home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Fresh Fish 7
/
FreshFishVol7.bin
/
bbs
/
gnu
/
gcc-2.3.3-src.lha
/
GNU
/
src
/
amiga
/
gcc-2.3.3
/
cp-call.c
< prev
next >
Wrap
C/C++ Source or Header
|
1994-02-06
|
88KB
|
2,905 lines
/* Functions related to invoking methods and overloaded functions.
Copyright (C) 1987, 1992 Free Software Foundation, Inc.
Contributed by Michael Tiemann (tiemann@cygnus.com)
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* High-level class interface. */
#include "config.h"
#include "tree.h"
#include <stdio.h>
#include "cp-tree.h"
#include "flags.h"
#include "cp-class.h"
#include "obstack.h"
#define obstack_chunk_alloc xmalloc
#define obstack_chunk_free free
extern void sorry ();
extern tree build_function_call_maybe ();
extern int inhibit_warnings;
extern int flag_assume_nonnull_objects;
extern tree ctor_label, dtor_label;
/* From cp-typeck.c: */
extern tree unary_complex_lvalue ();
/* Compute the ease with which a conversion can be performed
between an expected and the given type. */
static int convert_harshness ();
#define EVIL_HARSHNESS(ARG) ((ARG) & 1)
#define USER_HARSHNESS(ARG) ((ARG) & 2)
#define CONTRAVARIANT_HARSHNESS(ARG) ((ARG) & 4)
#define BASE_DERIVED_HARSHNESS(ARG) ((ARG) & 8)
#define INT_TO_BD_HARSHNESS(ARG) (((ARG) << 4) | 8)
#define INT_FROM_BD_HARSHNESS(ARG) ((ARG) >> 4)
#define INT_TO_EASY_HARSHNESS(ARG) ((ARG) << 4)
#define INT_FROM_EASY_HARSHNESS(ARG) ((ARG) >> 4)
#define ONLY_EASY_HARSHNESS(ARG) (((ARG) & 15) == 0)
#define CONST_HARSHNESS(ARG) ((ARG) & 1024)
/* Ordering function for overload resolution. */
int
rank_for_overload (x, y)
struct candidate *x, *y;
{
if (y->evil - x->evil)
return y->evil - x->evil;
if (CONST_HARSHNESS (y->harshness[0]) ^ CONST_HARSHNESS (x->harshness[0]))
return y->harshness[0] - x->harshness[0];
if (y->user - x->user)
return y->user - x->user;
if (y->b_or_d - x->b_or_d)
return y->b_or_d - x->b_or_d;
return y->easy - x->easy;
}
/* TYPE is the type we wish to convert to. PARM is the parameter
we have to work with. We use a somewhat arbitrary cost function
to measure this conversion. */
static int
convert_harshness (type, parmtype, parm)
register tree type, parmtype;
tree parm;
{
register enum tree_code codel = TREE_CODE (type);
register enum tree_code coder = TREE_CODE (parmtype);
#ifdef GATHER_STATISTICS
n_convert_harshness++;
#endif
if (TYPE_MAIN_VARIANT (parmtype) == TYPE_MAIN_VARIANT (type))
return 0;
if (coder == ERROR_MARK)
return 1;
if (codel == POINTER_TYPE
&& (coder == METHOD_TYPE || coder == FUNCTION_TYPE))
{
tree p1, p2;
int harshness, new_harshness;
/* Get to the METHOD_TYPE or FUNCTION_TYPE that this might be. */
type = TREE_TYPE (type);
if (coder != TREE_CODE (type))
return 1;
harshness = 0;
/* We allow the default conversion between function type
and pointer-to-function type for free. */
if (type == parmtype)
return 0;
/* Compare return types. */
p1 = TREE_TYPE (type);
p2 = TREE_TYPE (parmtype);
new_harshness = convert_harshness (p1, p2, 0);
if (new_harshness & 1)
return 1;
if (BASE_DERIVED_HARSHNESS (new_harshness))
{
tree binfo;
/* This only works for pointers. */
if (TREE_CODE (p1) != POINTER_TYPE
&& TREE_CODE (p1) != REFERENCE_TYPE)
return 1;
p1 = TREE_TYPE (p1);
p2 = TREE_TYPE (p2);
if (CONTRAVARIANT_HARSHNESS (new_harshness))
binfo = get_binfo (p2, p1, 0);
else
binfo = get_binfo (p1, p2, 0);
if (! BINFO_OFFSET_ZEROP (binfo))
{
static int explained;
if (CONTRAVARIANT_HARSHNESS (new_harshness))
message_2_types (sorry, "cannot cast `%d' to `%d' at function call site", p2, p1);
