home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
OpenStep 4.2J (Developer)
/
os42jdev.iso
/
NextDeveloper
/
Source
/
GNU
/
debug
/
gdb
/
readline
/
readline.c
< prev
next >
Wrap
C/C++ Source or Header
|
1995-07-28
|
75KB
|
3,300 lines
/* readline.c -- a general facility for reading lines of input
with emacs style editing and completion. */
/* Copyright 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
This file is part of the GNU Readline Library, a library for
reading lines of text with interactive input and history editing.
The GNU Readline Library is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 1, or
(at your option) any later version.
The GNU Readline Library is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
The GNU General Public License is often shipped with GNU software, and
is generally kept in a file called COPYING or LICENSE. If you do not
have a copy of the license, write to the Free Software Foundation,
675 Mass Ave, Cambridge, MA 02139, USA. */
#include "sysdep.h"
#include <stdio.h>
#include <fcntl.h>
#ifndef NO_SYS_FILE
#include <sys/file.h>
#endif
#include <signal.h>
/* This is needed to include support for TIOCGWINSZ and window resizing. */
#if defined (OSF1) || defined (BSD386) || defined (_386BSD) || defined (AIX)
# include <sys/ioctl.h>
#endif /* OSF1 */
#if defined (HAVE_UNISTD_H)
# include <unistd.h>
#endif
#include <errno.h>
/* Not all systems declare ERRNO in errno.h... and some systems #define it! */
#if !defined (errno)
extern int errno;
#endif /* !errno */
extern char * getenv ();
#include <setjmp.h>
#include <sys/stat.h>
/* System-specific feature definitions and include files. */
#include "rldefs.h"
/* Some standard library routines. */
#include "readline.h"
#include "history.h"
/* NOTE: Functions and variables prefixed with `_rl_' are
pseudo-global: they are global so they can be shared
between files in the readline library, but are not intended
to be visible to readline callers. */
/* Functions imported from other files in the library. */
extern char *tgetstr ();
extern void rl_prep_terminal (), rl_deprep_terminal ();
extern void rl_vi_set_last ();
extern Function *rl_function_of_keyseq ();
extern char *tilde_expand ();
/* External redisplay functions and variables from display.c */
extern void rl_redisplay ();
extern void _rl_move_vert ();
extern void _rl_erase_at_end_of_line ();
extern void _rl_move_cursor_relative ();
extern int _rl_vis_botlin;
extern int _rl_last_c_pos;
extern int rl_display_fixed;
/* Variables imported from complete.c. */
extern char *rl_completer_word_break_characters;
extern char *rl_basic_word_break_characters;
extern Function *rl_symbolic_link_hook;
extern int rl_completion_query_items;
extern int rl_complete_with_tilde_expansion;
/* Forward declarations used in this file. */
void rl_dispatch ();
void free_history_entry ();
int _rl_output_character_function ();
#if !defined (MINIMAL)
void _rl_set_screen_size ();
#endif /* !MINIMAL */
void free_undo_list (), rl_add_undo ();
#if !defined (MINIMAL)
static void readline_default_bindings ();
#endif /* !MINIMAL */
#if defined (__GO32__)
# include <sys/pc.h>
# undef HANDLE_SIGNALS
#endif /* __GO32__ */
#if defined (STATIC_MALLOC)
static char *xmalloc (), *xrealloc ();
#else
extern char *xmalloc (), *xrealloc ();
#endif /* STATIC_MALLOC */
/* **************************************************************** */
/* */
/* Line editing input utility */
/* */
/* **************************************************************** */
static char *LibraryVersion = "2.0 (Cygnus)";
/* A pointer to the keymap that is currently in use.
By default, it is the standard emacs keymap. */
Keymap _rl_keymap = emacs_standard_keymap;
/* The current style of editing. */
int rl_editing_mode = emacs_mode;
/* Non-zero if the previous command was a kill command. */
static int last_command_was_kill = 0;
/* The current value of the numeric argument specified by the user. */
int rl_numeric_arg = 1;
/* Non-zero if an argument was typed. */
int rl_explicit_arg = 0;
/* Temporary value used while generating the argument. */
int rl_arg_sign = 1;
/* Non-zero means we have been called at least once before. */
static int rl_initialized = 0;
/* If non-zero, this program is running in an EMACS buffer. */
static char *running_in_emacs = (char *)NULL;
/* The current offset in the current input line. */
int rl_point;
/* Mark in the current input line. */
int rl_mark;
/* Length of the current input line. */
int rl_end;
/* Make this non-zero to return the current input_line. */
int rl_done;
/* The last function executed by readline. */
Function *rl_last_func = (Function *)NULL;
/* Top level environment for readline_internal (). */
static jmp_buf readline_top_level;
/* The streams we interact with. */
static FILE *in_stream, *out_stream;
/* The names of the streams that we do input and output to. */
FILE *rl_instream = (FILE *)NULL;
FILE *rl_outstream = (FILE *)NULL;
/* Non-zero means echo characters as they are read. */
int readline_echoing_p = 1;
/* Current prompt. */
char *rl_prompt;
/* The number of characters read in order to type this complete command. */
int rl_key_sequence_length = 0;
/* If non-zero, then this is the address of a function to call just
before readline_internal () prints the first prompt. */
Function *rl_startup_hook = (Function *)NULL;
/* What we use internally. You should always refer to RL_LINE_BUFFER. */
static char *the_line;
/* The character that can generate an EOF. Really read from
the terminal driver... just defaulted here. */
int _rl_eof_char = CTRL ('D');
/* Non-zero makes this the next keystroke to read. */
int rl_pending_input = 0;
/* Pointer to a useful terminal name. */
char *rl_terminal_name = (char *)NULL;
/* Non-zero means to always use horizontal scrolling in line display. */
int _rl_horizontal_scroll_mode = 0;
/* Non-zero means to display an asterisk at the starts of history lines
which have been modified. */
int _rl_mark_modified_lines = 0;
/* Non-zero means to use a visible bell if one is available rather than
simply ringing the terminal bell. */
int _rl_prefer_visible_bell = 0;
/* Line buffer and maintenence. */
char *rl_line_buffer = (char *)NULL;
int rl_line_buffer_len = 0;
#define DEFAULT_BUFFER_SIZE 256
/* **************************************************************** */
/* */
/* `Forward' declarations */
/* */
/* **************************************************************** */
/* Non-zero means do not parse any lines other than comments and
parser directives. */
unsigned char _rl_parsing_conditionalized_out = 0;
/* Non-zero means to save keys that we dispatch on in a kbd macro. */
static int defining_kbd_macro = 0;
/* Non-zero means to convert characters with the meta bit set to
escape-prefixed characters so we can indirect through
emacs_meta_keymap or vi_escape_keymap. */
int _rl_convert_meta_chars_to_ascii = 1;
/* Non-zero tells rl_delete_text and rl_insert_text to not add to
the undo list. */
static int doing_an_undo = 0;
/* **************************************************************** */
/* */
/* Top Level Functions */
/* */
/* **************************************************************** */
/* Non-zero means treat 0200 bit in terminal input as Meta bit. */
int _rl_meta_flag = 0; /* Forward declaration */
/* Read a line of input. Prompt with PROMPT. A NULL PROMPT means
none. A return value of NULL means that EOF was encountered. */
char *
readline (prompt)
char *prompt;
{
char *readline_internal ();
char *value;
rl_prompt = prompt;
/* If we are at EOF return a NULL string. */
if (rl_pending_input == EOF)
{
rl_pending_input = 0;
return ((char *)NULL);
}
rl_initialize ();
rl_prep_terminal (_rl_meta_flag);
#if defined (HANDLE_SIGNALS)
rl_set_signals ();
#endif
value = readline_internal ();
rl_deprep_terminal ();
#if defined (HANDLE_SIGNALS)
rl_clear_signals ();
#endif
return (value);
}
/* Read a line of input from the global rl_instream, doing output on
the global rl_outstream.
