT: Forms the triangular factor of a
- block reflector.
-
- * SSSSLLLLAAAARRRRGGGGVVVV, DDDDLLLLAAAARRRRGGGGVVVV, CCCCLLLLAAAARRRRGGGGVVVV, ZZZZLLLLAAAARRRRGGGGVVVV: Generate a vector of real or complex
- plane rotations
-
- * SSSSLLLLAAAARRRRNNNNVVVV, DDDDLLLLAAAARRRRNNNNVVVV, CCCCLLLLAAAARRRRNNNNVVVV, ZZZZLLLLAAAARRRRNNNNVVVV: Generates a vector of random
- numbers.
-
- * SSSSLLLLAAAARRRRTTTTGGGG, DDDDLLLLAAAARRRRTTTTGGGG, CCCCLLLLAAAARRRRTTTTGGGG, ZZZZLLLLAAAARRRRTTTTGGGG: Generates a plane rotation.
-
- * SSSSLLLLAAAARRRRTTTTVVVV, DDDDLLLLAAAARRRRTTTTVVVV, CCCCLLLLAAAARRRRTTTTVVVV, ZZZZLLLLAAAARRRRTTTTVVVV: Apply a vector of real or complex
- plane rotations to two vectors
-
- * SSSSLLLLAAAASSSSRRRR, DDDDLLLLAAAASSSSRRRR, CCCCLLLLAAAASSSSRRRR, ZZZZLLLLAAAASSSSRRRR: Apply a sequence of real plane rotations
- to a matrix
-
-
-
-
-
- PPPPaaaaggggeeee 11115555
-
-
-
-
-
-
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS)))) IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
-
-
-
- * SSSSOOOOPPPPGGGGTTTTRRRR, DDDDOOOOPPPPGGGGTTTTRRRR, CCCCUUUUPPPPGGGGTTTTRRRR, ZZZZUUUUPPPPGGGGTTTTRRRR: Generates the orthogonal/unitary
- matrix _Q from SSSSSSSSPPPPTTTTRRRRDDDD/CCCCHHHHPPPPTTTTRRRRDDDD.
-
- * SSSSOOOOPPPPMMMMTTTTRRRR, DDDDOOOOPPPPMMMMTTTTRRRR, CCCCUUUUPPPPMMMMTTTTRRRR, ZZZZUUUUPPPPMMMMTTTTRRRR: Multiplies by the orthogonal/unitary
- matrix _Q from SSSSSSSSPPPPTTTTRRRRDDDD/CCCCHHHHPPPPTTTTRRRRDDDD.
-
- * SSSSOOOORRRRGGGGBBBBRRRR, DDDDOOOORRRRGGGGBBBBRRRR, CCCCUUUUNNNNGGGGBBBBRRRR, ZZZZUUUUNNNNGGGGBBBBRRRR: Generates one of the
- orghogonal/unitary matrices:
-
- H
- Q or P
-
-
- from SSSSGGGGEEEEBBBBRRRRDDDD/CCCCGGGGEEEEBBBBRRRRDDDD.
-
- * SSSSOOOORRRRGGGGHHHHRRRR, DDDDOOOORRRRGGGGHHHHRRRR, CCCCUUUUNNNNGGGGHHHHRRRR, ZZZZUUUUNNNNGGGGHHHHRRRR: Generates the orthogonal/unitary
- matrix _Q from SSSSGGGGEEEEHHHHRRRRDDDD/CCCCGGGGEEEEHHHHRRRRDDDD.
-
- * SSSSOOOORRRRGGGGLLLLQQQQ, DDDDOOOORRRRGGGGLLLLQQQQ, CCCCUUUUNNNNGGGGLLLLQQQQ, ZZZZUUUUNNNNGGGGLLLLQQQQ: Generates all or part of the
- orthogonal or unitary matrix _Q from an _L_Q factorization determined by
- SSSSGGGGEEEELLLLQQQQFFFF or CCCCGGGGEEEELLLLQQQQFFFF.
-
- * SSSSOOOORRRRGGGGQQQQLLLL, DDDDOOOORRRRGGGGQQQQLLLL, CCCCUUUUNNNNGGGGQQQQLLLL, ZZZZUUUUNNNNGGGGQQQQLLLL: Generates all or part of the
- orthogonal or unitary matrix _Q from a _Q_L factorization determined by
- SSSSGGGGEEEEQQQQLLLLFFFF or CCCCGGGGEEEEQQQQLLLLFFFF.
-
- * SSSSOOOORRRRGGGGQQQQRRRR, DDDDOOOORRRRGGGGQQQQRRRR, CCCCUUUUNNNNGGGGQQQQRRRR, ZZZZUUUUNNNNGGGGQQQQRRRR: Generates all or part of the
- orthogonal or unitary matrix _Q from a _Q_R factorization determined by
- SSSSGGGGEEEEQQQQRRRRFFFF or CCCCGGGGEEEEQQQQRRRRFFFF.
-
- * SSSSOOOORRRRGGGGRRRRQQQQ, DDDDOOOORRRRGGGGRRRRQQQQ, CCCCUUUUNNNNGGGGRRRRQQQQ, ZZZZUUUUNNNNGGGGRRRRQQQQ: Generates all or part of the
- orthogonal or unitary matrix _Q from an _R_Q factorization determined by
- SSSSGGGGEEEERRRRQQQQFFFF or CCCCGGGGEEEERRRRQQQQFFFF.
-
- * SSSSOOOORRRRGGGGTTTTRRRR, DDDDOOOORRRRGGGGTTTTRRRR, CCCCUUUUNNNNGGGGTTTTRRRR, ZZZZUUUUNNNNGGGGTTTTRRRR: Generates the orthogonal/unitary
- matrix _Q from SSSSSSSSYYYYTTTTRRRRDDDD/CCCCHHHHEEEETTTTRRRRDDDD.
-
- * SSSSOOOORRRRMMMMBBBBRRRR, DDDDOOOORRRRMMMMBBBBRRRR, CCCCUUUUNNNNMMMMBBBBRRRR, ZZZZUUUUNNNNMMMMBBBBRRRR: Multiplies by one of the
- orthogonal/unitary matrices _Q or _P from SSSSGGGGEEEEBBBBRRRRDDDD/CCCCGGGGEEEEBBBBRRRRDDDD.
-
- * SSSSOOOORRRRMMMMHHHHRRRR, DDDDOOOORRRRMMMMHHHHRRRR, CCCCUUUUNNNNMMMMHHHHRRRR, ZZZZUUUUNNNNMMMMHHHHRRRR: Multiplies by the orthogonal/unitary
- matrix _Q from SSSSGGGGEEEEHHHHRRRRDDDD/CCCCGGGGEEEEHHHHRRRRDDDD.
-
- * SSSSOOOORRRRMMMMLLLLQQQQ, DDDDOOOORRRRMMMMLLLLQQQQ, CCCCUUUUNNNNMMMMLLLLQQQQ, ZZZZUUUUNNNNMMMMLLLLQQQQ: Multiplies a general matrix by the
- orthogonal or unitary matrix from an _L_Q factorization determined by
- SSSSGGGGEEEELLLLQQQQFFFF or CCCCGGGGEEEELLLLQQQQFFFF.
-
- * SSSSOOOORRRRMMMMQQQQLLLL, DDDDOOOORRRRMMMMQQQQLLLL, CCCCUUUUNNNNMMMMQQQQLLLL, ZZZZUUUUNNNNMMMMQQQQLLLL: Multiplies a general matrix by the
- orthogonal or unitary matrix from a _Q_L factorization determined by
- SSSSGGGGEEEEQQQQLLLLFFFF or CCCCGGGGEEEEQQQQLLLLFFFF.
