home *** CD-ROM | disk | FTP | other *** search
- /* expr.c -operands, expressions-
- Copyright (C) 1987 Free Software Foundation, Inc.
-
- This file is part of GAS, the GNU Assembler.
-
- GAS is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 1, or (at your option)
- any later version.
-
- GAS is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GAS; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
- /*
- * This is really a branch office of as-read.c. I split it out to clearly
- * distinguish the world of expressions from the world of statements.
- * (It also gives smaller files to re-compile.)
- * Here, "operand"s are of expressions, not instructions.
- */
-
- #include <ctype.h>
- #include "as.h"
- #include "flonum.h"
- #include "read.h"
- #include "struc-symbol.h"
- #include "expr.h"
- #include "obstack.h"
- #include "symbols.h"
-
- static void clean_up_expression(); /* Internal. */
- extern char EXP_CHARS[]; /* JF hide MD floating pt stuff all the same place */
- extern char FLT_CHARS[];
-
- #ifdef SUN_ASM_SYNTAX
- extern int local_label_defined[];
- #endif
-
- /*
- * Build any floating-point literal here.
- * Also build any bignum literal here.
- */
-
- /* LITTLENUM_TYPE generic_buffer [6]; /* JF this is a hack */
- /* Seems atof_machine can backscan through generic_bignum and hit whatever
- happens to be loaded before it in memory. And its way too complicated
- for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
- and never write into the early words, thus they'll always be zero.
- I hate Dean's floating-point code. Bleh.
- */
- LITTLENUM_TYPE generic_bignum [SIZE_OF_LARGE_NUMBER+6];
- FLONUM_TYPE generic_floating_point_number =
- {
- & generic_bignum [6], /* low (JF: Was 0) */
- & generic_bignum [SIZE_OF_LARGE_NUMBER+6 - 1], /* high JF: (added +6) */
- 0, /* leader */
- 0, /* exponent */
- 0 /* sign */
- };
- /* If nonzero, we've been asked to assemble nan, +inf or -inf */
- int generic_floating_point_magic;
-
- /*
- * Summary of operand().
- *
- * in: Input_line_pointer points to 1st char of operand, which may
- * be a space.
- *
- * out: A expressionS. X_seg determines how to understand the rest of the
- * expressionS.
- * The operand may have been empty: in this case X_seg == SEG_NONE.
- * Input_line_pointer -> (next non-blank) char after operand.
- *
- */
-
- static segT
- operand (expressionP)
- register expressionS * expressionP;
- {
- register char c;
- register char *name; /* points to name of symbol */
- register struct symbol * symbolP; /* Points to symbol */
-
- extern char hex_value[]; /* In hex_value.c */
- char *local_label_name();
-
- SKIP_WHITESPACE(); /* Leading whitespace is part of operand. */
- c = * input_line_pointer ++; /* Input_line_pointer -> past char in c. */
- if (isdigit(c))
- {
- register valueT number; /* offset or (absolute) value */
- register short int digit; /* value of next digit in current radix */
- /* invented for humans only, hope */
- /* optimising compiler flushes it! */
- register short int radix; /* 8, 10 or 16 */
- /* 0 means we saw start of a floating- */
- /* point constant. */
- register short int maxdig;/* Highest permitted digit value. */
- register int too_many_digits; /* If we see >= this number of */
- /* digits, assume it is a bignum. */
- register char * digit_2; /* -> 2nd digit of number. */
- int small; /* TRUE if fits in 32 bits. */
- #ifdef NeXT /* fix for bug #8331 */
- int force_bignum; /* TRUE if number is 0xb... */
- force_bignum = FALSE;
- #endif NeXT /* fix for bug #8331 */
-
- if (c=='0')
- { /* non-decimal radix */
- if ((c = * input_line_pointer ++)=='x' || c=='X')
- {
- c = * input_line_pointer ++; /* read past "0x" or "0X" */
- maxdig = radix = 16;
- too_many_digits = 9;
- }
- #ifdef NeXT /* fix for bug #8331 */
- else if (c=='b' || c=='B')
- {
- force_bignum = TRUE;
- c = * input_line_pointer ++; /* read past "0b" or "0B" */
- maxdig = radix = 16;
- too_many_digits = 9;
- }
- #endif NeXT /* fix for bug #8331 */
- else
- {
- /* If it says '0f' and the line ends or it DOESN'T look like
- a floating point #, its a local label ref. DTRT */
- if(c=='f' && (! *input_line_pointer ||
- (!index("+-.0123456789",*input_line_pointer) &&
- !index(EXP_CHARS,*input_line_pointer))))
- {
- maxdig = radix = 10;
- too_many_digits = 11;
- c='0';
- input_line_pointer-=2;
- }
- else if (c && index (FLT_CHARS,c))
- {
- radix = 0; /* Start of floating-point constant. */
- /* input_line_pointer -> 1st char of number. */
- expressionP -> X_add_number = - (isupper(c) ? tolower(c) : c);
- }
- else
- { /* By elimination, assume octal radix. */
- radix = 8;
- maxdig = 10; /* Un*x sux. Compatibility. */
- too_many_digits = 11;
- }
- }
- /* c == char after "0" or "0x" or "0X" or "0e" etc.*/
- }
- else
- {
- maxdig = radix = 10;
- too_many_digits = 11;
- }
- if (radix)
- { /* Fixed-point integer constant. */
- /* May be bignum, or may fit in 32 bits. */
- /*
- * Most numbers fit into 32 bits, and we want this case to be fast.