If rl_prompt is non-null, then that is our prompt. */
char *
readline_internal ()
{
int lastc, c, eof_found;
in_stream = rl_instream;
out_stream = rl_outstream;
lastc = -1;
eof_found = 0;
if (rl_startup_hook)
(*rl_startup_hook) ();
if (!readline_echoing_p)
{
if (rl_prompt)
{
fprintf (out_stream, "%s", rl_prompt);
fflush (out_stream);
}
}
else
{
rl_on_new_line ();
rl_redisplay ();
#if defined (VI_MODE)
if (rl_editing_mode == vi_mode)
rl_vi_insertion_mode ();
#endif /* VI_MODE */
}
while (!rl_done)
{
int lk = last_command_was_kill;
int code;
code = setjmp (readline_top_level);
if (code)
rl_redisplay ();
if (!rl_pending_input)
{
/* Then initialize the argument and number of keys read. */
rl_init_argument ();
rl_key_sequence_length = 0;
}
c = rl_read_key ();
/* EOF typed to a non-blank line is a <NL>. */
if (c == EOF && rl_end)
c = NEWLINE;
/* The character _rl_eof_char typed to blank line, and not as the
previous character is interpreted as EOF. */
if (((c == _rl_eof_char && lastc != c) || c == EOF) && !rl_end)
{
eof_found = 1;
break;
}
lastc = c;
rl_dispatch (c, _rl_keymap);
/* If there was no change in last_command_was_kill, then no kill
has taken place. Note that if input is pending we are reading
a prefix command, so nothing has changed yet. */
if (!rl_pending_input)
{
if (lk == last_command_was_kill)
last_command_was_kill = 0;
}
#if defined (VI_MODE)
/* In vi mode, when you exit insert mode, the cursor moves back
over the previous character. We explicitly check for that here. */
if (rl_editing_mode == vi_mode && _rl_keymap == vi_movement_keymap)
rl_vi_check ();
#endif /* VI_MODE */
if (!rl_done)
rl_redisplay ();
}
/* Restore the original of this history line, iff the line that we
are editing was originally in the history, AND the line has changed. */
{
HIST_ENTRY *entry = current_history ();
if (entry && rl_undo_list)
{
char *temp = savestring (the_line);
rl_revert_line ();
entry = replace_history_entry (where_history (), the_line,
(HIST_ENTRY *)NULL);
free_history_entry (entry);
strcpy (the_line, temp);
free (temp);
}
}
/* At any rate, it is highly likely that this line has an undo list. Get
rid of it now. */
if (rl_undo_list)
free_undo_list ();
if (eof_found)
return (char *)NULL;
else
return (savestring (the_line));
}
/* **************************************************************** */
/* */
/* Character Input Buffering */
/* */
/* **************************************************************** */
static int pop_index = 0, push_index = 0, ibuffer_len = 511;
static unsigned char ibuffer[512];
/* Non-null means it is a pointer to a function to run while waiting for
character input. */
Function *rl_event_hook = (Function *)NULL;
#define any_typein (push_index != pop_index)
/* Add KEY to the buffer of characters to be read. */
rl_stuff_char (key)
int key;
{
if (key == EOF)
{
key = NEWLINE;
rl_pending_input = EOF;
}
ibuffer[push_index++] = key;
if (push_index >= ibuffer_len)
push_index = 0;
}
/* Return the amount of space available in the
buffer for stuffing characters. */
int
ibuffer_space ()
{
if (pop_index > push_index)
return (pop_index - push_index);
else
return (ibuffer_len - (push_index - pop_index));
}
/* Get a key from the buffer of characters to be read.
Return the key in KEY.
Result is KEY if there was a key, or 0 if there wasn't. */
int
rl_get_char (key)
int *key;
{
if (push_index == pop_index)
return (0);
*key = ibuffer[pop_index++];
if (pop_index >= ibuffer_len)
pop_index = 0;
return (1);
}
/* Stuff KEY into the *front* of the input buffer.
Returns non-zero if successful, zero if there is
no space left in the buffer. */
int
rl_unget_char (key)
int key;
{
if (ibuffer_space ())
{
pop_index--;
if (pop_index < 0)
pop_index = ibuffer_len - 1;
ibuffer[pop_index] = key;
return (1);
}
return (0);
}
/* If a character is available to be read, then read it
and stuff it into IBUFFER. Otherwise, just return. */
void
rl_gather_tyi ()
{
#if defined (MINIMAL)
char input;
if (isatty (0))
{
int i = rl_getc ();
if (i != EOF)
rl_stuff_char (i);
}
else if (kbhit () && ibuffer_space ())
rl_stuff_char (getkey () & 0x7f);
#else /* !MINIMAL */
int tty = fileno (in_stream);
register int tem, result = -1;
int chars_avail;
char input;
#if defined (FIONREAD)
result = ioctl (tty, FIONREAD, &chars_avail);
#endif
#if defined (O_NDELAY)
if (result == -1)
{
int flags;
flags = fcntl (tty, F_GETFL, 0);
fcntl (tty, F_SETFL, (flags | O_NDELAY));
chars_avail = read (tty, &input, 1);
fcntl (tty, F_SETFL, flags);
if (chars_avail == -1 && errno == EAGAIN)
return;
}
#endif /* O_NDELAY */
/* If there's nothing available, don't waste time trying to read
something. */
if (chars_avail == 0)
return;
tem = ibuffer_space ();
if (chars_avail > tem)
chars_avail = tem;
/* One cannot read all of the available input. I can only read a single
character at a time, or else programs which require input can be
thwarted. If the buffer is larger than one character, I lose.
Damn! */
if (tem < ibuffer_len)
chars_avail = 0;
if (result != -1)
{
while (chars_avail--)
rl_stuff_char (rl_getc (in_stream));
}
else
{
if (chars_avail)
rl_stuff_char (input);
}
#endif /* !MINIMAL */
}
static int next_macro_key ();
/* Read a key, including pending input. */
int
rl_read_key ()
{
int c;
rl_key_sequence_length++;
if (rl_pending_input)
{
c = rl_pending_input;
rl_pending_input = 0;
}
else
{
/* If input is coming from a macro, then use that. */
if (c = next_macro_key ())
return (c);
/* If the user has an event function, then call it periodically. */
if (rl_event_hook)
{
while (rl_event_hook && !rl_get_char (&c))
{
(*rl_event_hook) ();
rl_gather_tyi ();
}
}
else
{
if (!rl_get_char (&c))
c = rl_getc (in_stream);
}
}
return (c);
}
/* Found later in this file. */
static void add_macro_char (), with_macro_input ();
/* Do the command associated with KEY in MAP.
If the associated command is really a keymap, then read
another key, and dispatch into that map. */
void
rl_dispatch (key, map)
register int key;
Keymap map;
{
#if defined (VI_MODE)
extern int _rl_vi_last_command, _rl_vi_last_repeat, _rl_vi_last_arg_sign;
#endif
if (defining_kbd_macro)
add_macro_char (key);
if (META_CHAR (key) && _rl_convert_meta_chars_to_ascii)
{
if (map[ESC].type == ISKMAP)
{
#if defined (CRAY)
map = (Keymap)((int)map[ESC].function);
#else
map = (Keymap)map[ESC].function;
#endif
key = UNMETA (key);
rl_key_sequence_length += 2;
rl_dispatch (key, map);
}
else
ding ();
return;
}
switch (map[key].type)
{
case ISFUNC:
{
Function *func = map[key].function;
if (func != (Function *)NULL)
{
/* Special case rl_do_lowercase_version (). */
if (func == rl_do_lowercase_version)
{
rl_dispatch (to_lower (key), map);
return;
}
(*map[key].function)(rl_numeric_arg * rl_arg_sign, key);
/* If we have input pending, then the last command was a prefix
command. Don't change the state of rl_last_func. Otherwise,
remember the last command executed in this variable. */
if (!rl_pending_input)
rl_last_func = map[key].function;
}
else
{
rl_abort ();
return;
}
}
break;
case ISKMAP:
if (map[key].function != (Function *)NULL)
{
int newkey;
rl_key_sequence_length++;
newkey = rl_read_key ();
#if defined (CRAY)
/* If you cast map[key].function to type (Keymap) on a Cray,
the compiler takes the value of may[key].function and
divides it by 4 to convert between pointer types (pointers
to functions and pointers to structs are different sizes).
This is not what is wanted. */
rl_dispatch (newkey, (Keymap)((int)map[key].function));
#else
rl_dispatch (newkey, (Keymap)map[key].function);
#endif /* !CRAY */
}
else
{
rl_abort ();
return;
}
break;
case ISMACR:
if (map[key].function != (Function *)NULL)
{
char *macro;
macro = savestring ((char *)map[key].function);
with_macro_input (macro);
return;
}
break;
}
#if defined (VI_MODE)
if (rl_editing_mode == vi_mode && _rl_keymap == vi_movement_keymap &&
rl_vi_textmod_command (key))
{
_rl_vi_last_command = key;
_rl_vi_last_repeat = rl_numeric_arg;
_rl_vi_last_arg_sign = rl_arg_sign;
}
#endif
}
/* **************************************************************** */
/* */
/* Hacking Keyboard Macros */
/* */
/* **************************************************************** */
/* The currently executing macro string. If this is non-zero,
then it is a malloc ()'ed string where input is coming from. */
static char *executing_macro = (char *)NULL;
/* The offset in the above string to the next character to be read. */
static int executing_macro_index = 0;
/* The current macro string being built. Characters get stuffed
in here by add_macro_char (). */
static char *current_macro = (char *)NULL;
/* The size of the buffer allocated to current_macro. */
static int current_macro_size = 0;
/* The index at which characters are being added to current_macro. */
static int current_macro_index = 0;
/* A structure used to save nested macro strings.
It is a linked list of string/index for each saved macro. */
struct saved_macro {
struct saved_macro *next;
char *string;
int index;
};
/* The list of saved macros. */
struct saved_macro *macro_list = (struct saved_macro *)NULL;
/* Forward declarations of static functions. Thank you C. */
static void push_executing_macro (), pop_executing_macro ();
/* This one has to be declared earlier in the file. */
/* static void add_macro_char (); */
/* Set up to read subsequent input from STRING.