else
message_2_types (sorry, "cannot cast `%d' to `%d' at function call site", p1, p2);
if (! explained++)
sorry ("(because pointer values change during conversion)");
return 1;
}
}
harshness |= new_harshness;
p1 = TYPE_ARG_TYPES (type);
p2 = TYPE_ARG_TYPES (parmtype);
while (p1 && p2)
{
new_harshness = convert_harshness (TREE_VALUE (p1), TREE_VALUE (p2), 0);
if (EVIL_HARSHNESS (new_harshness))
return 1;
if (BASE_DERIVED_HARSHNESS (new_harshness))
{
/* This only works for pointers and references. */
if (TREE_CODE (TREE_VALUE (p1)) != POINTER_TYPE
&& TREE_CODE (TREE_VALUE (p1)) != REFERENCE_TYPE)
return 1;
new_harshness ^= CONTRAVARIANT_HARSHNESS (new_harshness);
harshness |= new_harshness;
}
/* This trick allows use to accumulate easy type
conversions without messing up the bits that encode
info about more involved things. */
else if (ONLY_EASY_HARSHNESS (new_harshness))
harshness += new_harshness;
else
harshness |= new_harshness;
p1 = TREE_CHAIN (p1);
p2 = TREE_CHAIN (p2);
}
if (p1 == p2)
return harshness;
if (p2)
return 1;
if (p1)
return harshness | (TREE_PURPOSE (p1) == NULL_TREE);
}
else if (codel == POINTER_TYPE && coder == OFFSET_TYPE)
{
int harshness;
/* Get to the OFFSET_TYPE that this might be. */
type = TREE_TYPE (type);
if (coder != TREE_CODE (type))
return 1;
harshness = 0;
if (TYPE_OFFSET_BASETYPE (type) == TYPE_OFFSET_BASETYPE (parmtype))
harshness = 0;
else if (UNIQUELY_DERIVED_FROM_P (TYPE_OFFSET_BASETYPE (type),
TYPE_OFFSET_BASETYPE (parmtype)))
harshness = INT_TO_BD_HARSHNESS (1);
else if (UNIQUELY_DERIVED_FROM_P (TYPE_OFFSET_BASETYPE (parmtype),
TYPE_OFFSET_BASETYPE (type)))
harshness = CONTRAVARIANT_HARSHNESS (-1);
else
return 1;
/* Now test the OFFSET_TYPE's target compatibility. */
type = TREE_TYPE (type);
parmtype = TREE_TYPE (parmtype);
}
if (coder == UNKNOWN_TYPE)
{
if (codel == FUNCTION_TYPE
|| codel == METHOD_TYPE
|| (codel == POINTER_TYPE
&& (TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
|| TREE_CODE (TREE_TYPE (type)) == METHOD_TYPE)))
return 0;
return 1;
}
if (coder == VOID_TYPE)
return 1;
if (codel == ENUMERAL_TYPE || codel == INTEGER_TYPE)
{
/* Control equivalence of ints an enums. */
if (codel == ENUMERAL_TYPE
&& flag_int_enum_equivalence == 0)
{
/* Enums can be converted to ints, but not vice-versa. */
if (coder != ENUMERAL_TYPE
|| TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (parmtype))
return 1;
}
/* else enums and ints (almost) freely interconvert. */
if (coder == INTEGER_TYPE || coder == ENUMERAL_TYPE)
{
int easy = TREE_UNSIGNED (type) ^ TREE_UNSIGNED (parmtype);
if (codel != coder)
easy += 1;
if (TYPE_MODE (type) != TYPE_MODE (parmtype))
easy += 2;
return INT_TO_EASY_HARSHNESS (easy);
}
else if (coder == REAL_TYPE)
return INT_TO_EASY_HARSHNESS (4);
}
if (codel == REAL_TYPE)
if (coder == REAL_TYPE)
/* Shun converting between float and double if a choice exists. */
{
if (TYPE_MODE (type) != TYPE_MODE (parmtype))
return INT_TO_EASY_HARSHNESS (2);
return 0;
}
else if (coder == INTEGER_TYPE || coder == ENUMERAL_TYPE)
return INT_TO_EASY_HARSHNESS (4);
/* convert arrays which have not previously been converted. */
if (codel == ARRAY_TYPE)
codel = POINTER_TYPE;
if (coder == ARRAY_TYPE)
coder = POINTER_TYPE;
/* Conversions among pointers */
if (codel == POINTER_TYPE && coder == POINTER_TYPE)
{
register tree ttl = TYPE_MAIN_VARIANT (TREE_TYPE (type));
register tree ttr = TYPE_MAIN_VARIANT (TREE_TYPE (parmtype));
int penalty = 4 * (ttl != ttr);
/* Anything converts to void *. void * converts to anything.