- * So we pretend it will fit into 32 bits. If, after making up a 32
- * bit number, we realise that we have scanned more digits than
- * comfortably fit into 32 bits, we re-scan the digits coding
- * them into a bignum. For decimal and octal numbers we are conservative: some
- * numbers may be assumed bignums when in fact they do fit into 32 bits.
- * Numbers of any radix can have excess leading zeros: we strive
- * to recognise this and cast them back into 32 bits.
- * We must check that the bignum really is more than 32
- * bits, and change it back to a 32-bit number if it fits.
- * The number we are looking for is expected to be positive, but
- * if it fits into 32 bits as an unsigned number, we let it be a 32-bit
- * number. The cavalier approach is for speed in ordinary cases.
- */
- digit_2 = input_line_pointer;
- for (number=0; (digit=hex_value[c])<maxdig; c = * input_line_pointer ++)
- {
- number = number * radix + digit;
- }
- /* C contains character after number. */
- /* Input_line_pointer -> char after C. */
- small = input_line_pointer - digit_2 < too_many_digits;
- #ifdef NeXT /* fix for bug #8331 */
- if (force_bignum == TRUE)
- small = FALSE;
- #endif NeXT /* fix for bug #8331 */
- if ( ! small)
- {
- /*
- * We saw a lot of digits. Manufacture a bignum the hard way.
- */
- LITTLENUM_TYPE * leader; /* -> high order littlenum of the bignum. */
- LITTLENUM_TYPE * pointer; /* -> littlenum we are frobbing now. */
- long int carry;
-
- leader = generic_bignum;
- generic_bignum [0] = 0;
- /* We could just use digit_2, but lets be mnemonic. */
- input_line_pointer = -- digit_2; /* -> 1st digit. */
- c = *input_line_pointer ++;
- for (; (carry = hex_value [c]) < maxdig; c = * input_line_pointer ++)
- {
- for (pointer = generic_bignum;
- pointer <= leader;
- pointer ++)
- {
- long int work;
-
- work = carry + radix * * pointer;
- * pointer = work & LITTLENUM_MASK;
- carry = work >> LITTLENUM_NUMBER_OF_BITS;
- }
- if (carry)
- {
- if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
- { /* Room to grow a longer bignum. */
- * ++ leader = carry;
- }
- }
- }
- /* Again, C is char after number, */
- /* input_line_pointer -> after C. */
- know( BITS_PER_INT == 32 );
- know( LITTLENUM_NUMBER_OF_BITS == 16 );
- /* Hence the constant "2" in the next line. */
- #ifdef NeXT /* fix for bug #8331 */
- if (leader < generic_bignum + 2 && force_bignum == FALSE)
- #else NeXT /* fix for bug #8331 */
- if (leader < generic_bignum + 2)
- #endif NeXT /* fix for bug #8331 */
- { /* Will fit into 32 bits. */
- number =
- ( (generic_bignum [1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS )
- | (generic_bignum [0] & LITTLENUM_MASK);
- small = TRUE;
- }
- else
- {
- number = leader - generic_bignum + 1; /* Number of littlenums in the bignum. */
- }
- }
- if (small)
- {
- /*
- * Here with number, in correct radix. c is the next char.
- * Note that unlike Un*x, we allow "011f" "0x9f" to
- * both mean the same as the (conventional) "9f". This is simply easier
- * than checking for strict canonical form. Syntax sux!
- */
- if (number<10)
- {
- #ifdef SUN_ASM_SYNTAX
- if (c=='b' || (c=='$' && local_label_defined[number]))
- #else
- if (c=='b')
- #endif
- {
- /*
- * Backward ref to local label.
- * Because it is backward, expect it to be DEFINED.
- */
- /*
- * Construct a local label.
- */
- name = local_label_name ((int)number, 0);
- if ( (symbolP = symbol_table_lookup(name)) /* seen before */
- && (symbolP -> sy_type & N_TYPE) != N_UNDF /* symbol is defined: OK */
- )
- { /* Expected path: symbol defined. */
- /* Local labels are never absolute. Don't waste time checking absoluteness. */
- know( (symbolP -> sy_type & N_TYPE) == N_DATA
- || (symbolP -> sy_type & N_TYPE) == N_TEXT );
- expressionP -> X_add_symbol = symbolP;
- expressionP -> X_add_number = 0;
- expressionP -> X_seg = N_TYPE_seg [symbolP -> sy_type];
- }
- else
- { /* Either not seen or not defined. */
- as_warn( "Backw. ref to unknown label \"%d:\", 0 assumed.",
- number
- );
- expressionP -> X_add_number = 0;
- expressionP -> X_seg = SEG_ABSOLUTE;
- }
- }
- else
- {
- #ifdef SUN_ASM_SYNTAX
- if (c=='f' || (c=='$' && !local_label_defined[number]))
- #else
- if (c=='f')
- #endif
- {
- /*
- * Forward reference. Expect symbol to be undefined or
- * unknown. Undefined: seen it before. Unknown: never seen
- * it in this pass.
- * Construct a local label name, then an undefined symbol.
- * Don't create a XSEG frag for it: caller may do that.
- * Just return it as never seen before.