-
-
-
-
-
- PPPPaaaaggggeeee 11116666
-
-
-
-
-
-
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS)))) IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
-
-
-
- * SSSSOOOORRRRMMMMQQQQRRRR, DDDDOOOORRRRMMMMQQQQRRRR, CCCCUUUUNNNNMMMMQQQQRRRR, ZZZZUUUUNNNNMMMMQQQQRRRR: Multiplies a general matrix by the
- orthogonal or unitary matrix from a _Q_R factorization determined by
- SSSSGGGGEEEEQQQQRRRRFFFF or CCCCGGGGEEEEQQQQRRRRFFFF.
-
- * SSSSOOOORRRRMMMMRRRRQQQQ, DDDDOOOORRRRMMMMRRRRQQQQ, CCCCUUUUNNNNMMMMRRRRQQQQ, ZZZZUUUUNNNNMMMMRRRRQQQQ: Multiplies a general matrix by the
- orthogonal or unitary matrix from an _R_Q factorization determined by
- SSSSGGGGEEEERRRRQQQQFFFF or CCCCGGGGEEEERRRRQQQQFFFF.
-
- * SSSSOOOORRRRMMMMRRRRZZZZ, DDDDOOOORRRRMMMMRRRRZZZZ, CCCCUUUUNNNNMMMMRRRRZZZZ, ZZZZUUUUNNNNMMMMRRRRZZZZ: Multiplies a general matrix by the
- orthogonal or unitary matrix from an RZ factorization determined by
- SSSSTTTTZZZZRRRRZZZZFFFF or CCCCTTTTZZZZRRRRZZZZFFFF.
-
- * SSSSOOOORRRRMMMMTTTTRRRR, DDDDOOOORRRRMMMMTTTTRRRR, CCCCUUUUNNNNMMMMTTTTRRRR, ZZZZUUUUNNNNMMMMTTTTRRRR: Multiplies by the orthogonal/unitary
- matrix _Q from SSSSSSSSYYYYTTTTRRRRDDDD/CCCCHHHHEEEETTTTRRRRDDDD.
-
- * SSSSPPPPBBBBCCCCOOOONNNN, DDDDPPPPBBBBCCCCOOOONNNN, CCCCPPPPBBBBCCCCOOOONNNN, ZZZZPPPPBBBBCCCCOOOONNNN: Estimates the reciprocal of the
- condition number of a symmetric or Hermitian positive definite band
- matrix, using the Cholesky factorization computed by SSSSPPPPBBBBTTTTRRRRFFFF or
- CCCCPPPPBBBBTTTTRRRRFFFF.
-
- * SSSSPPPPBBBBEEEEQQQQUUUU, DDDDPPPPBBBBEEEEQQQQUUUU, CCCCPPPPBBBBEEEEQQQQUUUU, ZZZZPPPPBBBBEEEEQQQQUUUU: Computes row and column scalings to
- equilibrate a symmetric or Hermitian positive definite band matrix
- and to reduce its condition number.
-
- * SSSSPPPPBBBBRRRRFFFFSSSS, DDDDPPPPBBBBRRRRFFFFSSSS, CCCCPPPPBBBBRRRRFFFFSSSS, ZZZZPPPPBBBBRRRRFFFFSSSS: Improves the computed solution to a
- symmetric or Hermitian positive definite banded system of linear
- equations _A_X = _B and provides error bounds for the solution.
-
- * SSSSPPPPBBBBSSSSTTTTFFFF, DDDDPPPPBBBBSSSSTTTTFFFF, CCCCPPPPBBBBSSSSTTTTFFFF, ZZZZPPPPBBBBSSSSTTTTFFFF: Compute a split Cholesky
- factorization of a symmetric or Hermitian positive definite band
- matrix.
-
- * SSSSPPPPBBBBTTTTRRRRFFFF, DDDDPPPPBBBBTTTTRRRRFFFF, CCCCPPPPBBBBTTTTRRRRFFFF, ZZZZPPPPBBBBTTTTRRRRFFFF: Computes the Cholesky factorization
- of a symmetric or Hermitian positive definite band matrix.
-
- * SSSSPPPPBBBBTTTTRRRRSSSS, DDDDPPPPBBBBTTTTRRRRSSSS, CCCCPPPPBBBBTTTTRRRRSSSS, ZZZZPPPPBBBBTTTTRRRRSSSS: Solves a symmetric or Hermitian
- positive definite banded system of linear equations _A_X = _B, using the
- Cholesky factorization computed by SSSSPPPPBBBBTTTTRRRRFFFF or CCCCPPPPBBBBTTTTRRRRFFFF.
-
- * SSSSPPPPOOOOCCCCOOOONNNN, DDDDPPPPOOOOCCCCOOOONNNN, CCCCPPPPOOOOCCCCOOOONNNN, ZZZZPPPPOOOOCCCCOOOONNNN: Estimates the reciprocal of the
- condition number of a symmetric or Hermitian positive definite
- matrix, using the Cholesky factorization computed by SSSSPPPPOOOOTTTTRRRRFFFF or
- CCCCPPPPOOOOTTTTRRRRFFFF.
-
- * SSSSPPPPOOOOEEEEQQQQUUUU, DDDDPPPPOOOOEEEEQQQQUUUU, CCCCPPPPOOOOEEEEQQQQUUUU, ZZZZPPPPOOOOEEEEQQQQUUUU: Computes row and column scalings to
- equilibrate a symmetric or Hermitian positive definite matrix and
- reduces its condition number.
-
- * SSSSPPPPOOOORRRRFFFFSSSS, DDDDPPPPOOOORRRRFFFFSSSS, CCCCPPPPOOOORRRRFFFFSSSS, ZZZZPPPPOOOORRRRFFFFSSSS: Improves the computed solution to a
- symmetric or Hermitian positive definite system of linear equations
- _A_X = _B and provides error bounds for the solution.
-
-
-
-
- PPPPaaaaggggeeee 11117777
-
-
-
-
-
-
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS)))) IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
-
-
-
- * SSSSPPPPOOOOTTTTRRRRFFFF, DDDDPPPPOOOOTTTTRRRRFFFF, CCCCPPPPOOOOTTTTRRRRFFFF, ZZZZPPPPOOOOTTTTRRRRFFFF: Computes the Cholesky factorization
- of a symmetric or Hermitian positive definite matrix.
-
- * SSSSPPPPOOOOTTTTRRRRIIII, DDDDPPPPOOOOTTTTRRRRIIII, CCCCPPPPOOOOTTTTRRRRIIII, ZZZZPPPPOOOOTTTTRRRRIIII: Computes the inverse of a symmetric
- or Hermitian positive definite matrix, using the Cholesky
- factorization computed by SSSSPPPPOOOOTTTTRRRRFFFF or CCCCPPPPOOOOTTTTRRRRFFFF.
-
- * SSSSPPPPOOOOTTTTRRRRSSSS, DDDDPPPPOOOOTTTTRRRRSSSS, CCCCPPPPOOOOTTTTRRRRSSSS, ZZZZPPPPOOOOTTTTRRRRSSSS: Solves a symmetric or Hermitian
- positive definite system of linear equations _A_X = _B, using the
- Cholesky factorization computed by SSSSPPPPOOOOTTTTRRRRFFFF or CCCCPPPPOOOOTTTTRRRRFFFF.
-
- * SSSSPPPPPPPPCCCCOOOONNNN, DDDDPPPPPPPPCCCCOOOONNNN, CCCCPPPPPPPPCCCCOOOONNNN, ZZZZPPPPPPPPCCCCOOOONNNN: Estimates the reciprocal of the
- condition number of a symmetric or Hermitian positive definite matrix
- in packed storage, using the Cholesky factorization computed by
- SSSSPPPPPPPPTTTTRRRRFFFF or CCCCPPPPPPPPTTTTRRRRFFFF.