Since these may be `const void *' (etc.) use VOID_TYPE
instead of void_type_node.
Otherwise, the targets must be the same,
except that we do allow (at some cost) conversion
between signed and unsinged pointer types. */
if ((TREE_CODE (ttl) == METHOD_TYPE
|| TREE_CODE (ttl) == FUNCTION_TYPE)
&& TREE_CODE (ttl) == TREE_CODE (ttr))
{
if (comptypes (ttl, ttr, -1))
return INT_TO_EASY_HARSHNESS (penalty);
return 1;
}
if (!(TREE_CODE (ttl) == VOID_TYPE
|| TREE_CODE (ttr) == VOID_TYPE
|| (TREE_UNSIGNED (ttl) ^ TREE_UNSIGNED (ttr)
&& (ttl = unsigned_type (ttl),
ttr = unsigned_type (ttr),
penalty = 10, 0))
|| (comp_target_types (ttl, ttr, 0))))
return 1;
if (penalty == 10)
return INT_TO_EASY_HARSHNESS (10);
if (ttr == ttl)
return INT_TO_BD_HARSHNESS (0);
if (TREE_CODE (ttl) == RECORD_TYPE && TREE_CODE (ttr) == RECORD_TYPE)
{
int b_or_d = get_base_distance (ttl, ttr, 0, 0);
if (b_or_d < 0)
{
b_or_d = get_base_distance (ttr, ttl, 0, 0);
if (b_or_d < 0)
return 1;
return CONTRAVARIANT_HARSHNESS (-1);
}
return INT_TO_BD_HARSHNESS (b_or_d);
}
/* If converting from a `class*' to a `void*', make it
less favorable than any inheritance relationship. */
if (TREE_CODE (ttl) == VOID_TYPE && IS_AGGR_TYPE (ttr))
return INT_TO_BD_HARSHNESS (CLASSTYPE_MAX_DEPTH (ttr)+1);
return INT_TO_EASY_HARSHNESS (penalty);
}
if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
{
/* This is not a bad match, but don't let it beat
integer-enum combinations. */
if (parm && integer_zerop (parm))
return INT_TO_EASY_HARSHNESS (4);
}
/* C++: one of the types must be a reference type. */
{
tree ttl, ttr;
register tree intype = TYPE_MAIN_VARIANT (parmtype);
register enum tree_code form = TREE_CODE (intype);
int penalty;
if (codel == REFERENCE_TYPE || coder == REFERENCE_TYPE)
{
ttl = TYPE_MAIN_VARIANT (type);
if (codel == REFERENCE_TYPE)
{
ttl = TREE_TYPE (ttl);
/* When passing a non-const argument into a const reference,
dig it a little, so a non-const reference is preferred over
this one. (mrs) */
if (TREE_READONLY (ttl) && ! TREE_READONLY (parm))
penalty = 2;
else
penalty = 0;
ttl = TYPE_MAIN_VARIANT (ttl);
if (form == OFFSET_TYPE)
{
intype = TREE_TYPE (intype);
form = TREE_CODE (intype);
}
if (form == REFERENCE_TYPE)
{
intype = TYPE_MAIN_VARIANT (TREE_TYPE (intype));
if (ttl == intype)
return 0;
penalty = 2;
}
else
{
/* Can reference be built up? */
if (ttl == intype && penalty == 0) {
/* Becuase the READONLY bits are not always in the type,
this extra check is necessary. The problem should
be fixed someplace else, and this extra code removed.