STRING is free ()'ed when we are done with it. */
static void
with_macro_input (string)
char *string;
{
push_executing_macro ();
executing_macro = string;
executing_macro_index = 0;
}
/* Return the next character available from a macro, or 0 if
there are no macro characters. */
static int
next_macro_key ()
{
if (!executing_macro)
return (0);
if (!executing_macro[executing_macro_index])
{
pop_executing_macro ();
return (next_macro_key ());
}
return (executing_macro[executing_macro_index++]);
}
/* Save the currently executing macro on a stack of saved macros. */
static void
push_executing_macro ()
{
struct saved_macro *saver;
saver = (struct saved_macro *)xmalloc (sizeof (struct saved_macro));
saver->next = macro_list;
saver->index = executing_macro_index;
saver->string = executing_macro;
macro_list = saver;
}
/* Discard the current macro, replacing it with the one
on the top of the stack of saved macros. */
static void
pop_executing_macro ()
{
if (executing_macro)
free (executing_macro);
executing_macro = (char *)NULL;
executing_macro_index = 0;
if (macro_list)
{
struct saved_macro *disposer = macro_list;
executing_macro = macro_list->string;
executing_macro_index = macro_list->index;
macro_list = macro_list->next;
free (disposer);
}
}
/* Add a character to the macro being built. */
static void
add_macro_char (c)
int c;
{
if (current_macro_index + 1 >= current_macro_size)
{
if (!current_macro)
current_macro = (char *)xmalloc (current_macro_size = 25);
else
current_macro =
(char *)xrealloc (current_macro, current_macro_size += 25);
}
current_macro[current_macro_index++] = c;
current_macro[current_macro_index] = '\0';
}
/* Begin defining a keyboard macro.
Keystrokes are recorded as they are executed.
End the definition with rl_end_kbd_macro ().
If a numeric argument was explicitly typed, then append this
definition to the end of the existing macro, and start by
re-executing the existing macro. */
rl_start_kbd_macro (ignore1, ignore2)
int ignore1, ignore2;
{
if (defining_kbd_macro)
rl_abort ();
if (rl_explicit_arg)
{
if (current_macro)
with_macro_input (savestring (current_macro));
}
else
current_macro_index = 0;
defining_kbd_macro = 1;
}
/* Stop defining a keyboard macro.
A numeric argument says to execute the macro right now,
that many times, counting the definition as the first time. */
rl_end_kbd_macro (count, ignore)
int count, ignore;
{
if (!defining_kbd_macro)
rl_abort ();
current_macro_index -= (rl_key_sequence_length - 1);
current_macro[current_macro_index] = '\0';
defining_kbd_macro = 0;
rl_call_last_kbd_macro (--count, 0);
}
/* Execute the most recently defined keyboard macro.
COUNT says how many times to execute it. */
rl_call_last_kbd_macro (count, ignore)
int count, ignore;
{
if (!current_macro)
rl_abort ();
if (defining_kbd_macro)
{
ding (); /* no recursive macros */
current_macro[--current_macro_index] = '\0'; /* erase this char */
return 0;
}
while (count--)
with_macro_input (savestring (current_macro));
}
void
_rl_kill_kbd_macro ()
{
if (current_macro)
{
free (current_macro);
current_macro = (char *) NULL;
}
current_macro_size = current_macro_index = 0;
if (executing_macro)
{
free (executing_macro);
executing_macro = (char *) NULL;
}
executing_macro_index = 0;
defining_kbd_macro = 0;
}
/* **************************************************************** */
/* */
/* Initializations */
/* */
/* **************************************************************** */
/* Initliaze readline (and terminal if not already). */
rl_initialize ()
{
/* If we have never been called before, initialize the
terminal and data structures. */
if (!rl_initialized)
{
readline_initialize_everything ();
rl_initialized++;
}
/* Initalize the current line information. */
rl_point = rl_end = 0;
the_line = rl_line_buffer;
the_line[0] = 0;
/* We aren't done yet. We haven't even gotten started yet! */
rl_done = 0;
/* Tell the history routines what is going on. */
start_using_history ();
/* Make the display buffer match the state of the line. */
rl_reset_line_state ();
/* No such function typed yet. */
rl_last_func = (Function *)NULL;
/* Parsing of key-bindings begins in an enabled state. */
_rl_parsing_conditionalized_out = 0;
}
/* Initialize the entire state of the world. */
readline_initialize_everything ()
{
/* Find out if we are running in Emacs. */
running_in_emacs = getenv ("EMACS");
/* Set up input and output if they are not already set up. */
if (!rl_instream)
rl_instream = stdin;
if (!rl_outstream)
rl_outstream = stdout;
/* Bind in_stream and out_stream immediately. These values may change,
but they may also be used before readline_internal () is called. */
in_stream = rl_instream;
out_stream = rl_outstream;
/* Allocate data structures. */
if (!rl_line_buffer)
rl_line_buffer =
(char *)xmalloc (rl_line_buffer_len = DEFAULT_BUFFER_SIZE);
/* Initialize the terminal interface. */
init_terminal_io ((char *)NULL);
#if !defined (MINIMAL)
/* Bind tty characters to readline functions. */
readline_default_bindings ();
#endif /* !MINIMAL */
/* Initialize the function names. */
rl_initialize_funmap ();
/* Read in the init file. */
rl_read_init_file ((char *)NULL);
/* If the completion parser's default word break characters haven't
been set yet, then do so now. */
{
if (rl_completer_word_break_characters == (char *)NULL)
rl_completer_word_break_characters = rl_basic_word_break_characters;
}
}
/* If this system allows us to look at the values of the regular
input editing characters, then bind them to their readline
equivalents, iff the characters are not bound to keymaps. */
#if !defined (MINIMAL)
static void
readline_default_bindings ()
{
rltty_set_default_bindings (_rl_keymap);
}
#endif /* !MINIMAL */
/* **************************************************************** */
/* */
/* Numeric Arguments */
/* */
/* **************************************************************** */
/* Handle C-u style numeric args, as well as M--, and M-digits. */
/* Add the current digit to the argument in progress. */
rl_digit_argument (ignore, key)
int ignore, key;
{
rl_pending_input = key;
rl_digit_loop ();
}
/* What to do when you abort reading an argument. */
rl_discard_argument ()
{
ding ();
rl_clear_message ();
rl_init_argument ();
}
/* Create a default argument. */
rl_init_argument ()
{
rl_numeric_arg = rl_arg_sign = 1;
rl_explicit_arg = 0;
}
/* C-u, universal argument. Multiply the current argument by 4.
Read a key. If the key has nothing to do with arguments, then
dispatch on it. If the key is the abort character then abort. */
rl_universal_argument ()
{
rl_numeric_arg *= 4;
rl_digit_loop ();
}
rl_digit_loop ()
{
int key, c;
while (1)
{
rl_message ("(arg: %d) ", rl_arg_sign * rl_numeric_arg);
key = c = rl_read_key ();
if (_rl_keymap[c].type == ISFUNC &&
_rl_keymap[c].function == rl_universal_argument)
{
rl_numeric_arg *= 4;
continue;
}
c = UNMETA (c);
if (numeric (c))
{
if (rl_explicit_arg)
rl_numeric_arg = (rl_numeric_arg * 10) + (c - '0');
else
rl_numeric_arg = (c - '0');
rl_explicit_arg = 1;
}
else
{
if (c == '-' && !rl_explicit_arg)
{
rl_numeric_arg = 1;
rl_arg_sign = -1;
}
else
{
rl_clear_message ();
rl_dispatch (key, _rl_keymap);
return;
}
}
}
}
/* **************************************************************** */
/* */
/* Terminal and Termcap */
/* */
/* **************************************************************** */
static char *term_buffer = (char *)NULL;
static char *term_string_buffer = (char *)NULL;
/* Non-zero means this terminal can't really do anything. */
int dumb_term = 0;
/* On Solaris2, sys/types.h #includes sys/reg.h, which #defines PC.