- */
- name = local_label_name ((int)number, 1);
- if ( symbolP = symbol_table_lookup( name ))
- {
- /* We have no need to check symbol properties. */
- know( (symbolP -> sy_type & N_TYPE) == N_UNDF
- || (symbolP -> sy_type & N_TYPE) == N_DATA
- || (symbolP -> sy_type & N_TYPE) == N_TEXT);
- }
- else
- {
- symbolP = symbol_new (name, N_UNDF, 0,0,0, & zero_address_frag);
- symbol_table_insert (symbolP);
- }
- expressionP -> X_add_symbol = symbolP;
- expressionP -> X_seg = SEG_UNKNOWN;
- expressionP -> X_subtract_symbol = NULL;
- expressionP -> X_add_number = 0;
- }
- else
- { /* Really a number, not a local label. */
- expressionP -> X_add_number = number;
- expressionP -> X_seg = SEG_ABSOLUTE;
- input_line_pointer --; /* Restore following character. */
- } /* if (c=='f') */
- } /* if (c=='b') */
- }
- else
- { /* Really a number. */
- expressionP -> X_add_number = number;
- expressionP -> X_seg = SEG_ABSOLUTE;
- input_line_pointer --; /* Restore following character. */
- } /* if (number<10) */
- }
- else
- {
- expressionP -> X_add_number = number;
- expressionP -> X_seg = SEG_BIG;
- input_line_pointer --; /* -> char following number. */
- } /* if (small) */
- } /* (If integer constant) */
- else
- { /* input_line_pointer -> */
- /* floating-point constant. */
- int error_code;
-
- error_code = atof_generic
- (& input_line_pointer, ".", EXP_CHARS,
- & generic_floating_point_number);
-
- if (error_code)
- {
- if (error_code == ERROR_EXPONENT_OVERFLOW)
- {
- as_warn( "Bad floating-point constant: exponent overflow, probably assembling junk" );
- }
- else
- {
- as_warn( "Bad floating-point constant: unknown error code=%d.", error_code);
- }
- }
- expressionP -> X_seg = SEG_BIG;
- /* input_line_pointer -> just after constant, */
- /* which may point to whitespace. */
- know( expressionP -> X_add_number < 0 ); /* < 0 means "floating point". */
- } /* if (not floating-point constant) */
- }
- else if(c=='.' && !is_part_of_name(*input_line_pointer)) {
- extern struct obstack frags;
-
- /*
- JF: '.' is pseudo symbol with value of current location in current
- segment. . .
- */
- symbolP = symbol_new("L0\001",
- (unsigned char)(seg_N_TYPE[(int)now_seg]),
- #ifdef Mach_O
- seg_n_sect(now_seg, now_subseg),
- #else !defined(Mach_O)
- 0,
- #endif Mach_O
- 0,
- (valueT)(obstack_next_free(&frags)-frag_now->fr_literal),
- frag_now);
- expressionP->X_add_number=0;
- expressionP->X_add_symbol=symbolP;
- expressionP->X_seg = now_seg;
-
- #ifdef NeXT
- } else if ( is_name_beginner(c) || c == '"') /* here if did not begin with a digit */
- #else !defined(NeXT)
- } else if ( is_name_beginner(c) ) /* here if did not begin with a digit */
- #endif NeXT
- {
- /*
- * Identifier begins here.
- * This is kludged for speed, so code is repeated.
- */
- #ifdef NeXT
- if(c == '"')
- name = input_line_pointer -- ;
- else
- #endif NeXT
- name = -- input_line_pointer;
- c = get_symbol_end();
- symbolP = symbol_table_lookup(name);
- if (symbolP)
- {
- /*
- * If we have an absolute symbol, then we know it's value now.
- */
- register segT seg;
-
- seg = N_TYPE_seg [(int) symbolP -> sy_type & N_TYPE];
- if ((expressionP -> X_seg = seg) == SEG_ABSOLUTE )
- {
- expressionP -> X_add_number = symbolP -> sy_value;
- }
- else
- {
- expressionP -> X_add_number = 0;
- expressionP -> X_add_symbol = symbolP;
- }
- }
- else
- {
- expressionP -> X_add_symbol
- = symbolP
- = symbol_new (name, N_UNDF, 0,0,0, & zero_address_frag);
-
- expressionP -> X_add_number = 0;
- expressionP -> X_seg = SEG_UNKNOWN;
- symbol_table_insert (symbolP);
- }
- * input_line_pointer = c;
- expressionP -> X_subtract_symbol = NULL;
- }
- else if (c=='(')/* didn't begin with digit & not a name */
- {
- (void)expression( expressionP );
- /* Expression() will pass trailing whitespace */
- if ( * input_line_pointer ++ != ')' )
- {
- as_warn( "Missing ')' assumed");
- input_line_pointer --;
- }
- /* here with input_line_pointer -> char after "(...)" */
- }
- #ifdef NeXT /* logical negation feature */
- else if ( c=='~' || c=='-' || c== '!' )
- #else NeXT /* logical negation feature */
- else if ( c=='~' || c=='-' )
- #endif NeXT /* logical negation feature */
- { /* unary operator: hope for SEG_ABSOLUTE */
- switch(operand (expressionP)) {
- case SEG_ABSOLUTE:
- /* input_line_pointer -> char after operand */
- if ( c=='-' )
- {
- expressionP -> X_add_number = - expressionP -> X_add_number;
- /*
- * Notice: '-' may overflow: no warning is given. This is compatible
- * with other people's assemblers. Sigh.
- */
- }
- #ifdef NeXT /* logical negation feature */
- else if ( c=='!' )
- {
- expressionP -> X_add_number = ! expressionP -> X_add_number;
- }
- #endif NeXT /* logical negation feature */
- else
- {
- expressionP -> X_add_number = ~ expressionP -> X_add_number;
- }
- break;
-
- case SEG_TEXT:
- case SEG_DATA:
- case SEG_BSS:
- case SEG_PASS1:
- case SEG_UNKNOWN:
- if(c=='-') { /* JF I hope this hack works */
- expressionP->X_subtract_symbol=expressionP->X_add_symbol;
- expressionP->X_add_symbol=0;
- expressionP->X_seg=SEG_DIFFERENCE;
- break;
- }
- default: /* unary on non-absolute is unsuported */
- as_warn("Unary operator %c ignored because bad operand follows", c);
- break;
- /* Expression undisturbed from operand(). */
- }
- }
- else if (c=='\'')
- {
- /*
- * Warning: to conform to other people's assemblers NO ESCAPEMENT is permitted
- * for a single quote. The next character, parity errors and all, is taken
- * as the value of the operand. VERY KINKY.
