home *** CD-ROM | disk | FTP | other *** search
-
-
-
- DDDDSSSSBBBBGGGGVVVVXXXX((((3333SSSS)))) DDDDSSSSBBBBGGGGVVVVXXXX((((3333SSSS))))
-
-
-
- NNNNAAAAMMMMEEEE
- DSBGVX - compute selected eigenvalues, and optionally, eigenvectors of a
- real generalized symmetric-definite banded eigenproblem, of the form
- A*x=(lambda)*B*x
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE DSBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q,
- LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
- IWORK, IFAIL, INFO )
-
- CHARACTER JOBZ, RANGE, UPLO
-
- INTEGER IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M, N
-
- DOUBLE PRECISION ABSTOL, VL, VU
-
- INTEGER IFAIL( * ), IWORK( * )
-
- DOUBLE PRECISION AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
- W( * ), WORK( * ), Z( LDZ, * )
-
- IIIIMMMMPPPPLLLLEEEEMMMMEEEENNNNTTTTAAAATTTTIIIIOOOONNNN
- These routines are part of the SCSL Scientific Library and can be loaded
- using either the -lscs or the -lscs_mp option. The -lscs_mp option
- directs the linker to use the multi-processor version of the library.
-
- When linking to SCSL with -lscs or -lscs_mp, the default integer size is
- 4 bytes (32 bits). Another version of SCSL is available in which integers
- are 8 bytes (64 bits). This version allows the user access to larger
- memory sizes and helps when porting legacy Cray codes. It can be loaded
- by using the -lscs_i8 option or the -lscs_i8_mp option. A program may use
- only one of the two versions; 4-byte integer and 8-byte integer library
- calls cannot be mixed.
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- DSBGVX computes selected eigenvalues, and optionally, eigenvectors of a
- real generalized symmetric-definite banded eigenproblem, of the form
- A*x=(lambda)*B*x. Here A and B are assumed to be symmetric and banded,
- and B is also positive definite. Eigenvalues and eigenvectors can be
- selected by specifying either all eigenvalues, a range of values or a
- range of indices for the desired eigenvalues.
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- JOBZ (input) CHARACTER*1
- = 'N': Compute eigenvalues only;
- = 'V': Compute eigenvalues and eigenvectors.
-
- RANGE (input) CHARACTER*1
- = 'A': all eigenvalues will be found.
- = 'V': all eigenvalues in the half-open interval (VL,VU] will be
- found. = 'I': the IL-th through IU-th eigenvalues will be found.
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- DDDDSSSSBBBBGGGGVVVVXXXX((((3333SSSS)))) DDDDSSSSBBBBGGGGVVVVXXXX((((3333SSSS))))
-
-
-
- UPLO (input) CHARACTER*1
- = 'U': Upper triangles of A and B are stored;
- = 'L': Lower triangles of A and B are stored.
-
- N (input) INTEGER
- The order of the matrices A and B. N >= 0.
-
- KA (input) INTEGER
- The number of superdiagonals of the matrix A if UPLO = 'U', or
- the number of subdiagonals if UPLO = 'L'. KA >= 0.
-
- KB (input) INTEGER
- The number of superdiagonals of the matrix B if UPLO = 'U', or
- the number of subdiagonals if UPLO = 'L'. KB >= 0.
-
- AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
- On entry, the upper or lower triangle of the symmetric band
- matrix A, stored in the first ka+1 rows of the array. The j-th
- column of A is stored in the j-th column of the array AB as
- follows: if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-
- ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for
- j<=i<=min(n,j+ka).
-
- On exit, the contents of AB are destroyed.
-
- LDAB (input) INTEGER
- The leading dimension of the array AB. LDAB >= KA+1.
-
- BB (input/output) DOUBLE PRECISION array, dimension (LDBB, N)
- On entry, the upper or lower triangle of the symmetric band
- matrix B, stored in the first kb+1 rows of the array. The j-th
- column of B is stored in the j-th column of the array BB as
- follows: if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-
- kb)<=i<=j; if UPLO = 'L', BB(1+i-j,j) = B(i,j) for
- j<=i<=min(n,j+kb).
-
- On exit, the factor S from the split Cholesky factorization B =
- S**T*S, as returned by DPBSTF.
-
- LDBB (input) INTEGER
- The leading dimension of the array BB. LDBB >= KB+1.