-
- * SSSSPPPPPPPPEEEEQQQQUUUU, DDDDPPPPPPPPEEEEQQQQUUUU, CCCCPPPPPPPPEEEEQQQQUUUU, ZZZZPPPPPPPPEEEEQQQQUUUU: Computes row and column scalings to
- equilibrate a symmetric or Hermitian positive definite matrix in
- packed storage and reduces its condition number.
-
- * SSSSPPPPPPPPRRRRFFFFSSSS, DDDDPPPPPPPPRRRRFFFFSSSS, CCCCPPPPPPPPRRRRFFFFSSSS, ZZZZPPPPPPPPRRRRFFFFSSSS: Improves the computed solution to a
- symmetric or Hermitian positive definite system of linear equations
- _A_X = _B (_A is held in packed storage) and provides error bounds for
- the solution.
-
- * SSSSPPPPPPPPTTTTRRRRFFFF, DDDDPPPPPPPPTTTTRRRRFFFF, CCCCPPPPPPPPTTTTRRRRFFFF, ZZZZPPPPPPPPTTTTRRRRFFFF: Computes the Cholesky factorization
- of a symmetric or Hermitian positive definite matrix in packed
- storage.
-
- * SSSSPPPPPPPPTTTTRRRRIIII, DDDDPPPPPPPPTTTTRRRRIIII, CCCCPPPPPPPPTTTTRRRRIIII, ZZZZPPPPPPPPTTTTRRRRIIII: Computes the inverse of a symmetric
- or Hermitian positive definite matrix in packed storage, using the
- Cholesky factorization computed by SSSSPPPPPPPPTTTTRRRRFFFF or CCCCPPPPPPPPTTTTRRRRFFFF.
-
- * SSSSPPPPPPPPTTTTRRRRSSSS, DDDDPPPPPPPPTTTTRRRRSSSS, CCCCPPPPPPPPTTTTRRRRSSSS, ZZZZPPPPPPPPTTTTRRRRSSSS: Solves a symmetric or Hermitian
- positive definite system of linear equations _A_X = _B (_A is held in
- packed storage) using the Cholesky factorization computed by SSSSPPPPPPPPTTTTRRRRFFFF
- or CCCCPPPPPPPPTTTTRRRRFFFF.
-
- * SSSSPPPPTTTTCCCCOOOONNNN, DDDDPPPPTTTTCCCCOOOONNNN, CCCCPPPPTTTTCCCCOOOONNNN, ZZZZPPPPTTTTCCCCOOOONNNN: Uses the LDLH factorization computed
- by SSSSPPPPTTTTTTTTRRRRFFFF or CCCCPPPPTTTTTTTTRRRRFFFF to compute the reciprocal of the condition number
- of a symmetric or Hermitian positive definite tridiagonal matrix.
-
- * SSSSPPPPTTTTEEEEQQQQRRRR, DDDDPPPPTTTTEEEEQQQQRRRR, CCCCPPPPTTTTEEEEQQQQRRRR, ZZZZPPPPTTTTEEEEQQQQRRRR: Compute eigenvalues and eigenvectors
- of a symmetric or Hermitian positive definite tridiagonal matrix.
-
- * SSSSPPPPTTTTRRRRFFFFSSSS, DDDDPPPPTTTTRRRRFFFFSSSS, CCCCPPPPTTTTRRRRFFFFSSSS, ZZZZPPPPTTTTRRRRFFFFSSSS: Improves the computed solution to a
- symmetric or Hermitian positive definite tridiagonal system of linear
- equations _A_X = _B and provides error bounds for the solution.
-
- * SSSSPPPPTTTTTTTTRRRRFFFF, DDDDPPPPTTTTTTTTRRRRFFFF, CCCCPPPPTTTTTTTTRRRRFFFF, ZZZZPPPPTTTTTTTTRRRRFFFF: Computes the LDLH factorization of a
- symmetric or Hermitian positive definite tridiagonal matrix.
-
-
-
-
- PPPPaaaaggggeeee 11118888
-
-
-
-
-
-
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS)))) IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
-
-
-
- * SSSSPPPPTTTTTTTTRRRRSSSS, DDDDPPPPTTTTTTTTRRRRSSSS, CCCCPPPPTTTTTTTTRRRRSSSS, ZZZZPPPPTTTTTTTTRRRRSSSS: Uses the LDLH factorization computed
- by SSSSPPPPTTTTTTTTRRRRFFFF or CCCCPPPPTTTTTTTTRRRRFFFF to solve a symmetric or Hermitian positive
- definite tridiagonal system of linear equations.
-
- * SSSSSSSSBBBBGGGGSSSSTTTT, DDDDSSSSBBBBGGGGSSSSTTTT, CCCCHHHHBBBBGGGGSSSSTTTT, ZZZZHHHHBBBBGGGGSSSSTTTT: Reduce a symmetric or Hermitian
- definite banded generalized eigenproblem to standard form.
-
- * SSSSSSSSBBBBTTTTRRRRDDDD, DDDDSSSSBBBBTTTTRRRRDDDD, CCCCHHHHBBBBTTTTRRRRDDDD, ZZZZHHHHBBBBTTTTRRRRDDDD: Reduce a symmetric or Hermitian band
- matrix to real symmetric tridiagonal form by an orthogonal/unitary
- transformation.
-
- * SSSSSSSSPPPPCCCCOOOONNNN, DDDDSSSSPPPPCCCCOOOONNNN, CCCCSSSSPPPPCCCCOOOONNNN, ZZZZSSSSPPPPCCCCOOOONNNN: Estimates the reciprocal of the
- condition number of a real or complex symmetric indefinite matrix in
- packed storage, using the factorization computed by SSSSSSSSPPPPTTTTRRRRFFFF or CCCCSSSSPPPPTTTTRRRRFFFF.
-
- * SSSSSSSSPPPPGGGGSSSSTTTT, DDDDSSSSPPPPGGGGSSSSTTTT, CCCCHHHHPPPPGGGGSSSSTTTT, ZZZZHHHHPPPPGGGGSSSSTTTT: Reduce a symmetric or Hermitian
- definite generalized eigenproblem to standard form, using packed
- storage.
-
- * SSSSSSSSPPPPRRRRFFFFSSSS, DDDDSSSSPPPPRRRRFFFFSSSS, CCCCSSSSPPPPRRRRFFFFSSSS, ZZZZSSSSPPPPRRRRFFFFSSSS: Improves the computed solution to a
- real or complex symmetric indefinite system of linear equations _A_X =
- _B (_A is held in packed storage) and provides error bounds for the
- solution.
-
- * SSSSSSSSPPPPTTTTRRRRDDDD, DDDDSSSSPPPPTTTTRRRRDDDD, CCCCHHHHPPPPTTTTRRRRDDDD, ZZZZHHHHPPPPTTTTRRRRDDDD: Reduces a symmetric/Hermitian packed
- matrix A to real symmetric tridiagonal form by an orthogonal/unitary
- transformation.
-
- * SSSSSSSSPPPPTTTTRRRRFFFF, DDDDSSSSPPPPTTTTRRRRFFFF, CCCCSSSSPPPPTTTTRRRRFFFF, ZZZZSSSSPPPPTTTTRRRRFFFF: Computes the factorization of a real
- or complex symmetric indefinite matrix in packed storage, using the
- diagonal pivoting method.