- */
- expressionP -> X_add_number = * input_line_pointer ++;
- expressionP -> X_seg = SEG_ABSOLUTE;
- }
- else
- {
- /* can't imagine any other kind of operand */
- expressionP -> X_seg = SEG_NONE;
- input_line_pointer --;
- }
- /*
- * It is more 'efficient' to clean up the expressions when they are created.
- * Doing it here saves lines of code.
- */
- clean_up_expression (expressionP);
- SKIP_WHITESPACE(); /* -> 1st char after operand. */
- know( * input_line_pointer != ' ' );
- return (expressionP -> X_seg);
- } /* operand */
-
- /* Internal. Simplify a struct expression for use by expr() */
-
- /*
- * In: address of a expressionS.
- * The X_seg field of the expressionS may only take certain values.
- * Now, we permit SEG_PASS1 to make code smaller & faster.
- * Elsewise we waste time special-case testing. Sigh. Ditto SEG_NONE.
- * Out: expressionS may have been modified:
- * 'foo-foo' symbol references cancelled to 0,
- * which changes X_seg from SEG_DIFFERENCE to SEG_ABSOLUTE;
- * Unused fields zeroed to help expr().
- */
-
- static void
- clean_up_expression (expressionP)
- register expressionS * expressionP;
- {
- switch (expressionP -> X_seg)
- {
- case SEG_NONE:
- case SEG_PASS1:
- expressionP -> X_add_symbol = NULL;
- expressionP -> X_subtract_symbol = NULL;
- expressionP -> X_add_number = 0;
- break;
-
- case SEG_BIG:
- case SEG_ABSOLUTE:
- expressionP -> X_subtract_symbol = NULL;
- expressionP -> X_add_symbol = NULL;
- break;
-
- case SEG_TEXT:
- case SEG_DATA:
- case SEG_BSS:
- case SEG_UNKNOWN:
- expressionP -> X_subtract_symbol = NULL;
- break;
-
- case SEG_DIFFERENCE:
- /*
- * It does not hurt to 'cancel' NULL==NULL
- * when comparing symbols for 'eq'ness.
- * It is faster to re-cancel them to NULL
- * than to check for this special case.
- */
- if (expressionP -> X_subtract_symbol == expressionP -> X_add_symbol)
- {
- expressionP -> X_subtract_symbol = NULL;
- expressionP -> X_add_symbol = NULL;
- expressionP -> X_seg = SEG_ABSOLUTE;
- }
- break;
-
- default:
- BAD_CASE( expressionP -> X_seg);
- break;
- }
- }
-
- /*
- * expr_part ()
- *
- * Internal. Made a function because this code is used in 2 places.
- * Generate error or correct X_?????_symbol of expressionS.
- */
-
- /*
- * symbol_1 += symbol_2 ... well ... sort of.
- */
-
- static segT
- expr_part (symbol_1_PP, symbol_2_P)
- struct symbol ** symbol_1_PP;
- struct symbol * symbol_2_P;
- {
- segT return_value;
-
- know( (* symbol_1_PP) == NULL
- || ((* symbol_1_PP) -> sy_type & N_TYPE) == N_TEXT
- || ((* symbol_1_PP) -> sy_type & N_TYPE) == N_DATA
- || ((* symbol_1_PP) -> sy_type & N_TYPE) == N_BSS
- || ((* symbol_1_PP) -> sy_type & N_TYPE) == N_UNDF
- );
- know( symbol_2_P == NULL
- || (symbol_2_P -> sy_type & N_TYPE) == N_TEXT
- || (symbol_2_P -> sy_type & N_TYPE) == N_DATA
- || (symbol_2_P -> sy_type & N_TYPE) == N_BSS
- || (symbol_2_P -> sy_type & N_TYPE) == N_UNDF
- );
- if (* symbol_1_PP)
- {
- if (((* symbol_1_PP) -> sy_type & N_TYPE) == N_UNDF)
- {
- if (symbol_2_P)
- {
- return_value = SEG_PASS1;
- * symbol_1_PP = NULL;
- }
- else
- {
- know( ((* symbol_1_PP) -> sy_type & N_TYPE) == N_UNDF)
- return_value = SEG_UNKNOWN;
- }
- }
- else
- {
- if (symbol_2_P)
- {
- if ((symbol_2_P -> sy_type & N_TYPE) == N_UNDF)
- {
- * symbol_1_PP = NULL;
- return_value = SEG_PASS1;
- }
- else
- {
- /* {seg1} - {seg2} */
- as_warn( "Expression too complex, 2 symbols forgotten: \"%s\" \"%s\"",
- (* symbol_1_PP) -> sy_name, symbol_2_P -> sy_name );
- * symbol_1_PP = NULL;
- return_value = SEG_ABSOLUTE;
- }
- }
- else
- {
- return_value = N_TYPE_seg [(* symbol_1_PP) -> sy_type & N_TYPE];
- }
- }
- }
- else
- { /* (* symbol_1_PP) == NULL */
- if (symbol_2_P)
- {
- * symbol_1_PP = symbol_2_P;
- return_value = N_TYPE_seg [(symbol_2_P) -> sy_type & N_TYPE];
- }
- else
- {
- * symbol_1_PP = NULL;
- return_value = SEG_ABSOLUTE;
- }
- }
- know( return_value == SEG_ABSOLUTE
- || return_value == SEG_TEXT
- || return_value == SEG_DATA
- || return_value == SEG_BSS
- || return_value == SEG_UNKNOWN
- || return_value == SEG_PASS1
- );
- know( (* symbol_1_PP) == NULL
- || ((* symbol_1_PP) -> sy_type & N_TYPE) == seg_N_TYPE [(int) return_value] );
- return (return_value);
- } /* expr_part() */
-
- #ifdef NeXT /* feature to try to make expressions absolute */
- /*
- * DJA -- Here we make a last ditch effort to turn expressions into
- * absolutes. This is particularly useful for doing arithemtic
- * on already declared labels, for example in going through the
- * following table the moveq can really be evaluated. We print
- * a warning when relaxation might cause cause the symbols to
- * change.