-
- Q (output) DOUBLE PRECISION array, dimension (LDQ, N)
- If JOBZ = 'V', the n-by-n matrix used in the reduction of A*x =
- (lambda)*B*x to standard form, i.e. C*x = (lambda)*x, and
- consequently C to tridiagonal form. If JOBZ = 'N', the array Q
- is not referenced.
-
- LDQ (input) INTEGER
- The leading dimension of the array Q. If JOBZ = 'N', LDQ >= 1.
- If JOBZ = 'V', LDQ >= max(1,N).
-
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-
-
-
- DDDDSSSSBBBBGGGGVVVVXXXX((((3333SSSS)))) DDDDSSSSBBBBGGGGVVVVXXXX((((3333SSSS))))
-
-
-
- VL (input) DOUBLE PRECISION
- VU (input) DOUBLE PRECISION If RANGE='V', the lower and
- upper bounds of the interval to be searched for eigenvalues. VL <
- VU. Not referenced if RANGE = 'A' or 'I'.
-
- IL (input) INTEGER
- IU (input) INTEGER If RANGE='I', the indices (in ascending
- order) of the smallest and largest eigenvalues to be returned. 1
- <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not
- referenced if RANGE = 'A' or 'V'.
-
- ABSTOL (input) DOUBLE PRECISION
- The absolute error tolerance for the eigenvalues. An approximate
- eigenvalue is accepted as converged when it is determined to lie
- in an interval [a,b] of width less than or equal to
-
- ABSTOL + EPS * max( |a|,|b| ) ,
-
- where EPS is the machine precision. If ABSTOL is less than or
- equal to zero, then EPS*|T| will be used in its place, where
- |T| is the 1-norm of the tridiagonal matrix obtained by reducing
- A to tridiagonal form.
-
- Eigenvalues will be computed most accurately when ABSTOL is set
- to twice the underflow threshold 2*DLAMCH('S'), not zero. If
- this routine returns with INFO>0, indicating that some
- eigenvectors did not converge, try setting ABSTOL to
- 2*DLAMCH('S').
-
- M (output) INTEGER
- The total number of eigenvalues found. 0 <= M <= N. If RANGE =
- 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
-
- W (output) DOUBLE PRECISION array, dimension (N)
- If INFO = 0, the eigenvalues in ascending order.
-
- Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
- If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
- eigenvectors, with the i-th column of Z holding the eigenvector
- associated with W(i). The eigenvectors are normalized so
- Z**T*B*Z = I. If JOBZ = 'N', then Z is not referenced.
-
- LDZ (input) INTEGER
- The leading dimension of the array Z. LDZ >= 1, and if JOBZ =
- 'V', LDZ >= max(1,N).
-
- WORK (workspace/output) DOUBLE PRECISION array, dimension (7N)
-
- IWORK (workspace/output) INTEGER array, dimension (5N)
-
-
-
-
-
-
- PPPPaaaaggggeeee 3333
-
-
-
-
-
-
- DDDDSSSSBBBBGGGGVVVVXXXX((((3333SSSS)))) DDDDSSSSBBBBGGGGVVVVXXXX((((3333SSSS))))
-
-
-
- IFAIL (input) INTEGER array, dimension (M)
- If JOBZ = 'V', then if INFO = 0, the first M elements of IFAIL
- are zero. If INFO > 0, then IFAIL contains the indices of the
- eigenvalues that failed to converge. If JOBZ = 'N', then IFAIL
- is not referenced.
-
- INFO (output) INTEGER
- = 0 : successful exit
- < 0 : if INFO = -i, the i-th argument had an illegal value
- <= N: if INFO = i, then i eigenvectors failed to converge. Their
- indices are stored in IFAIL. > N : DPBSTF returned an error
- code; i.e., if INFO = N + i, for 1 <= i <= N, then the leading
- minor of order i of B is not positive definite. The
- factorization of B could not be completed and no eigenvalues or
- eigenvectors were computed.
-
- FFFFUUUURRRRTTTTHHHHEEEERRRR DDDDEEEETTTTAAAAIIIILLLLSSSS
- Based on contributions by
- Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
-
-
- SSSSEEEEEEEE AAAALLLLSSSSOOOO
- INTRO_LAPACK(3S), INTRO_SCSL(3S)
-
- This man page is available only online.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 4444
-
-
-
-