-
- * SSSSSSSSPPPPTTTTRRRRIIII, DDDDSSSSPPPPTTTTRRRRIIII, CCCCSSSSPPPPTTTTRRRRIIII, ZZZZSSSSPPPPTTTTRRRRIIII: Computes the inverse of a real or
- complex symmetric indefinite matrix in packed storage, using the
- factorization computed by SSSSSSSSPPPPTTTTRRRRFFFF or CCCCSSSSPPPPTTTTRRRRFFFF.
-
- * SSSSSSSSPPPPTTTTRRRRSSSS, DDDDSSSSPPPPTTTTRRRRSSSS, CCCCSSSSPPPPTTTTRRRRSSSS, ZZZZSSSSPPPPTTTTRRRRSSSS: Solves a real or complex symmetric
- indefinite system of linear equations _A_X = _B (_A is held in packed
- storage) using the factorization computed by SSSSSSSSPPPPTTTTRRRRFFFF or CCCCSSSSPPPPTTTTRRRRFFFF.
-
- * SSSSSSSSTTTTEEEEBBBBZZZZ, DDDDSSSSTTTTEEEEBBBBZZZZ: Compute eigenvalues of a symmetric tridiagonal
- matrix by bisection.
-
- * SSSSSSSSTTTTEEEEDDDDCCCC, DDDDSSSSTTTTEEEEDDDDCCCC, CCCCSSSSTTTTEEEEDDDDCCCC, ZZZZSSSSTTTTEEEEDDDDCCCC: Computes all eigenvalues and,
- optionally, eigenvectors of a symmetric tridiagonal matrix using the
- divide and conquer algorithm.
-
- * SSSSSSSSTTTTEEEEGGGGRRRR, DDDDSSSSTTTTEEEEGGGGRRRR, CCCCSSSSTTTTEEEEGGGGRRRR, ZZZZSSSSTTTTEEEEGGGGRRRR: Computes selected eigenvalues and,
- optionally, eigenvectors of a real symmetric tridiagonal matrix using
- the Relatively Robust Representations.
-
-
-
-
-
- PPPPaaaaggggeeee 11119999
-
-
-
-
-
-
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS)))) IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
-
-
-
- * SSSSSSSSTTTTEEEEIIIINNNN, DDDDSSSSTTTTEEEEIIIINNNN, CCCCSSSSTTTTEEEEIIIINNNN, ZZZZSSSSTTTTEEEEIIIINNNN: Compute eigenvectors of a real
- symmetric tridiagonal matrix by inverse iteration.
-
- * SSSSSSSSTTTTEEEEQQQQRRRR, DDDDSSSSTTTTEEEEQQQQRRRR, CCCCSSSSTTTTEEEEQQQQRRRR, ZZZZSSSSTTTTEEEEQQQQRRRR: Compute eigenvalues and eigenvectors
- of a real symmetric tridiagonal matrix using the implicit QL or QR
- method.
-
- * SSSSSSSSTTTTEEEERRRRFFFF, DDDDSSSSTTTTEEEERRRRFFFF: Compute all eigenvalues of a symmetric tridiagonal
- matrix using the root-free variant of the QL or QR algorithm.
-
- * SSSSSSSSYYYYCCCCOOOONNNN, DDDDSSSSYYYYCCCCOOOONNNN, CCCCSSSSYYYYCCCCOOOONNNN, ZZZZSSSSYYYYCCCCOOOONNNN: Estimates the reciprocal of the
- condition number of a real or complex symmetric indefinite matrix,
- using the factorization computed by SSSSSSSSYYYYTTTTRRRRFFFF or CCCCSSSSYYYYTTTTRRRRFFFF.
-
- * SSSSSSSSYYYYGGGGSSSSTTTT, DDDDSSSSYYYYGGGGSSSSTTTT, CCCCHHHHEEEEGGGGSSSSTTTT, ZZZZHHHHEEEEGGGGSSSSTTTT: Reduce a symmetric or Hermitian
- definite generalized eigenproblem to standard form.
-
- * SSSSSSSSYYYYRRRRFFFFSSSS, DDDDSSSSYYYYRRRRFFFFSSSS, CCCCSSSSYYYYRRRRFFFFSSSS, ZZZZSSSSYYYYRRRRFFFFSSSS: Improves the computed solution to a
- real or complex symmetric indefinite system of linear equations _A_X =
- _B and provides error bounds for the solution.
-
- * SSSSSSSSYYYYTTTTRRRRDDDD, DDDDSSSSYYYYTTTTRRRRDDDD, CCCCHHHHEEEETTTTRRRRDDDD, ZZZZHHHHEEEETTTTRRRRDDDD: Reduces a symmetric/Hermitian matrix
- _A to real symmetric tridiagonal form by an orthogonal/unitary
- transformation.
-
- * SSSSSSSSYYYYTTTTRRRRFFFF, DDDDSSSSYYYYTTTTRRRRFFFF, CCCCSSSSYYYYTTTTRRRRFFFF, ZZZZSSSSYYYYTTTTRRRRFFFF: Computes the factorization of a real
- complex symmetric indefinite matrix, using the diagonal pivoting
- method.
-
- * SSSSSSSSYYYYTTTTRRRRIIII, DDDDSSSSYYYYTTTTRRRRIIII, CCCCSSSSYYYYTTTTRRRRIIII, ZZZZSSSSYYYYTTTTRRRRIIII: Computes the inverse of a real or
- complex symmetric indefinite matrix, using the factorization computed
- by SSSSSSSSYYYYTTTTRRRRFFFF or CCCCSSSSYYYYTTTTRRRRFFFF.
-
- * SSSSSSSSYYYYTTTTRRRRSSSS, DDDDSSSSYYYYTTTTRRRRSSSS, CCCCSSSSYYYYTTTTRRRRSSSS, ZZZZSSSSYYYYTTTTRRRRSSSS: Solves a real or complex symmetric
- indefinite system of linear equations _A_X = _B, using the factorization
- computed by SSSSSSSSYYYYTTTTRRRRFFFF or CCCCSSSSYYYYTTTTRRRRFFFF.
-
- * SSSSTTTTBBBBCCCCOOOONNNN, DDDDTTTTBBBBCCCCOOOONNNN, CCCCTTTTBBBBCCCCOOOONNNN, ZZZZTTTTBBBBCCCCOOOONNNN: Estimates the reciprocal of the
- condition number of a triangular band matrix, in either the 1-norm or
- the infinity-norm.
-
- * SSSSTTTTBBBBRRRRFFFFSSSS, DDDDTTTTBBBBRRRRFFFFSSSS, CCCCTTTTBBBBRRRRFFFFSSSS, ZZZZTTTTBBBBRRRRFFFFSSSS: Provides error bounds for the
- solution of any of the following triangular banded systems of linear
- equations:
-
- A X = B
-
- T
- A X = B
-
- H
- A X = B
-
-
-
- PPPPaaaaggggeeee 22220000
-
-
-
-
-
-
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS)))) IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
-
-
-
- * SSSSTTTTBBBBTTTTRRRRSSSS, DDDDTTTTBBBBTTTTRRRRSSSS, CCCCTTTTBBBBTTTTRRRRSSSS, ZZZZTTTTBBBBTTTTRRRRSSSS: Solves any of the following
- triangular banded systems of linear equations:
-
- A X = B
-
- T
- A X = B
-
- H
- A X = B
-
-
- * SSSSTTTTGGGGEEEEVVVVCCCC, DDDDTTTTGGGGEEEEVVVVCCCC, CCCCTTTTGGGGEEEEVVVVCCCC, ZZZZTTTTGGGGEEEEVVVVCCCC: Compute eigenvectors of a pair of
- matrices (A,B) in generalized Schur form.