Unfortunately, PC is a global variable used by the termcap library. */
#undef PC
#if !defined (__linux__)
char PC;
char *BC, *UP;
#endif /* __linux__ */
/* Some strings to control terminal actions. These are output by tputs (). */
char *term_goto, *term_clreol, *term_cr, *term_clrpag, *term_backspace;
int screenwidth, screenheight;
/* Non-zero if we determine that the terminal can do character insertion. */
int terminal_can_insert = 0;
/* How to insert characters. */
char *term_im, *term_ei, *term_ic, *term_ip, *term_IC;
/* How to delete characters. */
char *term_dc, *term_DC;
#if defined (HACK_TERMCAP_MOTION)
char *term_forward_char;
#endif /* HACK_TERMCAP_MOTION */
/* How to go up a line. */
char *term_up;
/* True if we have funny auto-line-wrap ("am" and "xn"). */
int term_xn;
/* A visible bell, if the terminal can be made to flash the screen. */
char *visible_bell;
/* Non-zero means that this terminal has a meta key. */
int term_has_meta;
/* The string to write to turn on the meta key, if this term has one. */
char *term_mm;
/* The string to write to turn off the meta key, if this term has one. */
char *term_mo;
/* The key sequences output by the arrow keys, if this terminal has any. */
char *term_ku, *term_kd, *term_kr, *term_kl;
/* Re-initialize the terminal considering that the TERM/TERMCAP variable
has changed. */
rl_reset_terminal (terminal_name)
char *terminal_name;
{
init_terminal_io (terminal_name);
}
/* Set readline's idea of the screen size. TTY is a file descriptor open
to the terminal. If IGNORE_ENV is true, we do not pay attention to the
values of $LINES and $COLUMNS. The tests for TERM_STRING_BUFFER being
non-null serve to check whether or not we have initialized termcap. */
#if !defined (MINIMAL)
void
_rl_set_screen_size (tty, ignore_env)
int tty, ignore_env;
{
#ifndef MINIMAL
#if defined (TIOCGWINSZ) && !defined (TIOCGWINSZ_BROKEN)
struct winsize window_size;
#endif /* TIOCGWINSZ */
#if defined (TIOCGWINSZ) && !defined (TIOCGWINSZ_BROKEN)
if (ioctl (tty, TIOCGWINSZ, &window_size) == 0)
{
screenwidth = (int) window_size.ws_col;
screenheight = (int) window_size.ws_row;
}
#endif /* TIOCGWINSZ */
/* Environment variable COLUMNS overrides setting of "co" if IGNORE_ENV
is unset. */
if (screenwidth <= 0)
{
char *sw;
if (!ignore_env && (sw = getenv ("COLUMNS")))
screenwidth = atoi (sw);
if (screenwidth <= 0 && term_string_buffer)
screenwidth = tgetnum ("co");
}
/* Environment variable LINES overrides setting of "li" if IGNORE_ENV
is unset. */
if (screenheight <= 0)
{
char *sh;
if (!ignore_env && (sh = getenv ("LINES")))
screenheight = atoi (sh);
if (screenheight <= 0 && term_string_buffer)
screenheight = tgetnum ("li");
}
/* If all else fails, default to 80x24 terminal. */
if (screenwidth <= 0)
screenwidth = 80;
if (screenheight <= 0)
screenheight = 24;
#if defined (SHELL)
/* If we're being compiled as part of bash, set the environment
variables $LINES and $COLUMNS to new values. */
set_lines_and_columns (screenheight, screenwidth);
#endif
/* If we don't have xn (most modern terminals do),
don't use the last column. */
if (!term_xn)
screenwidth--;
#endif
}
#endif /* !MINIMAL */
init_terminal_io (terminal_name)
char *terminal_name;
{
#if defined (MINIMAL)
screenwidth = ScreenCols ();
screenheight = ScreenRows ();
term_cr = "\r";
term_im = term_ei = term_ic = term_IC = (char *)NULL;
term_up = term_dc = term_DC = visible_bell = (char *)NULL;
/* Does the MINIMAL have a meta key? I don't know. */
term_has_meta = 0;
term_mm = term_mo = (char *)NULL;
/* It probably has arrow keys, but I don't know what they are. */
term_ku = term_kd = term_kr = term_kl = (char *)NULL;
#if defined (HACK_TERMCAP_MOTION)
term_forward_char = (char *)NULL;
#endif /* HACK_TERMCAP_MOTION */
terminal_can_insert = term_xn = 0;
return;
#else /* !MINIMAL */
char *term, *buffer;
int tty;
term = terminal_name ? terminal_name : getenv ("TERM");
if (!term_string_buffer)
term_string_buffer = (char *)xmalloc (2048);
if (!term_buffer)
term_buffer = (char *)xmalloc (2048);
buffer = term_string_buffer;
term_clrpag = term_cr = term_clreol = (char *)NULL;
if (!term)
term = "dumb";
if (tgetent (term_buffer, term) <= 0)
{
dumb_term = 1;
screenwidth = 79;
screenheight = 24;
term_cr = "\r";
term_im = term_ei = term_ic = term_IC = (char *)NULL;
term_up = term_dc = term_DC = visible_bell = (char *)NULL;
term_ku = term_kd = term_kl = term_kr = (char *)NULL;
#if defined (HACK_TERMCAP_MOTION)
term_forward_char = (char *)NULL;
#endif
terminal_can_insert = term_xn = 0;
return;
}
BC = tgetstr ("pc", &buffer);
PC = buffer ? *buffer : 0;
term_backspace = tgetstr ("le", &buffer);
term_cr = tgetstr ("cr", &buffer);
term_clreol = tgetstr ("ce", &buffer);
term_clrpag = tgetstr ("cl", &buffer);
if (!term_cr)
term_cr = "\r";
#if defined (HACK_TERMCAP_MOTION)
term_forward_char = tgetstr ("nd", &buffer);
#endif /* HACK_TERMCAP_MOTION */
if (rl_instream)
tty = fileno (rl_instream);
else
tty = 0;
screenwidth = screenheight = 0;
term_xn = tgetflag ("am") && tgetflag ("xn");
_rl_set_screen_size (tty, 0);
term_im = tgetstr ("im", &buffer);
term_ei = tgetstr ("ei", &buffer);
term_IC = tgetstr ("IC", &buffer);
term_ic = tgetstr ("ic", &buffer);
/* "An application program can assume that the terminal can do
character insertion if *any one of* the capabilities `IC',
`im', `ic' or `ip' is provided." But we can't do anything if
only `ip' is provided, so... */
terminal_can_insert = (term_IC || term_im || term_ic);
term_up = tgetstr ("up", &buffer);
term_dc = tgetstr ("dc", &buffer);
term_DC = tgetstr ("DC", &buffer);
visible_bell = tgetstr ("vb", &buffer);
/* Check to see if this terminal has a meta key. */
term_has_meta = (tgetflag ("km") || tgetflag ("MT"));
if (term_has_meta)
{
term_mm = tgetstr ("mm", &buffer);
term_mo = tgetstr ("mo", &buffer);
}
else
{
term_mm = (char *)NULL;
term_mo = (char *)NULL;
}
/* Attempt to find and bind the arrow keys. Do not override already
bound keys in an overzealous attempt, however. */
term_ku = tgetstr ("ku", &buffer);
term_kd = tgetstr ("kd", &buffer);
term_kr = tgetstr ("kr", &buffer);
term_kl = tgetstr ("kl", &buffer);
if (term_ku)
{
Function *func;
func = rl_function_of_keyseq (term_ku, _rl_keymap, (int *)NULL);
if (!func || func == rl_do_lowercase_version)
rl_set_key (term_ku, rl_get_previous_history, _rl_keymap);
}
if (term_kd)
{
Function *func;
func = rl_function_of_keyseq (term_kd, _rl_keymap, (int *)NULL);
if (!func || func == rl_do_lowercase_version)
rl_set_key (term_kd, rl_get_next_history, _rl_keymap);
}
if (term_kr)
{
Function *func;
func = rl_function_of_keyseq (term_kr, _rl_keymap, (int *)NULL);
if (!func || func == rl_do_lowercase_version)
rl_set_key (term_kr, rl_forward, _rl_keymap);
}
if (term_kl)
{
Function *func;
func = rl_function_of_keyseq (term_kl, _rl_keymap, (int *)NULL);
if (!func || func == rl_do_lowercase_version)
rl_set_key (term_kl, rl_backward, _rl_keymap);
}
#endif /* !MINIMAL */
return 0;
}
/* A function for the use of tputs () */
int
_rl_output_character_function (c)
int c;
{
return putc (c, out_stream);
}
/* Write COUNT characters from STRING to the output stream. */
void
_rl_output_some_chars (string, count)
char *string;
int count;
{
fwrite (string, 1, count, out_stream);
}
/* Move the cursor back. */
backspace (count)
int count;
{
register int i;
#if !defined (MINIMAL)
if (term_backspace)
for (i = 0; i < count; i++)
tputs (term_backspace, 1, _rl_output_character_function);
else
#endif /* !MINIMAL */
for (i = 0; i < count; i++)
putc ('\b', out_stream);
}
/* Move to the start of the next line. */
crlf ()
{
#if defined (NEW_TTY_DRIVER)
tputs (term_cr, 1, _rl_output_character_function);
#endif /* NEW_TTY_DRIVER */
putc ('\n', out_stream);
}
/* **************************************************************** */
/* */
/* Utility Functions */
/* */
/* **************************************************************** */
/* Return 0 if C is not a member of the class of characters that belong
in words, or 1 if it is. */
int allow_pathname_alphabetic_chars = 0;
char *pathname_alphabetic_chars = "/-_=~.#$";
int
alphabetic (c)
int c;
{
if (pure_alphabetic (c) || (numeric (c)))
return (1);
if (allow_pathname_alphabetic_chars)
return (strchr (pathname_alphabetic_chars, c) != NULL);
else
return (0);
}
/* Return non-zero if C is a numeric character. */
int
numeric (c)
int c;
{
return (c >= '0' && c <= '9');
}
/* Ring the terminal bell. */
int
ding ()
{
if (readline_echoing_p)
{
#if !defined (MINIMAL)
if (_rl_prefer_visible_bell && visible_bell)
tputs (visible_bell, 1, _rl_output_character_function);
else
#endif /* !MINIMAL */
{
fprintf (stderr, "\007");
fflush (stderr);
}
}
return (-1);
}
/* How to abort things. */
rl_abort ()
{
ding ();
rl_clear_message ();
rl_init_argument ();
rl_pending_input = 0;
defining_kbd_macro = 0;
while (executing_macro)
pop_executing_macro ();
rl_last_func = (Function *)NULL;
longjmp (readline_top_level, 1);
}
/* Return a copy of the string between FROM and TO.