- *
- * start: .word 1
- * .word 2
- * .word 3
- * end:
- * lea start,a0
- * moveq #((end-start) / 2) + 1,d0
- * loop: cmpw d1,a0@+
- * dbra d0,loop
- */
-
- segT /* Return expressionP -> X_seg. */
- try_to_make_absolute (expressionP)
- register expressionS * expressionP; /* Deliver result here. */
- {
- if (expressionP -> X_seg == SEG_DIFFERENCE)
- {
- register symbolS * add_symbol;
- register symbolS * subtract_symbol;
- register int add_type;
- register int subtract_type;
- #ifdef RISC
- unsigned long number, size, fail;
- struct frag *frag;
- #endif
-
- if ( ! (add_symbol = expressionP -> X_add_symbol) )
- goto vomit;
- if ( ! (subtract_symbol = expressionP -> X_subtract_symbol) )
- goto vomit;
- add_type = add_symbol->sy_type & N_TYPE;
- subtract_type = subtract_symbol->sy_type & N_TYPE;
- if (
- ! (
- (add_type == N_TEXT && subtract_type == N_TEXT)
- ||
- (add_type == N_DATA && subtract_type == N_DATA)
- )
- )
- goto vomit;
-
- if(add_symbol->sy_frag == subtract_symbol->sy_frag){
- if(add_symbol->sy_frag != NULL &&
- expressionP->X_add_number + add_symbol->sy_value -
- subtract_symbol->sy_value >= 0){
- expressionP->X_add_number += add_symbol->sy_value -
- subtract_symbol->sy_value;
- expressionP -> X_seg = SEG_ABSOLUTE;
- }
- }
- #ifdef RISC
- /*
- * On a RISC machine with no machine depentant frags of variable length
- * try to see if the chain of frags between the subtract symbol and the
- * add symbol is made up of only rs_fill and rs_align frags and then
- * calculate the difference.
- */
- else{
- if(add_symbol->sy_frag != NULL && subtract_symbol->sy_frag != NULL){
- fail = 0;
- size = 0;
- frag = subtract_symbol->sy_frag;
- while(!fail && frag != NULL && frag != add_symbol->sy_frag){
- if(frag->fr_type == rs_align)
- size = round(size + frag->fr_fix, 1 << frag->fr_offset);
- else if(frag->fr_type == rs_fill)
- size += frag->fr_fix;
- else
- fail = 1;
- frag = frag->fr_next;
- }
-
- if(!fail && frag == add_symbol->sy_frag){
- expressionP->X_add_number =
- size + add_symbol->sy_value - subtract_symbol->sy_value;
- expressionP->X_seg = SEG_ABSOLUTE;
- }
- }
- }
- #endif
-
- /*
- if (!( (expressionP->X_add_number >= 0) &&
- (add_symbol->sy_frag == subtract_symbol->sy_frag) &&
- (add_symbol->sy_frag) ) )
- as_warn ("Value may change due to relaxation");
- expressionP -> X_seg = SEG_ABSOLUTE;
- */
- }
- vomit:
- return expressionP -> X_seg;
- } /* try_to_make_absolute */
- #endif NeXT /* feature to try to make expressions absolute */
-
- /* Expression parser. */
-
- /*
- * We allow an empty expression, and just assume (absolute,0) silently.
- * Unary operators and parenthetical expressions are treated as operands.
- * As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
- *
- * We used to do a aho/ullman shift-reduce parser, but the logic got so
- * warped that I flushed it and wrote a recursive-descent parser instead.
- * Now things are stable, would anybody like to write a fast parser?
- * Most expressions are either register (which does not even reach here)
- * or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
- * So I guess it doesn't really matter how inefficient more complex expressions
- * are parsed.
- *
- * After expr(RANK,resultP) input_line_pointer -> operator of rank <= RANK.
- * Also, we have consumed any leading or trailing spaces (operand does that)
- * and done all intervening operators.