-
- * SSSSTTTTGGGGEEEEXXXXCCCC, DDDDTTTTGGGGEEEEXXXXCCCC, CCCCTTTTGGGGEEEEXXXXCCCC, ZZZZTTTTGGGGEEEEXXXXCCCC: Reorders the generalized real-
- Schur/Schur decomposition of a matrix pair (A,B) using an
- orthogonal/unitary equivalence transformation so that the diagonal
- block of (A,B) with row index IFST is moved to row ILST.
-
- * SSSSTTTTGGGGSSSSEEEENNNN, DDDDTTTTGGGGSSSSEEEENNNN, CCCCTTTTGGGGSSSSEEEENNNN, ZZZZTTTTGGGGSSSSEEEENNNN: Reorders the generalized real-
- Schur/Schur decomposition of a matrix pair (A,B), computes the
- generalized eigenvalues of the reordered matrix pair, and,
- optionally, computes the estimates of reciprocal condition numbers
- for eigenvalues and eigenspaces.
-
- * SSSSTTTTGGGGSSSSJJJJAAAA, DDDDTTTTGGGGSSSSJJJJAAAA, CCCCTTTTGGGGSSSSJJJJAAAA, ZZZZTTTTGGGGSSSSJJJJAAAA: Computes the generalized singular
- value decomposition (GSVD) of a pair of upper triangular (or
- trapezoidal) matrices, which may be obtained by the preprocessing
- subroutine SSSSGGGGGGGGSSSSVVVVPPPP/CCCCGGGGGGGGSSSSVVVVPPPP.
-
- * SSSSTTTTGGGGSSSSNNNNAAAA, DDDDTTTTGGGGSSSSNNNNAAAA, CCCCTTTTGGGGSSSSNNNNAAAA, ZZZZTTTTGGGGSSSSNNNNAAAA: Estimates reciprocal condition
- numbers for specified eigenvalues and/or eigenvectors of a matrix
- pair (A,B) in generalized real-Schur/Schur canonical form.
-
- * SSSSTTTTGGGGSSSSYYYYLLLL, DDDDTTTTGGGGSSSSYYYYLLLL, CCCCTTTTGGGGSSSSYYYYLLLL, ZZZZTTTTGGGGSSSSYYYYLLLL: Solves the generalized Sylvester
- equation.
-
- * SSSSTTTTPPPPCCCCOOOONNNN, DDDDTTTTPPPPCCCCOOOONNNN, CCCCTTTTPPPPCCCCOOOONNNN, ZZZZTTTTPPPPCCCCOOOONNNN: Estimates the reciprocal of the
- condition number of a triangular matrix in packed storage, in either
- the 1-norm or the infinity-norm.
-
- * SSSSTTTTPPPPRRRRFFFFSSSS, DDDDTTTTPPPPRRRRFFFFSSSS, CCCCTTTTPPPPRRRRFFFFSSSS, ZZZZTTTTPPPPRRRRFFFFSSSS: Provides error bounds for the
- solution of any of the following triangular systems of linear
- equations where _A is held in packed storage.
-
- A X = B
-
- T
- A X = B
-
- H
-
-
-
- PPPPaaaaggggeeee 22221111
-
-
-
-
-
-
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS)))) IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
-
-
-
- A X = B
-
-
- * SSSSTTTTPPPPTTTTRRRRIIII, DDDDTTTTPPPPTTTTRRRRIIII, CCCCTTTTPPPPTTTTRRRRIIII, ZZZZTTTTPPPPTTTTRRRRIIII: Computes the inverse of a triangular
- matrix in packed storage.
-
- * SSSSTTTTPPPPTTTTRRRRSSSS, DDDDTTTTPPPPTTTTRRRRSSSS, CCCCTTTTPPPPTTTTRRRRSSSS, ZZZZTTTTPPPPTTTTRRRRSSSS: Solves any of the following
- triangular systems of linear equations where _A is held in packed
- storage.
-
- A X = B
-
- T
- A X = B
-
- H
- A X = B
-
-
- * SSSSTTTTRRRRCCCCOOOONNNN, DDDDTTTTRRRRCCCCOOOONNNN, CCCCTTTTRRRRCCCCOOOONNNN, ZZZZTTTTRRRRCCCCOOOONNNN: Estimates the reciprocal of the
- condition number of a triangular matrix, in either the 1-norm or the
- infinity-norm.
-
- * SSSSTTTTRRRREEEEVVVVCCCC, DDDDTTTTRRRREEEEVVVVCCCC, CCCCTTTTRRRREEEEVVVVCCCC, ZZZZTTTTRRRREEEEVVVVCCCC: Compute eigenvectors of a real upper
- quasi-triangular matrix or a complex triangular matrix.
-
- * SSSSTTTTRRRREEEEXXXXCCCC, DDDDTTTTRRRREEEEXXXXCCCC, CCCCTTTTRRRREEEEXXXXCCCC, ZZZZTTTTRRRREEEEXXXXCCCC: Exchange diagonal blocks in the real
- Schur factorization of a real or complex matrix.
-
- * SSSSTTTTRRRRRRRRFFFFSSSS, DDDDTTTTRRRRRRRRFFFFSSSS, CCCCTTTTRRRRRRRRFFFFSSSS, ZZZZTTTTRRRRRRRRFFFFSSSS: Provides error bounds for the
- solution of any of the following triangular systems of linear
- equations:
-
- A X = B
-
- T
- A X = B
-
- H
- A X = B
-
-
- * SSSSTTTTRRRRSSSSEEEENNNN, DDDDTTTTRRRRSSSSEEEENNNN, CCCCTTTTRRRRSSSSEEEENNNN, ZZZZTTTTRRRRSSSSEEEENNNN: Compute condition numbers to measure
- the sensitivity of a cluster of eigenvalues and its corresponding
- invariant subspace.
-
- * SSSSTTTTRRRRSSSSNNNNAAAA, DDDDTTTTRRRRSSSSNNNNAAAA, CCCCTTTTRRRRSSSSNNNNAAAA, ZZZZTTTTRRRRSSSSNNNNAAAA: Compute condition numbers for
- specified eigenvalues and eigenvectors of a real upper quasi-
- triangular matrix or complex upper triangular matrix.
-
-
-
-
-
-
- PPPPaaaaggggeeee 22222222
-
-
-
-
-
-
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS)))) IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
-
-
-
- * SSSSTTTTRRRRSSSSYYYYLLLL, DDDDTTTTRRRRSSSSYYYYLLLL, CCCCTTTTRRRRSSSSYYYYLLLL, ZZZZTTTTRRRRSSSSYYYYLLLL: Solve the Sylvester matrix equation.
-
- * SSSSTTTTRRRRTTTTRRRRIIII, DDDDTTTTRRRRTTTTRRRRIIII, CCCCTTTTRRRRTTTTRRRRIIII, ZZZZTTTTRRRRTTTTRRRRIIII: Computes the inverse of a triangular
- matrix.
-
- * SSSSTTTTRRRRTTTTRRRRSSSS, DDDDTTTTRRRRTTTTRRRRSSSS, CCCCTTTTRRRRTTTTRRRRSSSS, ZZZZTTTTRRRRTTTTRRRRSSSS: Solves any of the following
- triangular systems of linear equations:
-
- A X = B
- T
- A X = B
-
- H
- A X = B
-
-
- * SSSSTTTTZZZZRRRRQQQQFFFF, DDDDTTTTZZZZRRRRQQQQFFFF, CCCCTTTTZZZZRRRRQQQQFFFF, ZZZZTTTTZZZZRRRRQQQQFFFF: Reduces an upper trapezoidal matrix
- to upper triangular form by an orthogonal/unitary transformation.