FROM is inclusive, TO is not. */
char *
rl_copy_text (from, to)
int from, to;
{
register int length;
char *copy;
/* Fix it if the caller is confused. */
if (from > to)
{
int t = from;
from = to;
to = t;
}
length = to - from;
copy = (char *)xmalloc (1 + length);
strncpy (copy, the_line + from, length);
copy[length] = '\0';
return (copy);
}
/* Increase the size of RL_LINE_BUFFER until it has enough space to hold
LEN characters. */
void
rl_extend_line_buffer (len)
int len;
{
while (len >= rl_line_buffer_len)
rl_line_buffer =
(char *)xrealloc
(rl_line_buffer, rl_line_buffer_len += DEFAULT_BUFFER_SIZE);
the_line = rl_line_buffer;
}
/* **************************************************************** */
/* */
/* Insert and Delete */
/* */
/* **************************************************************** */
/* Insert a string of text into the line at point. This is the only
way that you should do insertion. rl_insert () calls this
function. */
rl_insert_text (string)
char *string;
{
register int i, l = strlen (string);
if (rl_end + l >= rl_line_buffer_len)
rl_extend_line_buffer (rl_end + l);
for (i = rl_end; i >= rl_point; i--)
the_line[i + l] = the_line[i];
strncpy (the_line + rl_point, string, l);
/* Remember how to undo this if we aren't undoing something. */
if (!doing_an_undo)
{
/* If possible and desirable, concatenate the undos. */
if ((strlen (string) == 1) &&
rl_undo_list &&
(rl_undo_list->what == UNDO_INSERT) &&
(rl_undo_list->end == rl_point) &&
(rl_undo_list->end - rl_undo_list->start < 20))
rl_undo_list->end++;
else
rl_add_undo (UNDO_INSERT, rl_point, rl_point + l, (char *)NULL);
}
rl_point += l;
rl_end += l;
the_line[rl_end] = '\0';
}
/* Delete the string between FROM and TO. FROM is
inclusive, TO is not. */
rl_delete_text (from, to)
int from, to;
{
register char *text;
/* Fix it if the caller is confused. */
if (from > to)
{
int t = from;
from = to;
to = t;
}
text = rl_copy_text (from, to);
strncpy (the_line + from, the_line + to, rl_end - to);
/* Remember how to undo this delete. */
if (!doing_an_undo)
rl_add_undo (UNDO_DELETE, from, to, text);
else
free (text);
rl_end -= (to - from);
the_line[rl_end] = '\0';
}
/* **************************************************************** */
/* */
/* Readline character functions */
/* */
/* **************************************************************** */
/* This is not a gap editor, just a stupid line input routine. No hair
is involved in writing any of the functions, and none should be. */
/* Note that:
rl_end is the place in the string that we would place '\0';
i.e., it is always safe to place '\0' there.
rl_point is the place in the string where the cursor is. Sometimes
this is the same as rl_end.
Any command that is called interactively receives two arguments.
The first is a count: the numeric arg pased to this command.
The second is the key which invoked this command.
*/
/* **************************************************************** */
/* */
/* Movement Commands */
/* */
/* **************************************************************** */
/* Note that if you `optimize' the display for these functions, you cannot
use said functions in other functions which do not do optimizing display.
I.e., you will have to update the data base for rl_redisplay, and you
might as well let rl_redisplay do that job. */
/* Move forward COUNT characters. */
rl_forward (count)
int count;
{
if (count < 0)
rl_backward (-count);
else
while (count)
{
#if defined (VI_MODE)
if (rl_point >= (rl_end - (rl_editing_mode == vi_mode)))
#else
if (rl_point == rl_end)
#endif /* VI_MODE */
{
ding ();
return 0;
}
else
rl_point++;
--count;
}
return 0;
}
/* Move backward COUNT characters. */
rl_backward (count)
int count;
{
if (count < 0)
rl_forward (-count);
else
while (count)
{
if (!rl_point)
{
ding ();
return 0;
}
else
--rl_point;
--count;
}
return 0;
}
/* Move to the beginning of the line. */
rl_beg_of_line ()
{
rl_point = 0;
return 0;
}
/* Move to the end of the line. */
rl_end_of_line ()
{
rl_point = rl_end;
return 0;
}
/* Move forward a word. We do what Emacs does. */
rl_forward_word (count)
int count;
{
int c;
if (count < 0)
{
rl_backward_word (-count);
return 0;
}
while (count)
{
if (rl_point == rl_end)
return 0;
/* If we are not in a word, move forward until we are in one.
Then, move forward until we hit a non-alphabetic character. */
c = the_line[rl_point];
if (!alphabetic (c))
{
while (++rl_point < rl_end)
{
c = the_line[rl_point];
if (alphabetic (c)) break;
}
}
if (rl_point == rl_end) return;
while (++rl_point < rl_end)
{
c = the_line[rl_point];
if (!alphabetic (c)) break;
}
--count;
}
return 0;
}
/* Move backward a word. We do what Emacs does. */
rl_backward_word (count)
int count;
{
int c;
if (count < 0)
{
rl_forward_word (-count);
return 0;
}
while (count)
{
if (!rl_point)
return 0;
/* Like rl_forward_word (), except that we look at the characters
just before point. */
c = the_line[rl_point - 1];
if (!alphabetic (c))
{
while (--rl_point)
{
c = the_line[rl_point - 1];
if (alphabetic (c)) break;
}
}
while (rl_point)
{
c = the_line[rl_point - 1];
if (!alphabetic (c))
break;
else --rl_point;
}
--count;
}
return 0;
}
/* Clear the current line. Numeric argument to C-l does this. */
rl_refresh_line ()
{
int curr_line = _rl_last_c_pos / screenwidth;
_rl_move_vert (curr_line);
_rl_move_cursor_relative (0, the_line); /* XXX is this right */
#if defined (WIN32)
abort();
#else
#if defined (__GO32__)
{
int row, col, width, row_start;
ScreenGetCursor (&row, &col);
width = ScreenCols ();
row_start = ScreenPrimary + (row * width);
memset (row_start + col, 0, (width - col) * 2);
}
#else /* !MINIMAL */
if (term_clreol)
tputs (term_clreol, 1, _rl_output_character_function);
#endif /* !MINIMAL */
#endif
rl_forced_update_display ();
rl_display_fixed = 1;
return 0;
}
/* C-l typed to a line without quoting clears the screen, and then reprints
the prompt and the current input line. Given a numeric arg, redraw only
the current line. */
rl_clear_screen ()
{
if (rl_explicit_arg)
{
rl_refresh_line ();
return 0;
}
#if !defined (MINIMAL)
if (term_clrpag)
tputs (term_clrpag, 1, _rl_output_character_function);
else
#endif /* !MINIMAL */
crlf ();
rl_forced_update_display ();
rl_display_fixed = 1;
return 0;
}
rl_arrow_keys (count, c)
int count, c;
{
int ch;
ch = rl_read_key ();
switch (to_upper (ch))
{
case 'A':
rl_get_previous_history (count);
break;
case 'B':
rl_get_next_history (count);
break;
case 'C':
rl_forward (count);
break;
case 'D':
rl_backward (count);
break;
default:
ding ();
}
return 0;
}
/* **************************************************************** */
/* */
/* Text commands */
/* */
/* **************************************************************** */
/* Insert the character C at the current location, moving point forward. */
rl_insert (count, c)
int count, c;
{
register int i;
char *string;
if (count <= 0)
return 0;
/* If we can optimize, then do it. But don't let people crash
readline because of extra large arguments. */
if (count > 1 && count < 1024)
{
string = (char *)alloca (1 + count);
for (i = 0; i < count; i++)
string[i] = c;
string[i] = '\0';
rl_insert_text (string);
return 0;
}
if (count > 1024)
{
int decreaser;
string = (char *)alloca (1024 + 1);
for (i = 0; i < 1024; i++)
string[i] = c;
while (count)
{
decreaser = (count > 1024 ? 1024 : count);
string[decreaser] = '\0';
rl_insert_text (string);
count -= decreaser;
}
return 0;
}
/* We are inserting a single character.
If there is pending input, then make a string of all of the
pending characters that are bound to rl_insert, and insert
them all. */
if (any_typein)
{
int key = 0, t;
i = 0;
string = (char *)alloca (ibuffer_len + 1);
string[i++] = c;
while ((t = rl_get_char (&key)) &&
(_rl_keymap[key].type == ISFUNC &&
_rl_keymap[key].function == rl_insert))
string[i++] = key;
if (t)
rl_unget_char (key);
string[i] = '\0';
rl_insert_text (string);
}
else
{
/* Inserting a single character. */
string = (char *)alloca (2);
string[1] = '\0';
string[0] = c;
rl_insert_text (string);
}
return 0;
}
/* Insert the next typed character verbatim. */
rl_quoted_insert (count)
int count;
{
int c;
c = rl_read_key ();
return (rl_insert (count, c));
}
/* Insert a tab character. */
rl_tab_insert (count)
int count;
{
return (rl_insert (count, '\t'));
}
/* What to do when a NEWLINE is pressed. We accept the whole line.