Also, if type if a reference, the readonly bits could
either be in the outer type (with reference) or on the
inner type (the thing being referenced). (mrs) */
if (TREE_READONLY (parm)
&& ! (TYPE_READONLY (type)
|| (TREE_CODE (type) == REFERENCE_TYPE
&& TYPE_READONLY (TREE_TYPE (type)))))
penalty = 2;
else
return 0;
}
else
penalty = 2;
}
}
else if (form == REFERENCE_TYPE)
{
if (parm)
{
tree tmp = convert_from_reference (parm);
intype = TYPE_MAIN_VARIANT (TREE_TYPE (tmp));
}
else
{
intype = parmtype;
do
{
intype = TREE_TYPE (intype);
}
while (TREE_CODE (intype) == REFERENCE_TYPE);
intype = TYPE_MAIN_VARIANT (intype);
}
if (ttl == intype)
return 0;
else
penalty = 2;
}
if (TREE_UNSIGNED (ttl) ^ TREE_UNSIGNED (intype))
{
ttl = unsigned_type (ttl);
intype = unsigned_type (intype);
penalty += 2;
}
ttr = intype;
/* If the initializer is not an lvalue, then it does not
matter if we make life easier for the programmer
by creating a temporary variable with which to
hold the result. */
if (parm && (coder == INTEGER_TYPE
|| coder == ENUMERAL_TYPE
|| coder == REAL_TYPE)
&& ! lvalue_p (parm))
return (convert_harshness (ttl, ttr, 0)
| INT_TO_EASY_HARSHNESS (penalty));
if (ttl == ttr)
{
if (penalty)
return INT_TO_EASY_HARSHNESS (penalty);
return INT_TO_BD_HARSHNESS (0);
}
/* Pointers to voids always convert for pointers. But
make them less natural than more specific matches. */
if (TREE_CODE (ttl) == POINTER_TYPE && TREE_CODE (ttr) == POINTER_TYPE)
if (TREE_TYPE (ttl) == void_type_node
|| TREE_TYPE (ttr) == void_type_node)
return INT_TO_EASY_HARSHNESS (penalty+1);
if (parm && codel != REFERENCE_TYPE)
return (convert_harshness (ttl, ttr, 0)
| INT_TO_EASY_HARSHNESS (penalty));
/* Here it does matter. If this conversion is from
derived to base, allow it. Otherwise, types must
be compatible in the strong sense. */
if (TREE_CODE (ttl) == RECORD_TYPE && TREE_CODE (ttr) == RECORD_TYPE)
{
int b_or_d = get_base_distance (ttl, ttr, 0, 0);
if (b_or_d < 0)
{
b_or_d = get_base_distance (ttr, ttl, 0, 0);
if (b_or_d < 0)
return 1;
return CONTRAVARIANT_HARSHNESS (-1);
}
/* Say that this conversion is relatively painless.
If it turns out that there is a user-defined X(X&)
constructor, then that will be invoked, but that's
preferable to dealing with other user-defined conversions
that may produce surprising results. */
return INT_TO_BD_HARSHNESS (b_or_d);
}
if (comp_target_types (ttl, intype, 1))
return INT_TO_EASY_HARSHNESS (penalty);
}
}
if (codel == RECORD_TYPE && coder == RECORD_TYPE)
{
int b_or_d = get_base_distance (type, parmtype, 0, 0);
if (b_or_d < 0)
{
b_or_d = get_base_distance (parmtype, type, 0, 0);
if (b_or_d < 0)
return 1;
return CONTRAVARIANT_HARSHNESS (-1);
}
return INT_TO_BD_HARSHNESS (b_or_d);
}
return 1;
}
/* Algorithm: Start out with no strikes against. For each argument
which requires a (subjective) hard conversion (such as between
floating point and integer), issue a strike. If there are the same
number of formal and actual parameters in the list, there will be at
least on strike, otherwise an exact match would have been found. If
there are not the same number of arguments in the type lists, we are
not dead yet: a `...' means that we can have more parms then were
declared, and if we wind up in the default argument section of the
list those can be used as well. If an exact match could be found for
one of those cases, return it immediately. Otherwise, rank the fields
so that fields with fewer strikes are tried first.