-
- * SSSSTTTTZZZZRRRRZZZZFFFF, DDDDTTTTZZZZRRRRZZZZFFFF, CCCCTTTTZZZZRRRRZZZZFFFF, ZZZZTTTTZZZZRRRRZZZZFFFF: Reduces an upper trapezoidal matrix
- to upper triangular form by an orthogonal/unitary transformation.
-
- In addition to the driver and computational routines, the following
- auxiliary routines are also available. For information about using these
- routines, see the individual man pages.
-
- CCCCLLLLAAAACCCCGGGGVVVV ZZZZLLLLAAAACCCCGGGGVVVV CCCCLLLLAAAACCCCRRRRMMMM ZZZZLLLLAAAACCCCRRRRMMMM
-
- CCCCLLLLAAAACCCCRRRRTTTT ZZZZLLLLAAAACCCCRRRRTTTT CCCCLLLLAAAAEEEESSSSYYYY ZZZZLLLLAAAAEEEESSSSYYYY
-
- CCCCRRRROOOOTTTT ZZZZRRRROOOOTTTT CCCCSSSSRRRROOOOTTTT ZZZZDDDDRRRROOOOTTTT CCCCSSSSPPPPMMMMVVVV ZZZZSSSSPPPPMMMMVVVV
-
- CCCCSSSSPPPPRRRR ZZZZSSSSPPPPRRRR CCCCSSSSYYYYMMMMVVVV ZZZZSSSSYYYYMMMMVVVV
-
- CCCCSSSSYYYYRRRR ZZZZSSSSYYYYRRRR IIIICCCCMMMMAAAAXXXX1111 IIIIZZZZMMMMAAAAXXXX1111
-
- SSSSCCCCSSSSUUUUMMMM1111 DDDDZZZZSSSSUUUUMMMM1111 SSSSGGGGBBBBTTTTFFFF2222 DDDDGGGGBBBBTTTTFFFF2222 CCCCGGGGBBBBTTTTFFFF2222 ZZZZGGGGBBBBTTTTFFFF2222
-
- SSSSGGGGEEEEBBBBDDDD2222 DDDDGGGGEEEEBBBBDDDD2222 CCCCGGGGEEEEBBBBDDDD2222 ZZZZGGGGEEEEBBBBDDDD2222 SSSSGGGGEEEEHHHHDDDD2222 DDDDGGGGEEEEHHHHDDDD2222 CCCCGGGGEEEEHHHHDDDD2222 ZZZZGGGGEEEEHHHHDDDD2222
-
- SSSSGGGGEEEELLLLQQQQ2222 DDDDGGGGEEEELLLLQQQQ2222 CCCCGGGGEEEELLLLQQQQ2222 ZZZZGGGGEEEELLLLQQQQ2222 SSSSGGGGEEEEQQQQLLLL2222 DDDDGGGGEEEEQQQQLLLL2222 CCCCGGGGEEEEQQQQLLLL2222 ZZZZGGGGEEEEQQQQLLLL2222
-
- SSSSGGGGEEEEQQQQRRRR2222 DDDDGGGGEEEEQQQQRRRR2222 CCCCGGGGEEEEQQQQRRRR2222 ZZZZGGGGEEEEQQQQRRRR2222 SSSSGGGGEEEETTTTFFFF2222 DDDDGGGGEEEETTTTFFFF2222 CCCCGGGGEEEETTTTFFFF2222 ZZZZGGGGEEEETTTTFFFF2222
-
- SSSSLLLLAAAABBBBAAAADDDD DDDDLLLLAAAABBBBAAAADDDD SSSSLLLLAAAABBBBRRRRDDDD DDDDLLLLAAAABBBBRRRRDDDD CCCCLLLLAAAABBBBRRRRDDDD ZZZZLLLLAAAABBBBRRRRDDDD
-
- SSSSLLLLAAAACCCCOOOONNNN DDDDLLLLAAAACCCCOOOONNNN CCCCLLLLAAAACCCCOOOONNNN ZZZZLLLLAAAACCCCOOOONNNN SSSSLLLLAAAACCCCPPPPYYYY DDDDLLLLAAAACCCCPPPPYYYY CCCCLLLLAAAACCCCPPPPYYYY ZZZZLLLLAAAACCCCPPPPYYYY
-
- SSSSLLLLAAAADDDDIIIIVVVV DDDDLLLLAAAADDDDIIIIVVVV CCCCLLLLAAAADDDDIIIIVVVV ZZZZLLLLAAAADDDDIIIIVVVV SSSSLLLLAAAAEEEE2222 DDDDLLLLAAAAEEEE2222
-
-
-
-
-
-
- PPPPaaaaggggeeee 22223333
-
-
-
-
-
-
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS)))) IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
-
-
-
- SSSSLLLLAAAAEEEEBBBBZZZZ DDDDLLLLAAAAEEEEBBBBZZZZ SSSSLLLLAAAAEEEEDDDD0000 DDDDLLLLAAAAEEEEDDDD0000 CCCCLLLLAAAAEEEEDDDD0000 ZZZZLLLLAAAAEEEEDDDD0000
-
- SSSSLLLLAAAAEEEEDDDD1111 DDDDLLLLAAAAEEEEDDDD1111 SSSSLLLLAAAAEEEEDDDD2222 DDDDLLLLAAAAEEEEDDDD2222
-
- SSSSLLLLAAAAEEEEDDDD3333 DDDDLLLLAAAAEEEEDDDD3333 SSSSLLLLAAAAEEEEDDDD4444 DDDDLLLLAAAAEEEEDDDD4444
-
- SSSSLLLLAAAAEEEEDDDD5555 DDDDLLLLAAAAEEEEDDDD5555 SSSSLLLLAAAAEEEEDDDD6666 DDDDLLLLAAAAEEEEDDDD6666
-
- SSSSLLLLAAAAEEEEDDDD7777 DDDDLLLLAAAAEEEEDDDD7777 CCCCLLLLAAAAEEEEDDDD7777 ZZZZLLLLAAAAEEEEDDDD7777 SSSSLLLLAAAAEEEEDDDD8888 DDDDLLLLAAAAEEEEDDDD8888 CCCCLLLLAAAAEEEEDDDD8888 ZZZZLLLLAAAAEEEEDDDD8888
-
- SSSSLLLLAAAAEEEEDDDD9999 DDDDLLLLAAAAEEEEDDDD9999 SSSSLLLLAAAAEEEEDDDDAAAA DDDDLLLLAAAAEEEEDDDDAAAA
-
- SSSSLLLLAAAAEEEEIIIINNNN DDDDLLLLAAAAEEEEIIIINNNN CCCCLLLLAAAAEEEEIIIINNNN ZZZZLLLLAAAAEEEEIIIINNNN SSSSLLLLAAAAEEEEVVVV2222 DDDDLLLLAAAAEEEEVVVV2222 CCCCLLLLAAAAEEEEVVVV2222 ZZZZLLLLAAAAEEEEVVVV2222
-
- SSSSLLLLAAAAEEEEXXXXCCCC DDDDLLLLAAAAEEEEXXXXCCCC SSSSLLLLAAAAGGGG2222 DDDDLLLLAAAAGGGG2222
-
- SSSSLLLLAAAAGGGGTTTTFFFF DDDDLLLLAAAAGGGGTTTTFFFF SSSSLLLLAAAAGGGGTTTTMMMM DDDDLLLLAAAAGGGGTTTTMMMM CCCCLLLLAAAAGGGGTTTTMMMM ZZZZLLLLAAAAGGGGTTTTMMMM