KEY is the key that invoked this command. I guess it could have
meaning in the future. */
rl_newline (count, key)
int count, key;
{
rl_done = 1;
#if defined (VI_MODE)
{
extern int _rl_vi_doing_insert;
if (_rl_vi_doing_insert)
{
rl_end_undo_group ();
_rl_vi_doing_insert = 0;
}
}
rl_vi_set_last ();
#endif /* VI_MODE */
if (readline_echoing_p)
{
_rl_move_vert (_rl_vis_botlin);
_rl_vis_botlin = 0;
crlf ();
fflush (out_stream);
rl_display_fixed++;
}
return 0;
}
rl_clean_up_for_exit ()
{
if (readline_echoing_p)
{
_rl_move_vert (_rl_vis_botlin);
_rl_vis_botlin = 0;
fflush (out_stream);
rl_restart_output ();
}
return 0;
}
/* What to do for some uppercase characters, like meta characters,
and some characters appearing in emacs_ctlx_keymap. This function
is just a stub, you bind keys to it and the code in rl_dispatch ()
is special cased. */
rl_do_lowercase_version (ignore1, ignore2)
int ignore1, ignore2;
{
return 0;
}
/* Rubout the character behind point. */
rl_rubout (count)
int count;
{
if (count < 0)
{
rl_delete (-count);
return 0;
}
if (!rl_point)
{
ding ();
return -1;
}
if (count > 1 || rl_explicit_arg)
{
int orig_point = rl_point;
rl_backward (count);
rl_kill_text (orig_point, rl_point);
}
else
{
int c = the_line[--rl_point];
rl_delete_text (rl_point, rl_point + 1);
if (rl_point == rl_end && isprint (c) && _rl_last_c_pos)
{
int l;
l = rl_character_len (c, rl_point);
_rl_erase_at_end_of_line (l);
}
}
return 0;
}
/* Delete the character under the cursor. Given a numeric argument,
kill that many characters instead. */
rl_delete (count, invoking_key)
int count, invoking_key;
{
if (count < 0)
{
return (rl_rubout (-count));
}
if (rl_point == rl_end)
{
ding ();
return -1;
}
if (count > 1 || rl_explicit_arg)
{
int orig_point = rl_point;
rl_forward (count);
rl_kill_text (orig_point, rl_point);
rl_point = orig_point;
return 0;
}
else
return (rl_delete_text (rl_point, rl_point + 1));
}
/* Delete all spaces and tabs around point. */
rl_delete_horizontal_space (count, ignore)
int count, ignore;
{
int start = rl_point;
while (rl_point && whitespace (the_line[rl_point - 1]))
rl_point--;
start = rl_point;
while (rl_point < rl_end && whitespace (the_line[rl_point]))
rl_point++;
if (start != rl_point)
{
rl_delete_text (start, rl_point);
rl_point = start;
}
return 0;
}
/* **************************************************************** */
/* */
/* Kill commands */
/* */
/* **************************************************************** */
/* The next two functions mimic unix line editing behaviour, except they
save the deleted text on the kill ring. This is safer than not saving
it, and since we have a ring, nobody should get screwed. */
/* This does what C-w does in Unix. We can't prevent people from
using behaviour that they expect. */
rl_unix_word_rubout ()
{
if (!rl_point)
ding ();
else
{
int orig_point = rl_point;
while (rl_point && whitespace (the_line[rl_point - 1]))
rl_point--;
while (rl_point && !whitespace (the_line[rl_point - 1]))
rl_point--;
rl_kill_text (rl_point, orig_point);
}
return 0;
}
/* Here is C-u doing what Unix does. You don't *have* to use these
key-bindings. We have a choice of killing the entire line, or
killing from where we are to the start of the line. We choose the
latter, because if you are a Unix weenie, then you haven't backspaced
into the line at all, and if you aren't, then you know what you are
doing. */
rl_unix_line_discard ()
{
if (!rl_point)
ding ();
else
{
rl_kill_text (rl_point, 0);
rl_point = 0;
}
return 0;
}
/* **************************************************************** */
/* */
/* Commands For Typos */
/* */
/* **************************************************************** */
/* Random and interesting things in here. */
/* **************************************************************** */
/* */
/* Changing Case */
/* */
/* **************************************************************** */
/* The three kinds of things that we know how to do. */
#define UpCase 1
#define DownCase 2
#define CapCase 3
static int rl_change_case ();
/* Uppercase the word at point. */
rl_upcase_word (count)
int count;
{
return (rl_change_case (count, UpCase));
}
/* Lowercase the word at point. */
rl_downcase_word (count)
int count;
{
return (rl_change_case (count, DownCase));
}
/* Upcase the first letter, downcase the rest. */
rl_capitalize_word (count)
int count;
{
return (rl_change_case (count, CapCase));
}
/* The meaty function.
Change the case of COUNT words, performing OP on them.
OP is one of UpCase, DownCase, or CapCase.
If a negative argument is given, leave point where it started,
otherwise, leave it where it moves to. */
static int
rl_change_case (count, op)
int count, op;
{
register int start = rl_point, end;
int state = 0;
rl_forward_word (count);
end = rl_point;
if (count < 0)
{
int temp = start;
start = end;
end = temp;
}
/* We are going to modify some text, so let's prepare to undo it. */
rl_modifying (start, end);
for (; start < end; start++)
{
switch (op)
{
case UpCase:
the_line[start] = to_upper (the_line[start]);
break;
case DownCase:
the_line[start] = to_lower (the_line[start]);
break;
case CapCase:
if (state == 0)
{
the_line[start] = to_upper (the_line[start]);
state = 1;
}
else
{
the_line[start] = to_lower (the_line[start]);
}
if (!pure_alphabetic (the_line[start]))
state = 0;
break;
default:
abort ();
return -1;
}
}
rl_point = end;
return 0;
}
/* **************************************************************** */
/* */
/* Transposition */
/* */
/* **************************************************************** */
/* Transpose the words at point. */
rl_transpose_words (count)
int count;
{
char *word1, *word2;
int w1_beg, w1_end, w2_beg, w2_end;
int orig_point = rl_point;
if (!count)
return 0;
/* Find the two words. */
rl_forward_word (count);
w2_end = rl_point;
rl_backward_word (1);
w2_beg = rl_point;
rl_backward_word (count);
w1_beg = rl_point;
rl_forward_word (1);
w1_end = rl_point;
/* Do some check to make sure that there really are two words. */
if ((w1_beg == w2_beg) || (w2_beg < w1_end))
{
ding ();
rl_point = orig_point;
return -1;
}
/* Get the text of the words. */
word1 = rl_copy_text (w1_beg, w1_end);
word2 = rl_copy_text (w2_beg, w2_end);
/* We are about to do many insertions and deletions. Remember them
as one operation. */
rl_begin_undo_group ();
/* Do the stuff at word2 first, so that we don't have to worry
about word1 moving. */
rl_point = w2_beg;
rl_delete_text (w2_beg, w2_end);
rl_insert_text (word1);
rl_point = w1_beg;
rl_delete_text (w1_beg, w1_end);
rl_insert_text (word2);
/* This is exactly correct since the text before this point has not
changed in length. */
rl_point = w2_end;
/* I think that does it. */
rl_end_undo_group ();
free (word1);
free (word2);
return 0;
}
/* Transpose the characters at point. If point is at the end of the line,
then transpose the characters before point. */
rl_transpose_chars (count)
int count;
{
char dummy[2];
if (!count)
return 0;
if (!rl_point || rl_end < 2)
{
ding ();
return -1;
}
rl_begin_undo_group ();
if (rl_point == rl_end)
{
--rl_point;
count = 1;
}
rl_point--;
dummy[0] = the_line[rl_point];
dummy[1] = '\0';
rl_delete_text (rl_point, rl_point + 1);
rl_point += count;
if (rl_point > rl_end)
rl_point = rl_end;
else if (rl_point < 0)
rl_point = 0;
rl_insert_text (dummy);
rl_end_undo_group ();
return 0;
}
/* **************************************************************** */
/* */
/* Undo, and Undoing */
/* */
/* **************************************************************** */
/* The current undo list for THE_LINE. */
UNDO_LIST *rl_undo_list = (UNDO_LIST *)NULL;
/* Remember how to undo something. Concatenate some undos if that
seems right. */
void
rl_add_undo (what, start, end, text)
enum undo_code what;
int start, end;
char *text;
{
UNDO_LIST *temp = (UNDO_LIST *)xmalloc (sizeof (UNDO_LIST));
temp->what = what;
temp->start = start;
temp->end = end;
temp->text = text;
temp->next = rl_undo_list;
rl_undo_list = temp;
}
/* Free the existing undo list. */
void
free_undo_list ()
{
while (rl_undo_list)
{
UNDO_LIST *release = rl_undo_list;
rl_undo_list = rl_undo_list->next;
if (release->what == UNDO_DELETE)
free (release->text);
free (release);
}