- */
-
- #ifdef NeXT /* added relational ops, changed precedence to be same as C */
- typedef enum
- {
- O_illegal = 0, /* (0) what we get for illegal op */
-
- O_multiply, /* (1) * Ordered by rank*/
- O_divide, /* (2) / */
- O_modulus, /* (3) % */
-
- O_add, /* (4) + */
- O_subtract, /* (5) - */
-
- O_right_shift, /* (6) >> */
- O_left_shift, /* (7) << */
-
- O_less_than, /* (8) < */
- O_greater_than, /* (9) > */
- O_less_than_or_equal, /* (10) <= */
- O_greater_than_or_equal, /* (11) >= */
-
- O_equal, /* (12) == */
- O_not_equal, /* (13) != */ /* or <> */
-
- O_bit_and, /* (14) & */
-
- O_bit_exclusive_or, /* (15) ^ */
-
- O_bit_inclusive_or, /* (16) | */
- O_bit_or_not, /* (17) ! */
- two_char_operator /* (18) encoding for two char operator */
- }
- operatorT;
-
- /* op_size is indexed by an operatorT and tells the size of the operator
- * which is used to advance the input_line_pointer over the operator */
- static int
- op_size [] = { 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1 };
-
- #else NeXT /* added relational ops, changed precedence to be same as C */
- typedef enum
- {
- O_illegal, /* (0) what we get for illegal op */
-
- O_multiply, /* (1) * */
- O_divide, /* (2) / */
- O_modulus, /* (3) % */
- O_left_shift, /* (4) < */
- O_right_shift, /* (5) > */
- O_bit_inclusive_or, /* (6) | */
- O_bit_or_not, /* (7) ! */
- O_bit_exclusive_or, /* (8) ^ */
- O_bit_and, /* (9) & */
- O_add, /* (10) + */
- O_subtract /* (11) - */
- }
- operatorT;
- #endif NeXT /* added relational ops, changed precedence to be same as C */
-
- #define __ O_illegal
-
- static const operatorT op_encoding [256] = { /* maps ASCII -> operators */
-
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
-
- #ifdef NeXT /* added relational ops, changed precedence to be same as C */
- __, two_char_operator, __, __, __, O_modulus, O_bit_and, __,
- #else NeXT /* added relational ops, changed precedence to be same as C */
- __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
- #endif NeXT /* added relational ops, changed precedence to be same as C */
- __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
- __, __, __, __, __, __, __, __,
- #ifdef NeXT /* added relational ops, changed precedence to be same as C */
- __, __, __, __, two_char_operator, two_char_operator, two_char_operator, __,
- #else NeXT /* added relational ops, changed precedence to be same as C */
- __, __, __, __, O_left_shift, __, O_right_shift, __,
- #endif NeXT /* added relational ops, changed precedence to be same as C */
- __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, O_bit_exclusive_or, __,
- __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __,
- __, __, __, __, O_bit_inclusive_or, __, __, __,
-
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
- };
-
-
- #ifdef NeXT /* added relational ops, changed precedence to be same as C */
- /*
- * Rank Examples
- * 8 * / %
- * 7 + -
- * 6 >> <<
- * 5 < > <= >=
- * 4 == !=
- * 3 &
- * 2 ^
- * 1 | !
- * 0 operand, (expression)
- */
- #else NeXT /* added relational ops, changed precedence to be same as C */
- /*
- * Rank Examples
- * 0 operand, (expression)
- * 1 + -
- * 2 & ^ ! |
- * 3 * / % < >
- */
- #endif NeXT /* added relational ops, changed precedence to be same as C */
- typedef char operator_rankT;
- static operator_rankT
- #ifdef NeXT /* added relational ops, changed precedence to be same as C */
- op_rank [] = { 0, 8, 8, 8, 7, 7, 6, 6, 5, 5, 5, 5, 4, 4, 3, 2, 1, 1 };
- #else NeXT /* added relational ops, changed precedence to be same as C */
- op_rank [] = { 0, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1 };
- #endif NeXT /* added relational ops, changed precedence to be same as C */
-
- segT /* Return resultP -> X_seg. */
- expr (rank, resultP)
- register operator_rankT rank; /* Larger # is higher rank. */
- register expressionS * resultP; /* Deliver result here. */
- {
- expressionS right;
- register operatorT op_left;
- register char c_left; /* 1st operator character. */
- register operatorT op_right;
- register char c_right;
- #ifdef NeXT /* added relational ops, changed precedence to be same as C */
- operatorT two_char_op_encoding ();
- #endif NeXT /* added relational ops, changed precedence to be same as C */
-
- know( rank >= 0 );
- (void)operand (resultP);
- know( * input_line_pointer != ' ' ); /* Operand() gobbles spaces. */
- c_left = * input_line_pointer; /* Potential operator character. */
- op_left = (operatorT) op_encoding [c_left];
- #ifdef NeXT /* added relational ops, changed precedence to be same as C */
- if (op_left == two_char_operator)
- op_left = two_char_op_encoding (c_left);
- while (op_left && op_rank [(int) op_left] > rank)
- #endif NeXT /* added relational ops, changed precedence to be same as C */
- while (op_left != O_illegal && op_rank [(int) op_left] > rank)
- {
- #ifdef NeXT /* added relational ops, changed precedence to be same as C */
- input_line_pointer += op_size[ op_left ];
- /* -> after 1st character of operator. */
- #else NeXT /* added relational ops, changed precedence to be same as C */
- input_line_pointer ++; /* -> after 1st character of operator. */
- /* Operators "<<" and ">>" have 2 characters. */
- if (* input_line_pointer == c_left && (c_left == '<' || c_left == '>') )
- {
- input_line_pointer ++;
- } /* -> after operator. */
- #endif NeXT /* added relational ops, changed precedence to be same as C */
- if (SEG_NONE == expr (op_rank[(int) op_left], &right))
- {
- as_warn("Missing operand value assumed absolute 0.");
- resultP -> X_add_number = 0;
- resultP -> X_subtract_symbol = NULL;
- resultP -> X_add_symbol = NULL;
- resultP -> X_seg = SEG_ABSOLUTE;
- }
- know( * input_line_pointer != ' ' );
- c_right = * input_line_pointer;
- op_right = (operatorT) op_encoding [c_right];
- #ifdef NeXT /* added relational ops, changed precedence to be same as C */
- if (op_right == two_char_operator)
- op_right = two_char_op_encoding (c_right);
- /* -> after 1st character of operator. */
- #else NeXT /* added relational ops, changed precedence to be same as C */
- if (* input_line_pointer == c_right && (c_right == '<' || c_right == '>') )
- {
- input_line_pointer ++;
- } /* -> after operator. */
- #endif NeXT /* added relational ops, changed precedence to be same as C */
- know( (int) op_right == 0
- || op_rank [(int) op_right] <= op_rank[(int) op_left] );
- /* input_line_pointer -> after right-hand quantity. */
- /* left-hand quantity in resultP */
- /* right-hand quantity in right. */
- /* operator in op_left. */
- if ( resultP -> X_seg == SEG_PASS1 || right . X_seg == SEG_PASS1 )
- {
- resultP -> X_seg = SEG_PASS1;
- }
- else
- {
- if ( resultP -> X_seg == SEG_BIG )
- {
- as_warn( "Left operand of %c is a %s. Integer 0 assumed.",
- c_left, resultP -> X_add_number > 0 ? "bignum" : "float");
- resultP -> X_seg = SEG_ABSOLUTE;
- resultP -> X_add_symbol = 0;
- resultP -> X_subtract_symbol = 0;
- resultP -> X_add_number = 0;
- }
- if ( right . X_seg == SEG_BIG )
- {
- as_warn( "Right operand of %c is a %s. Integer 0 assumed.",
- c_left, right . X_add_number > 0 ? "bignum" : "float");
- right . X_seg = SEG_ABSOLUTE;
- right . X_add_symbol = 0;
- right . X_subtract_symbol = 0;
- right . X_add_number = 0;
- }
- if ( op_left == O_subtract )
- {
- /*
- * Convert - into + by exchanging symbols and negating number.