-
- SSSSLLLLAAAAGGGGTTTTSSSS DDDDLLLLAAAAGGGGTTTTSSSS SSSSLLLLAAAAHHHHQQQQRRRR DDDDLLLLAAAAHHHHQQQQRRRR CCCCLLLLAAAAHHHHQQQQRRRR ZZZZLLLLAAAAHHHHQQQQRRRR
-
- SSSSLLLLAAAAHHHHRRRRDDDD DDDDLLLLAAAAHHHHRRRRDDDD CCCCLLLLAAAAHHHHRRRRDDDD ZZZZLLLLAAAAHHHHRRRRDDDD SSSSLLLLAAAAIIIICCCC1111 DDDDLLLLAAAAIIIICCCC1111 CCCCLLLLAAAAIIIICCCC1111 ZZZZLLLLAAAAIIIICCCC1111
-
- SSSSLLLLAAAALLLLNNNN2222 DDDDLLLLAAAALLLLNNNN2222 SSSSLLLLAAAAMMMMRRRRGGGG DDDDLLLLAAAAMMMMRRRRGGGG
-
- SSSSLLLLAAAANNNNGGGGBBBB DDDDLLLLAAAANNNNGGGGBBBB CCCCLLLLAAAANNNNGGGGBBBB ZZZZLLLLAAAANNNNGGGGBBBB SSSSLLLLAAAANNNNGGGGEEEE DDDDLLLLAAAANNNNGGGGEEEE CCCCLLLLAAAANNNNGGGGEEEE ZZZZLLLLAAAANNNNGGGGEEEE
-
- SSSSLLLLAAAANNNNGGGGTTTT DDDDLLLLAAAANNNNGGGGTTTT CCCCLLLLAAAANNNNGGGGTTTT ZZZZLLLLAAAANNNNGGGGTTTT SSSSLLLLAAAANNNNHHHHSSSS DDDDLLLLAAAANNNNHHHHSSSS CCCCLLLLAAAANNNNHHHHSSSS ZZZZLLLLAAAANNNNHHHHSSSS
-
- SSSSLLLLAAAANNNNSSSSBBBB DDDDLLLLAAAANNNNSSSSBBBB CCCCLLLLAAAANNNNSSSSBBBB ZZZZLLLLAAAANNNNSSSSBBBB CCCCLLLLAAAANNNNHHHHBBBB ZZZZLLLLAAAANNNNHHHHBBBB
-
- SSSSLLLLAAAANNNNSSSSPPPP DDDDLLLLAAAANNNNSSSSPPPP CCCCLLLLAAAANNNNSSSSPPPP ZZZZLLLLAAAANNNNSSSSPPPP CCCCLLLLAAAANNNNHHHHPPPP ZZZZLLLLAAAANNNNHHHHPPPP
-
- SSSSLLLLAAAANNNNSSSSTTTT DDDDLLLLAAAANNNNSSSSTTTT CCCCLLLLAAAANNNNSSSSTTTT ZZZZLLLLAAAANNNNSSSSTTTT SSSSLLLLAAAANNNNSSSSYYYY DDDDLLLLAAAANNNNSSSSYYYY CCCCLLLLAAAANNNNSSSSYYYY ZZZZLLLLAAAANNNNSSSSYYYY
-
- CCCCLLLLAAAANNNNHHHHEEEE ZZZZLLLLAAAANNNNHHHHEEEE SSSSLLLLAAAANNNNTTTTBBBB DDDDLLLLAAAANNNNTTTTBBBB CCCCLLLLAAAANNNNTTTTBBBB ZZZZLLLLAAAANNNNTTTTBBBB
-
- SSSSLLLLAAAANNNNTTTTPPPP DDDDLLLLAAAANNNNTTTTPPPP CCCCLLLLAAAANNNNTTTTPPPP ZZZZLLLLAAAANNNNTTTTPPPP SSSSLLLLAAAANNNNTTTTRRRR DDDDLLLLAAAANNNNTTTTRRRR CCCCLLLLAAAANNNNTTTTRRRR ZZZZLLLLAAAANNNNTTTTRRRR
-
- SSSSLLLLAAAANNNNVVVV2222 DDDDLLLLAAAANNNNVVVV2222 SSSSLLLLAAAAPPPPLLLLLLLL DDDDLLLLAAAAPPPPLLLLLLLL CCCCLLLLAAAAPPPPLLLLLLLL ZZZZLLLLAAAAPPPPLLLLLLLL
-
- SSSSLLLLAAAAPPPPMMMMTTTT DDDDLLLLAAAAPPPPMMMMTTTT CCCCLLLLAAAAPPPPMMMMTTTT ZZZZLLLLAAAAPPPPMMMMTTTT SSSSLLLLAAAAPPPPYYYY2222 DDDDLLLLAAAAPPPPYYYY2222
-
- SSSSLLLLAAAAPPPPYYYY3333 DDDDLLLLAAAAPPPPYYYY3333 SSSSLLLLAAAAQQQQGGGGBBBB DDDDLLLLAAAAQQQQGGGGBBBB CCCCLLLLAAAAQQQQGGGGBBBB ZZZZLLLLAAAAQQQQGGGGBBBB
-
- SSSSLLLLAAAAQQQQGGGGEEEE DDDDLLLLAAAAQQQQGGGGEEEE CCCCLLLLAAAAQQQQGGGGEEEE ZZZZLLLLAAAAQQQQGGGGEEEE SSSSLLLLAAAAQQQQSSSSBBBB DDDDLLLLAAAAQQQQSSSSBBBB CCCCLLLLAAAAQQQQSSSSBBBB ZZZZLLLLAAAAQQQQSSSSBBBB
-
- SSSSLLLLAAAAQQQQSSSSPPPP DDDDLLLLAAAAQQQQSSSSPPPP CCCCLLLLAAAAQQQQSSSSPPPP ZZZZLLLLAAAAQQQQSSSSPPPP SSSSLLLLAAAAQQQQSSSSYYYY DDDDLLLLAAAAQQQQSSSSYYYY CCCCLLLLAAAAQQQQSSSSYYYY ZZZZLLLLAAAAQQQQSSSSYYYY
-
- SSSSLLLLAAAAQQQQTTTTRRRR DDDDLLLLAAAAQQQQTTTTRRRR SSSSLLLLAAAARRRR2222VVVV DDDDLLLLAAAARRRR2222VVVV CCCCLLLLAAAARRRR2222VVVV ZZZZLLLLAAAARRRR2222VVVV
-
-
-
-
-
-
- PPPPaaaaggggeeee 22224444
-
-
-
-
-
-
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS)))) IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
-
-
-
- SSSSLLLLAAAARRRRFFFFXXXX DDDDLLLLAAAARRRRFFFFXXXX CCCCLLLLAAAARRRRFFFFXXXX ZZZZLLLLAAAARRRRFFFFXXXX SSSSLLLLAAAARRRRUUUUVVVV DDDDLLLLAAAARRRRUUUUVVVV
-
- SSSSLLLLAAAASSSS2222 DDDDLLLLAAAASSSS2222 SSSSLLLLAAAASSSSCCCCLLLL DDDDLLLLAAAASSSSCCCCLLLL CCCCLLLLAAAASSSSCCCCLLLL ZZZZLLLLAAAASSSSCCCCLLLL
-
- SSSSLLLLAAAASSSSEEEETTTT DDDDLLLLAAAASSSSEEEETTTT CCCCLLLLAAAASSSSEEEETTTT ZZZZLLLLAAAASSSSEEEETTTT SSSSLLLLAAAASSSSQQQQ1111 DDDDLLLLAAAASSSSQQQQ1111
-
- SSSSLLLLAAAASSSSQQQQ2222 DDDDLLLLAAAASSSSQQQQ2222 SSSSLLLLAAAASSSSQQQQ3333 DDDDLLLLAAAASSSSQQQQ3333
-