rl_undo_list = (UNDO_LIST *)NULL;
}
/* Undo the next thing in the list. Return 0 if there
is nothing to undo, or non-zero if there was. */
int
rl_do_undo ()
{
UNDO_LIST *release;
int waiting_for_begin = 0;
undo_thing:
if (!rl_undo_list)
return (0);
doing_an_undo = 1;
switch (rl_undo_list->what) {
/* Undoing deletes means inserting some text. */
case UNDO_DELETE:
rl_point = rl_undo_list->start;
rl_insert_text (rl_undo_list->text);
free (rl_undo_list->text);
break;
/* Undoing inserts means deleting some text. */
case UNDO_INSERT:
rl_delete_text (rl_undo_list->start, rl_undo_list->end);
rl_point = rl_undo_list->start;
break;
/* Undoing an END means undoing everything 'til we get to
a BEGIN. */
case UNDO_END:
waiting_for_begin++;
break;
/* Undoing a BEGIN means that we are done with this group. */
case UNDO_BEGIN:
if (waiting_for_begin)
waiting_for_begin--;
else
#if 0
abort ();
#else
ding ();
#endif
break;
}
doing_an_undo = 0;
release = rl_undo_list;
rl_undo_list = rl_undo_list->next;
free (release);
if (waiting_for_begin)
goto undo_thing;
return (1);
}
/* Begin a group. Subsequent undos are undone as an atomic operation. */
rl_begin_undo_group ()
{
rl_add_undo (UNDO_BEGIN, 0, 0, 0);
return 0;
}
/* End an undo group started with rl_begin_undo_group (). */
rl_end_undo_group ()
{
rl_add_undo (UNDO_END, 0, 0, 0);
return 0;
}
/* Save an undo entry for the text from START to END. */
rl_modifying (start, end)
int start, end;
{
if (start > end)
{
int t = start;
start = end;
end = t;
}
if (start != end)
{
char *temp = rl_copy_text (start, end);
rl_begin_undo_group ();
rl_add_undo (UNDO_DELETE, start, end, temp);
rl_add_undo (UNDO_INSERT, start, end, (char *)NULL);
rl_end_undo_group ();
}
return 0;
}
/* Revert the current line to its previous state. */
rl_revert_line ()
{
if (!rl_undo_list)
ding ();
else
{
while (rl_undo_list)
rl_do_undo ();
}
return 0;
}
/* Do some undoing of things that were done. */
rl_undo_command (count)
int count;
{
if (count < 0)
return 0; /* Nothing to do. */
while (count)
{
if (rl_do_undo ())
count--;
else
{
ding ();
break;
}
}
return 0;
}
/* **************************************************************** */
/* */
/* History Utilities */
/* */
/* **************************************************************** */
/* We already have a history library, and that is what we use to control
the history features of readline. However, this is our local interface
to the history mechanism. */
/* While we are editing the history, this is the saved
version of the original line. */
HIST_ENTRY *saved_line_for_history = (HIST_ENTRY *)NULL;
/* Set the history pointer back to the last entry in the history. */
start_using_history ()
{
using_history ();
if (saved_line_for_history)
free_history_entry (saved_line_for_history);
saved_line_for_history = (HIST_ENTRY *)NULL;
return 0;
}
/* Free the contents (and containing structure) of a HIST_ENTRY. */
void
free_history_entry (entry)
HIST_ENTRY *entry;
{
if (!entry)
return;
if (entry->line)
free (entry->line);
free (entry);
}
/* Perhaps put back the current line if it has changed. */
maybe_replace_line ()
{
HIST_ENTRY *temp = current_history ();
/* If the current line has changed, save the changes. */
if (temp && ((UNDO_LIST *)(temp->data) != rl_undo_list))
{
temp = replace_history_entry (where_history (), the_line, rl_undo_list);
free (temp->line);
free (temp);
}
return 0;
}
/* Put back the saved_line_for_history if there is one. */
maybe_unsave_line ()
{
if (saved_line_for_history)
{
int line_len;
line_len = strlen (saved_line_for_history->line);
if (line_len >= rl_line_buffer_len)
rl_extend_line_buffer (line_len);
strcpy (the_line, saved_line_for_history->line);
rl_undo_list = (UNDO_LIST *)saved_line_for_history->data;
free_history_entry (saved_line_for_history);
saved_line_for_history = (HIST_ENTRY *)NULL;
rl_end = rl_point = strlen (the_line);
}
else
ding ();
return 0;
}
/* Save the current line in saved_line_for_history. */
maybe_save_line ()
{
if (!saved_line_for_history)
{
saved_line_for_history = (HIST_ENTRY *)xmalloc (sizeof (HIST_ENTRY));
saved_line_for_history->line = savestring (the_line);
saved_line_for_history->data = (char *)rl_undo_list;
}
return 0;
}
/* **************************************************************** */
/* */
/* History Commands */
/* */
/* **************************************************************** */
/* Meta-< goes to the start of the history. */
rl_beginning_of_history ()
{
return (rl_get_previous_history (1 + where_history ()));
}
/* Meta-> goes to the end of the history. (The current line). */
rl_end_of_history ()
{
maybe_replace_line ();
using_history ();
maybe_unsave_line ();
return 0;
}
/* Move down to the next history line. */
rl_get_next_history (count)
int count;
{
HIST_ENTRY *temp = (HIST_ENTRY *)NULL;
if (count < 0)
return (rl_get_previous_history (-count));
if (!count)
return 0;
maybe_replace_line ();
while (count)
{
temp = next_history ();
if (!temp)
break;
--count;
}
if (!temp)
maybe_unsave_line ();
else
{
int line_len;
line_len = strlen (temp->line);
if (line_len >= rl_line_buffer_len)
rl_extend_line_buffer (line_len);
strcpy (the_line, temp->line);
rl_undo_list = (UNDO_LIST *)temp->data;
rl_end = rl_point = strlen (the_line);
#if defined (VI_MODE)
if (rl_editing_mode == vi_mode)
rl_point = 0;
#endif /* VI_MODE */
}
return 0;
}
/* Get the previous item out of our interactive history, making it the current
line. If there is no previous history, just ding. */
rl_get_previous_history (count)
int count;
{
HIST_ENTRY *old_temp = (HIST_ENTRY *)NULL;
HIST_ENTRY *temp = (HIST_ENTRY *)NULL;
if (count < 0)
return (rl_get_next_history (-count));
if (!count)
return 0;
/* If we don't have a line saved, then save this one. */
maybe_save_line ();
/* If the current line has changed, save the changes. */
maybe_replace_line ();
while (count)
{
temp = previous_history ();
if (!temp)
break;
else
old_temp = temp;
--count;
}
/* If there was a large argument, and we moved back to the start of the
history, that is not an error. So use the last value found. */
if (!temp && old_temp)
temp = old_temp;
if (!temp)
ding ();
else
{
int line_len;
line_len = strlen (temp->line);
if (line_len >= rl_line_buffer_len)
rl_extend_line_buffer (line_len);
strcpy (the_line, temp->line);
rl_undo_list = (UNDO_LIST *)temp->data;
rl_end = rl_point = line_len;
#if defined (VI_MODE)
if (rl_editing_mode == vi_mode)
rl_point = 0;
#endif /* VI_MODE */
}
return 0;
}
/* Make C be the next command to be executed. */
rl_execute_next (c)
int c;
{
rl_pending_input = c;
return 0;
}
/* **************************************************************** */
/* */
/* The Mark and the Region. */
/* */
/* **************************************************************** */
/* Set the mark at POSITION. */
rl_set_mark (position)
int position;
{
if (position > rl_end)
return -1;
rl_mark = position;
return 0;
}
/* Exchange the position of mark and point. */
rl_exchange_mark_and_point ()
{
if (rl_mark > rl_end)
rl_mark = -1;
if (rl_mark == -1)
{
ding ();
return -1;
}
else
{
int temp = rl_point;
rl_point = rl_mark;
rl_mark = temp;
}
return 0;
}
/* **************************************************************** */
/* */
/* Killing Mechanism */
/* */
/* **************************************************************** */
/* What we assume for a max number of kills. */
#define DEFAULT_MAX_KILLS 10
/* The real variable to look at to find out when to flush kills. */
int rl_max_kills = DEFAULT_MAX_KILLS;
/* Where to store killed text. */
char **rl_kill_ring = (char **)NULL;
/* Where we are in the kill ring. */
int rl_kill_index = 0;
/* How many slots we have in the kill ring. */
int rl_kill_ring_length = 0;
/* How to say that you only want to save a certain amount
of kill material. */
rl_set_retained_kills (num)
int num;
{
return 0;
}
/* The way to kill something. This appends or prepends to the last
kill, if the last command was a kill command. if FROM is less
than TO, then the text is appended, otherwise prepended. If the
last command was not a kill command, then a new slot is made for
this kill. */
rl_kill_text (from, to)
int from, to;
{
int slot;
char *text = rl_copy_text (from, to);
/* Is there anything to kill? */
if (from == to)