Conversions between builtin and user-defined types are allowed, but
no function involving such a conversion is preferred to one which
does not require such a conversion. Furthermore, such conversions
must be unique. */
void
compute_conversion_costs (function, tta_in, cp, arglen)
tree function;
tree tta_in;
struct candidate *cp;
int arglen;
{
tree ttf_in = TYPE_ARG_TYPES (TREE_TYPE (function));
tree ttf = ttf_in;
tree tta = tta_in;
/* Start out with no strikes against. */
int evil_strikes = 0;
int user_strikes = 0;
int b_or_d_strikes = 0;
int easy_strikes = 0;
int strike_index = 0, win, lose;
#ifdef GATHER_STATISTICS
n_compute_conversion_costs++;
#endif
cp->function = function;
cp->arg = tta ? TREE_VALUE (tta) : NULL_TREE;
cp->u.bad_arg = 0; /* optimistic! */
bzero (cp->harshness, (arglen+1) * sizeof (short));
while (ttf && tta)
{
int harshness;
if (ttf == void_list_node)
break;
if (type_unknown_p (TREE_VALUE (tta)))
{
/* Must perform some instantiation here. */
tree rhs = TREE_VALUE (tta);
tree lhstype = TREE_VALUE (ttf);
/* Keep quiet about possible contravariance violations. */
int old_inhibit_warnings = inhibit_warnings;
inhibit_warnings = 1;
/* @@ This is to undo what `grokdeclarator' does to
parameter types. It really should go through
something more general. */
TREE_TYPE (tta) = unknown_type_node;
rhs = instantiate_type (lhstype, rhs, 0);
inhibit_warnings = old_inhibit_warnings;
if (TREE_CODE (rhs) == ERROR_MARK)
harshness = 1;
else
{
harshness = convert_harshness (lhstype, TREE_TYPE (rhs), rhs);
/* harshness |= 2; */
}
}
else
harshness = convert_harshness (TREE_VALUE (ttf), TREE_TYPE (TREE_VALUE (tta)), TREE_VALUE (tta));
cp->harshness[strike_index] = harshness;
if (EVIL_HARSHNESS (harshness)
|| CONTRAVARIANT_HARSHNESS (harshness))
{
cp->u.bad_arg = strike_index;
evil_strikes = 1;
}
#if 0
/* This is never set by `convert_harshness'. */
else if (USER_HARSHNESS (harshness))
{
user_strikes += 1;
}
#endif
else if (BASE_DERIVED_HARSHNESS (harshness))
{
b_or_d_strikes += INT_FROM_BD_HARSHNESS (harshness);
}
else
easy_strikes += INT_FROM_EASY_HARSHNESS (harshness);
ttf = TREE_CHAIN (ttf);
tta = TREE_CHAIN (tta);
strike_index += 1;
}
if (tta)
{
/* ran out of formals, and parmlist is fixed size. */
if (ttf /* == void_type_node */)
{
cp->evil = 1;
cp->u.bad_arg = -1;
return;
}
}
else if (ttf && ttf != void_list_node)
{
/* ran out of actuals, and no defaults. */
if (TREE_PURPOSE (ttf) == NULL_TREE)
{
cp->evil = 1;
cp->u.bad_arg = -2;
return;
}
/* Store index of first default. */
cp->harshness[arglen] = strike_index+1;
}
else cp->harshness[arglen] = 0;
/* Argument list lengths work out, so don't need to check them again. */
if (evil_strikes)
{
/* We do not check for derived->base conversions here, since in
no case would they give evil strike counts, unless such conversions
are somehow ambiguous. */
/* See if any user-defined conversions apply.
But make sure that we do not loop. */
static int dont_convert_types = 0;
if (dont_convert_types)
{
cp->evil = 1;
return;
}
win = 0; /* Only get one chance to win. */
ttf = TYPE_ARG_TYPES (TREE_TYPE (function));
tta = tta_in;
strike_index = 0;
evil_strikes = 0;
while (ttf && tta)
{
if (ttf == void_list_node)
break;
lose = cp->harshness[strike_index];
if (EVIL_HARSHNESS (lose)
|| CONTRAVARIANT_HARSHNESS (lose))
{
tree actual_type = TREE_TYPE (TREE_VALUE (tta));
tree formal_type = TREE_VALUE (ttf);
dont_convert_types = 1;
if (TREE_CODE (formal_type) == REFERENCE_TYPE)
formal_type = TREE_TYPE (formal_type);
if (TREE_CODE (actual_type) == REFERENCE_TYPE)
actual_type = TREE_TYPE (actual_type);
if (formal_type != error_mark_node
&& actual_type != error_mark_node)
{
formal_type = TYPE_MAIN_VARIANT (formal_type);
actual_type = TYPE_MAIN_VARIANT (actual_type);
if (TYPE_HAS_CONSTRUCTOR (formal_type))
{
/* If it has a constructor for this type, try to use it. */
if (convert_to_aggr (formal_type, TREE_VALUE (tta), 0, 1)
!= error_mark_node)
{
/* @@ There is no way to save this result yet.