- SSSSLLLLAAAASSSSQQQQ4444 DDDDLLLLAAAASSSSQQQQ4444 SSSSLLLLAAAASSSSRRRRTTTT DDDDLLLLAAAASSSSRRRRTTTT
-
- SSSSLLLLAAAASSSSSSSSQQQQ DDDDLLLLAAAASSSSSSSSQQQQ CCCCLLLLAAAASSSSSSSSQQQQ ZZZZLLLLAAAASSSSSSSSQQQQ SSSSLLLLAAAASSSSVVVV2222 DDDDLLLLAAAASSSSVVVV2222
-
- SSSSLLLLAAAASSSSWWWWPPPP DDDDLLLLAAAASSSSWWWWPPPP CCCCLLLLAAAASSSSWWWWPPPP ZZZZLLLLAAAASSSSWWWWPPPP SSSSLLLLAAAASSSSYYYY2222 DDDDLLLLAAAASSSSYYYY2222
-
- SSSSLLLLAAAASSSSYYYYFFFF DDDDLLLLAAAASSSSYYYYFFFF CCCCLLLLAAAASSSSYYYYFFFF ZZZZLLLLAAAASSSSYYYYFFFF CCCCLLLLAAAAHHHHEEEEFFFF ZZZZLLLLAAAAHHHHEEEEFFFF
-
- SSSSLLLLAAAATTTTBBBBSSSS DDDDLLLLAAAATTTTBBBBSSSS CCCCLLLLAAAATTTTBBBBSSSS ZZZZLLLLAAAATTTTBBBBSSSS SSSSLLLLAAAATTTTPPPPSSSS DDDDLLLLAAAATTTTPPPPSSSS CCCCLLLLAAAATTTTPPPPSSSS ZZZZLLLLAAAATTTTPPPPSSSS
-
- SSSSLLLLAAAATTTTRRRRDDDD DDDDLLLLAAAATTTTRRRRDDDD CCCCLLLLAAAATTTTRRRRDDDD ZZZZLLLLAAAATTTTRRRRDDDD SSSSLLLLAAAATTTTRRRRSSSS DDDDLLLLAAAATTTTRRRRSSSS CCCCLLLLAAAATTTTRRRRSSSS ZZZZLLLLAAAATTTTRRRRSSSS
-
- SSSSLLLLAAAATTTTZZZZMMMM DDDDLLLLAAAATTTTZZZZMMMM CCCCLLLLAAAATTTTZZZZMMMM ZZZZLLLLAAAATTTTZZZZMMMM SSSSLLLLAAAAUUUUUUUU2222 DDDDLLLLAAAAUUUUUUUU2222 CCCCLLLLAAAAUUUUUUUU2222 ZZZZLLLLAAAAUUUUUUUU2222
-
- SSSSLLLLAAAAUUUUUUUUMMMM DDDDLLLLAAAAUUUUUUUUMMMM CCCCLLLLAAAAUUUUUUUUMMMM ZZZZLLLLAAAAUUUUUUUUMMMM SSSSOOOORRRRGGGG2222LLLL DDDDOOOORRRRGGGG2222LLLL CCCCUUUUNNNNGGGG2222LLLL ZZZZUUUUNNNNGGGG2222LLLL
-
- SSSSOOOORRRRGGGG2222RRRR DDDDOOOORRRRGGGG2222RRRR CCCCUUUUNNNNGGGG2222RRRR ZZZZUUUUNNNNGGGG2222RRRR SSSSOOOORRRRGGGGLLLL2222 DDDDOOOORRRRGGGGLLLL2222 CCCCUUUUNNNNGGGGLLLL2222 ZZZZUUUUNNNNGGGGLLLL2222
-
- SSSSOOOORRRRGGGGRRRR2222 DDDDOOOORRRRGGGGRRRR2222 CCCCUUUUNNNNGGGGRRRR2222 ZZZZUUUUNNNNGGGGRRRR2222 SSSSOOOORRRRMMMM2222LLLL DDDDOOOORRRRMMMM2222LLLL CCCCUUUUNNNNMMMM2222LLLL ZZZZUUUUNNNNMMMM2222LLLL
-
- SSSSOOOORRRRMMMM2222RRRR DDDDOOOORRRRMMMM2222RRRR CCCCUUUUNNNNMMMM2222RRRR ZZZZUUUUNNNNMMMM2222RRRR SSSSOOOORRRRMMMMLLLL2222 DDDDOOOORRRRMMMMLLLL2222 CCCCUUUUNNNNMMMMLLLL2222 ZZZZUUUUNNNNMMMMLLLL2222
-
- SSSSOOOORRRRMMMMRRRR2222 DDDDOOOORRRRMMMMRRRR2222 CCCCUUUUNNNNMMMMRRRR2222 ZZZZUUUUNNNNMMMMRRRR2222 SSSSPPPPBBBBTTTTFFFF2222 DDDDPPPPBBBBTTTTFFFF2222 CCCCPPPPBBBBTTTTFFFF2222 ZZZZPPPPBBBBTTTTFFFF2222
-
- SSSSPPPPOOOOTTTTFFFF2222 DDDDPPPPOOOOTTTTFFFF2222 CCCCPPPPOOOOTTTTFFFF2222 ZZZZPPPPOOOOTTTTFFFF2222 SSSSRRRRSSSSCCCCLLLL DDDDRRRRSSSSCCCCLLLL CCCCSSSSRRRRSSSSCCCCLLLL ZZZZDDDDRRRRSSSSCCCCLLLL
-
- SSSSSSSSYYYYGGGGSSSS2222 DDDDSSSSYYYYGGGGSSSS2222 CCCCHHHHEEEEGGGGSSSS2222 ZZZZHHHHEEEEGGGGSSSS2222 SSSSSSSSYYYYTTTTDDDD2222 DDDDSSSSYYYYTTTTDDDD2222 CCCCHHHHEEEETTTTDDDD2222 ZZZZHHHHEEEETTTTDDDD2222
-
- SSSSSSSSYYYYTTTTFFFF2222 DDDDSSSSYYYYTTTTFFFF2222 CCCCSSSSYYYYTTTTFFFF2222 ZZZZSSSSYYYYTTTTFFFF2222 CCCCHHHHEEEETTTTFFFF2222 ZZZZHHHHEEEETTTTFFFF2222
-
- SSSSTTTTRRRRTTTTIIII2222 DDDDTTTTRRRRTTTTIIII2222 CCCCTTTTRRRRTTTTIIII2222 ZZZZTTTTRRRRTTTTIIII2222
-
- LLLLSSSSNNNNAAAAMMMMEEEE LLLLSSSSAAAAMMMMEEEENNNN XXXXEEEERRRRBBBBLLLLAAAA
-
- NNNNOOOOTTTTEEEESSSS
- SCSL does not currently support reshaped arrays.
-
- SSSSEEEEEEEE AAAALLLLSSSSOOOO
- _L_A_P_A_C_K _U_s_e_r'_s _G_u_i_d_e
-
- IIIINNNNTTTTRRRROOOO____BBBBLLLLAAAASSSS1111(3S), IIIINNNNTTTTRRRROOOO____BBBBLLLLAAAASSSS2222(3S), IIIINNNNTTTTRRRROOOO____BBBBLLLLAAAASSSS3333(3S), IIIINNNNTTTTRRRROOOO____SSSSCCCCSSSSLLLL(3S),
- IIIINNNNTTTTRRRROOOO____SSSSOOOOLLLLVVVVEEEERRRRSSSS(3S)
-
-
-
-
-
- PPPPaaaaggggeeee 22225555
-
-
-
-
-
-
- IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS)))) IIIINNNNTTTTRRRROOOO____LLLLAAAAPPPPAAAACCCCKKKK((((3333SSSS))))
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 22226666
-
-
-
-
-
-
-