- * I know -infinity can't be negated in 2's complement:
- * but then it can't be subtracted either. This trick
- * does not cause any further inaccuracy.
- */
-
- register struct symbol * symbolP;
-
- right . X_add_number = - right . X_add_number;
- symbolP = right . X_add_symbol;
- right . X_add_symbol = right . X_subtract_symbol;
- right . X_subtract_symbol = symbolP;
- if (symbolP)
- {
- right . X_seg = SEG_DIFFERENCE;
- }
- op_left = O_add;
- }
-
- if ( op_left == O_add )
- {
- segT seg1;
- segT seg2;
-
- know( resultP -> X_seg == SEG_DATA
- || resultP -> X_seg == SEG_TEXT
- || resultP -> X_seg == SEG_BSS
- || resultP -> X_seg == SEG_UNKNOWN
- || resultP -> X_seg == SEG_DIFFERENCE
- || resultP -> X_seg == SEG_ABSOLUTE
- || resultP -> X_seg == SEG_PASS1
- );
- know( right . X_seg == SEG_DATA
- || right . X_seg == SEG_TEXT
- || right . X_seg == SEG_BSS
- || right . X_seg == SEG_UNKNOWN
- || right . X_seg == SEG_DIFFERENCE
- || right . X_seg == SEG_ABSOLUTE
- || right . X_seg == SEG_PASS1
- );
-
- clean_up_expression (& right);
- clean_up_expression (resultP);
-
- seg1 = expr_part (& resultP -> X_add_symbol, right . X_add_symbol);
- seg2 = expr_part (& resultP -> X_subtract_symbol, right . X_subtract_symbol);
- if ( seg1 == SEG_PASS1
- || seg2 == SEG_PASS1)
- {
- #ifdef NeXT
- as_warn( "Can't relocate expression. Absolute 0 assumed.");
- resultP -> X_seg = SEG_ABSOLUTE;
- resultP -> X_add_number = 0;
- #else !defined(NeXT)
- need_pass_2 = TRUE;
- resultP -> X_seg = SEG_PASS1;
- #endif NeXT
- }
- else
- {
- if (seg2 == SEG_ABSOLUTE)
- {
- resultP -> X_seg = seg1;
- }
- else
- {
- know( seg2 != SEG_ABSOLUTE );
- know( resultP -> X_subtract_symbol );
- if ( seg1 != SEG_UNKNOWN
- && seg1 != SEG_ABSOLUTE
- && seg2 != SEG_UNKNOWN
- && seg1 != seg2)
- {
- know( seg1 == SEG_TEXT || seg1 == SEG_DATA || seg1== SEG_BSS );
- know( seg2 == SEG_TEXT || seg2 == SEG_DATA || seg2== SEG_BSS );
- know( resultP -> X_add_symbol );
- know( resultP -> X_subtract_symbol );
- as_warn("Expression too complex: forgetting %s - %s",
- resultP -> X_add_symbol -> sy_name,
- resultP -> X_subtract_symbol -> sy_name);
- resultP -> X_seg = SEG_ABSOLUTE;
- /* Clean_up_expression() will do the rest. */
- }
- else
- {
- resultP -> X_seg = SEG_DIFFERENCE;
- } /* If relocation too complex. */
- } /* If seg2 == SEG_ABSOLUTE. */
- } /* If need pass 2. */
- resultP -> X_add_number += right . X_add_number;
- clean_up_expression (resultP);
- }
- else
- { /* Not +. */
- if ( resultP -> X_seg == SEG_UNKNOWN || right . X_seg == SEG_UNKNOWN )
- {
- #ifdef NeXT
- as_warn( "Can't relocate expression. Absolute 0 assumed.");
- resultP -> X_seg = SEG_ABSOLUTE;
- resultP -> X_add_number = 0;
- #else !defined(NeXT)
- resultP -> X_seg = SEG_PASS1;
- need_pass_2 = TRUE;
- #endif NeXT
-
- }
- else
- {
- #ifdef NeXT /* feature to try to make expressions absolute */
- /* DJA -- we make an attempt to make expressions absolute */
- try_to_make_absolute (resultP);
- try_to_make_absolute (&right);
- #endif NeXT /* feature to try to make expressions absolute */
- resultP -> X_subtract_symbol = NULL;
- resultP -> X_add_symbol = NULL;
- /* Will be SEG_ABSOLUTE. */
- if ( resultP -> X_seg != SEG_ABSOLUTE || right . X_seg != SEG_ABSOLUTE )
- {
- as_warn( "Relocation error. Absolute 0 assumed.");
- resultP -> X_seg = SEG_ABSOLUTE;
- resultP -> X_add_number = 0;
- }
- else
- {
- switch ( op_left )
- {
- case O_bit_inclusive_or:
- resultP -> X_add_number |= right . X_add_number;
- break;
-
- case O_modulus:
- if (right . X_add_number)
- {
- resultP -> X_add_number %= right . X_add_number;
- }
- else
- {
- as_warn( "Division by 0. 0 assumed." );
- resultP -> X_add_number = 0;
- }
- break;
-
- case O_bit_and:
- resultP -> X_add_number &= right . X_add_number;
- break;
-
- case O_multiply:
- resultP -> X_add_number *= right . X_add_number;
- break;
-
- case O_divide:
- if (right . X_add_number)
- {