{
free (text);
last_command_was_kill++;
return 0;
}
/* Delete the copied text from the line. */
rl_delete_text (from, to);
/* First, find the slot to work with. */
if (!last_command_was_kill)
{
/* Get a new slot. */
if (!rl_kill_ring)
{
/* If we don't have any defined, then make one. */
rl_kill_ring = (char **)
xmalloc (((rl_kill_ring_length = 1) + 1) * sizeof (char *));
slot = 1;
}
else
{
/* We have to add a new slot on the end, unless we have
exceeded the max limit for remembering kills. */
slot = rl_kill_ring_length;
if (slot == rl_max_kills)
{
register int i;
free (rl_kill_ring[0]);
for (i = 0; i < slot; i++)
rl_kill_ring[i] = rl_kill_ring[i + 1];
}
else
{
rl_kill_ring =
(char **)
xrealloc (rl_kill_ring,
((slot = (rl_kill_ring_length += 1)) + 1)
* sizeof (char *));
}
}
slot--;
}
else
{
slot = rl_kill_ring_length - 1;
}
/* If the last command was a kill, prepend or append. */
if (last_command_was_kill && rl_editing_mode != vi_mode)
{
char *old = rl_kill_ring[slot];
char *new = (char *)xmalloc (1 + strlen (old) + strlen (text));
if (from < to)
{
strcpy (new, old);
strcat (new, text);
}
else
{
strcpy (new, text);
strcat (new, old);
}
free (old);
free (text);
rl_kill_ring[slot] = new;
}
else
{
rl_kill_ring[slot] = text;
}
rl_kill_index = slot;
last_command_was_kill++;
return 0;
}
/* Now REMEMBER! In order to do prepending or appending correctly, kill
commands always make rl_point's original position be the FROM argument,
and rl_point's extent be the TO argument. */
/* **************************************************************** */
/* */
/* Killing Commands */
/* */
/* **************************************************************** */
/* Delete the word at point, saving the text in the kill ring. */
rl_kill_word (count)
int count;
{
int orig_point = rl_point;
if (count < 0)
return (rl_backward_kill_word (-count));
else
{
rl_forward_word (count);
if (rl_point != orig_point)
rl_kill_text (orig_point, rl_point);
rl_point = orig_point;
}
return 0;
}
/* Rubout the word before point, placing it on the kill ring. */
rl_backward_kill_word (count)
int count;
{
int orig_point = rl_point;
if (count < 0)
return (rl_kill_word (-count));
else
{
rl_backward_word (count);
if (rl_point != orig_point)
rl_kill_text (orig_point, rl_point);
}
}
/* Kill from here to the end of the line. If DIRECTION is negative, kill
back to the line start instead. */
rl_kill_line (direction)
int direction;
{
int orig_point = rl_point;
if (direction < 0)
return (rl_backward_kill_line (1));
else
{
rl_end_of_line ();
if (orig_point != rl_point)
rl_kill_text (orig_point, rl_point);
rl_point = orig_point;
}
return 0;
}
/* Kill backwards to the start of the line. If DIRECTION is negative, kill
forwards to the line end instead. */
rl_backward_kill_line (direction)
int direction;
{
int orig_point = rl_point;
if (direction < 0)
return (rl_kill_line (1));
else
{
if (!rl_point)
ding ();
else
{
rl_beg_of_line ();
rl_kill_text (orig_point, rl_point);
}
}
return 0;
}
/* Yank back the last killed text. This ignores arguments. */
rl_yank ()
{
if (!rl_kill_ring)
{
rl_abort ();
return -1;
}
rl_set_mark (rl_point);
rl_insert_text (rl_kill_ring[rl_kill_index]);
return 0;
}
/* If the last command was yank, or yank_pop, and the text just
before point is identical to the current kill item, then
delete that text from the line, rotate the index down, and
yank back some other text. */
rl_yank_pop ()
{
int l;
if (((rl_last_func != rl_yank_pop) && (rl_last_func != rl_yank)) ||
!rl_kill_ring)
{
rl_abort ();
return -1;
}
l = strlen (rl_kill_ring[rl_kill_index]);
if (((rl_point - l) >= 0) &&
(strncmp (the_line + (rl_point - l),
rl_kill_ring[rl_kill_index], l) == 0))
{
rl_delete_text ((rl_point - l), rl_point);
rl_point -= l;
rl_kill_index--;
if (rl_kill_index < 0)
rl_kill_index = rl_kill_ring_length - 1;
rl_yank ();
return 0;
}
else
{
rl_abort ();
return -1;
}
}
/* Yank the COUNTth argument from the previous history line. */
rl_yank_nth_arg (count, ignore)
int count;
{
register HIST_ENTRY *entry = previous_history ();
char *arg;
if (entry)
next_history ();
else
{
ding ();
return -1;
}
arg = history_arg_extract (count, count, entry->line);
if (!arg || !*arg)
{
ding ();
return -1;
}
rl_begin_undo_group ();
#if defined (VI_MODE)
/* Vi mode always inserts a space before yanking the argument, and it
inserts it right *after* rl_point. */
if (rl_editing_mode == vi_mode)
rl_point++;
#endif /* VI_MODE */
#if 0
if (rl_point && the_line[rl_point - 1] != ' ')
rl_insert_text (" ");
#endif
rl_insert_text (arg);
free (arg);
rl_end_undo_group ();
return 0;
}
/* How to toggle back and forth between editing modes. */
rl_vi_editing_mode ()
{
#if defined (VI_MODE)
rl_editing_mode = vi_mode;
rl_vi_insertion_mode ();
return 0;
#endif /* VI_MODE */
}
rl_emacs_editing_mode ()
{
rl_editing_mode = emacs_mode;
_rl_keymap = emacs_standard_keymap;
return 0;
}
/* **************************************************************** */
/* */
/* USG (System V) Support */
/* */
/* **************************************************************** */
int
rl_getc (stream)
FILE *stream;
{
int result;
unsigned char c;
#if defined (MINIMAL)
if (isatty (0))
return (getkey () & 0x7f);
#endif /* MINIMAL */
while (1)
{
result = read (fileno (stream), &c, sizeof (unsigned char));
if (result == sizeof (unsigned char))
return (c);
/* If zero characters are returned, then the file that we are
reading from is empty! Return EOF in that case. */
if (result == 0)
return (EOF);
#if defined (EWOULDBLOCK)
if (errno == EWOULDBLOCK)
{
int flags;
if ((flags = fcntl (fileno (stream), F_GETFL, 0)) < 0)
return (EOF);
if (flags & O_NDELAY)
{
flags &= ~O_NDELAY;
fcntl (fileno (stream), F_SETFL, flags);
continue;
}
continue;
}
#endif /* EWOULDBLOCK */
#if defined (_POSIX_VERSION) && defined (EAGAIN) && defined (O_NONBLOCK)
if (errno == EAGAIN)
{
int flags;
if ((flags = fcntl (fileno (stream), F_GETFL, 0)) < 0)
return (EOF);
if (flags & O_NONBLOCK)
{
flags &= ~O_NONBLOCK;
fcntl (fileno (stream), F_SETFL, flags);
continue;
}
}
#endif /* _POSIX_VERSION && EAGAIN && O_NONBLOCK */
#if !defined (MINIMAL)
/* If the error that we received was SIGINT, then try again,
this is simply an interrupted system call to read ().
Otherwise, some error ocurred, also signifying EOF. */
if (errno != EINTR)
return (EOF);
#endif /* !MINIMAL */
}
}
char *
_rl_savestring (str)
char *str;
{
char *copy = (char*) xmalloc (strlen (str) + 1);
strcpy (copy, str);
return copy;
}
#if defined (STATIC_MALLOC)
/* **************************************************************** */
/* */
/* xmalloc and xrealloc () */
/* */
/* **************************************************************** */
static void memory_error_and_abort ();
static char *
xmalloc (bytes)
int bytes;
{
char *temp = (char *)malloc (bytes);
if (!temp)
memory_error_and_abort ();
return (temp);
}
static char *
xrealloc (pointer, bytes)
char *pointer;
int bytes;
{
char *temp;
if (!pointer)
temp = (char *)malloc (bytes);
else
temp = (char *)realloc (pointer, bytes);
if (!temp)
memory_error_and_abort ();
return (temp);
}
static void
memory_error_and_abort ()
{
fprintf (stderr, "readline: Out of virtual memory!\n");
abort ();
}
#endif /* STATIC_MALLOC */
/* **************************************************************** */
/* */
/* Testing Readline */
/* */
/* **************************************************************** */
#if defined (TEST)
main ()
{
HIST_ENTRY **history_list ();
char *temp = (char *)NULL;
char *prompt = "readline% ";
int done = 0;
while (!done)
{
temp = readline (prompt);
/* Test for EOF. */
if (!temp)
exit (1);
/* If there is anything on the line, print it and remember it. */
if (*temp)
{
fprintf (stderr, "%s\r\n", temp);
add_history (temp);
}
/* Check for `command' that we handle. */
if (strcmp (temp, "quit") == 0)
done = 1;
if (strcmp (temp, "list") == 0)
{
HIST_ENTRY **list = history_list ();
register int i;
if (list)
{
for (i = 0; list[i]; i++)
{
fprintf (stderr, "%d: %s\r\n", i, list[i]->line);
free (list[i]->line);
}
free (list);
}
}
free (temp);
}
}
#endif /* TEST */
/*
* Local variables:
* compile-command: "gcc -g -traditional -I. -I.. -DTEST -o readline readline.c keymaps.o funmap.o history.o -ltermcap"
* end:
*/