- resultP -> X_add_number /= right . X_add_number;
- }
- else
- {
- as_warn( "Division by 0. 0 assumed." );
- resultP -> X_add_number = 0;
- }
- break;
-
- case O_left_shift:
- resultP -> X_add_number <<= right . X_add_number;
- break;
-
- case O_right_shift:
- resultP -> X_add_number >>= right . X_add_number;
- break;
-
- case O_bit_exclusive_or:
- resultP -> X_add_number ^= right . X_add_number;
- break;
-
- case O_bit_or_not:
- resultP -> X_add_number |= ~ right . X_add_number;
- break;
-
- #ifdef NeXT /* added relational ops, changed precedence to be same as C */
- case O_less_than:
- resultP -> X_add_number =
- (resultP -> X_add_number < right . X_add_number);
- break;
-
- case O_greater_than:
- resultP -> X_add_number =
- (resultP -> X_add_number > right . X_add_number);
- break;
-
- case O_less_than_or_equal:
- resultP -> X_add_number =
- (resultP -> X_add_number <= right . X_add_number);
- break;
-
- case O_greater_than_or_equal:
- resultP -> X_add_number =
- (resultP -> X_add_number >= right . X_add_number);
- break;
-
- case O_equal:
- resultP -> X_add_number =
- (resultP -> X_add_number == right . X_add_number);
- break;
-
- case O_not_equal:
- resultP -> X_add_number =
- (resultP -> X_add_number != right . X_add_number);
- break;
- #endif NeXT /* added relational ops, changed precedence to be same as C */
-
- default:
- BAD_CASE( op_left );
- break;
- } /* switch(operator) */
- }
- } /* If we have to force need_pass_2. */
- } /* If operator was +. */
- } /* If we didn't set need_pass_2. */
- op_left = op_right;
- } /* While next operator is >= this rank. */
- return (resultP -> X_seg);
- }
-
- #ifdef NeXT /* added relational ops, changed precedence to be same as C */
- /*
- * two_char_op_encoding() DJA -- added for relation ops
- *
- * Deal with the operators that are two characters long.
- *
- */
- operatorT
- two_char_op_encoding (first_op_char)
- register char first_op_char;
- {
- register char second_op_char;
-
- second_op_char = input_line_pointer[1];
- switch (first_op_char)
- {
- case '<':
- if (second_op_char == '<')
- return O_left_shift;
- if (second_op_char == '=')
- return O_less_than_or_equal;
- if (second_op_char == '>')
- return O_not_equal;
- return O_less_than;
- case '>':
- if (second_op_char == '>')
- return O_right_shift;
- if (second_op_char == '=')
- return O_greater_than_or_equal;
- return O_greater_than;
- case '=':
- if (second_op_char == '=')
- return O_equal;
- return O_illegal;
- case '!':
- if (second_op_char == '=')
- return O_not_equal;
- return O_not_equal;
- default:
- BAD_CASE( first_op_char );
- return O_illegal;
- } /* switch (first_op_char) */
- } /* two_char_op_encoding */
- #endif NeXT /* added relational ops, changed precedence to be same as C */
-
- /*
- * get_symbol_end()
- *
- * This lives here because it belongs equally in expr.c & read.c.
- * Expr.c is just a branch office read.c anyway, and putting it
- * here lessens the crowd at read.c.
- *
- * Assume input_line_pointer is at start of symbol name.
- * Advance input_line_pointer past symbol name.
- * Turn that character into a '\0', returning its former value.
- * This allows a string compare (RMS wants symbol names to be strings)
- * of the symbol name.
- * There will always be a char following symbol name, because all good
- * lines end in end-of-line.
- */
- char
- get_symbol_end()
- {
- register char c;
- #ifdef NeXT
- if ( * input_line_pointer == '"' )
- {
- input_line_pointer ++ ;
- do
- {
- c = * input_line_pointer ++ ;
- }
- while ( c != '"' && c != '\0' && c != '\n' ) ;
- if ( c == '"' )
- {
- * (input_line_pointer - 1) = 0;
- c = * input_line_pointer ++ ;
- }
- }
- else
- {
- while ( is_part_of_name( c = * input_line_pointer ++ ) )
- {
- }
- }
- #else !defined(NeXT)
-
- while ( is_part_of_name( c = * input_line_pointer ++ ) )
- ;
- #endif NeXT
- * -- input_line_pointer = 0;
- return (c);
- }
-
- /* end: expr.c */
-