@@ So success is NULL_TREE for now. */
win++;
}
}
if (TYPE_LANG_SPECIFIC (actual_type) && TYPE_HAS_CONVERSION (actual_type))
{
if (TREE_CODE (formal_type) == INTEGER_TYPE
&& TYPE_HAS_INT_CONVERSION (actual_type))
win++;
else if (TREE_CODE (formal_type) == REAL_TYPE
&& TYPE_HAS_REAL_CONVERSION (actual_type))
win++;
else
{
tree conv = build_type_conversion (CALL_EXPR, TREE_VALUE (ttf), TREE_VALUE (tta), 0);
if (conv)
{
if (conv == error_mark_node)
win += 2;
else
win++;
}
else if (TREE_CODE (TREE_VALUE (ttf)) == REFERENCE_TYPE)
{
conv = build_type_conversion (CALL_EXPR, formal_type, TREE_VALUE (tta), 0);
if (conv)
{
if (conv == error_mark_node)
win += 2;
else
win++;
}
}
}
}
}
dont_convert_types = 0;
if (win == 1)
{
user_strikes += 1;
cp->harshness[strike_index] = USER_HARSHNESS (-1);
win = 0;
}
else
{
if (cp->u.bad_arg > strike_index)
cp->u.bad_arg = strike_index;
evil_strikes = win ? 2 : 1;
break;
}
}
ttf = TREE_CHAIN (ttf);
tta = TREE_CHAIN (tta);
strike_index += 1;
}
}
/* Const member functions get a small penalty because defaulting
to const is less useful than defaulting to non-const. */
/* This is bogus, it does not correspond to anything in the ARM.
This code will be fixed when this entire section is rewritten
to conform to the ARM. (mrs) */
if (TREE_CODE (TREE_TYPE (function)) == METHOD_TYPE)
{
if (TYPE_READONLY (TREE_TYPE (TREE_VALUE (ttf_in))))
{
cp->harshness[0] += INT_TO_EASY_HARSHNESS (1);
++easy_strikes;
}
else
{
/* Calling a non-const member function from a const member function
is probably invalid, but for now we let it only draw a warning.
We indicate that such a mismatch has occurred by setting the
harshness to a maximum value. */
if (TREE_CODE (TREE_TYPE (TREE_VALUE (tta_in))) == POINTER_TYPE
&& (TYPE_READONLY (TREE_TYPE (TREE_TYPE (TREE_VALUE (tta_in))))))
cp->harshness[0] |= CONST_HARSHNESS (-1);
}
}
cp->evil = evil_strikes;
cp->user = user_strikes;
cp->b_or_d = b_or_d_strikes;
cp->easy = easy_strikes;
}
/* When one of several possible overloaded functions and/or methods
can be called, choose the best candidate for overloading.
BASETYPE is the context from which we start method resolution
or NULL if we are comparing overloaded functions.
CANDIDATES is the array of candidates we have to choose from.
N_CANDIDATES is the length of CANDIDATES.
PARMS is a TREE_LIST of parameters to the function we'll ultimately
choose. It is modified in place when resolving methods. It is not
modified in place when resolving overloaded functions.
LEN is the length of the parameter list. */
static struct candidate *
ideal_candidate (basetype, candidates, n_candidates, parms, len)
tree basetype;
struct candidate *candidates;
int n_candidates;
tree parms;
int len;
{
struct candidate *cp = candidates + n_candidates;
int index, i;
tree ttf;
qsort (candidates, /* char *base */
n_candidates, /* int nel */
sizeof (struct candidate), /* int width */
rank_for_overload); /* int (*compar)() */
/* If the best candidate requires user-defined conversions,
and its user-defined conversions are a strict subset
of all other candidates requiring user-defined conversions,
then it is, in fact, the best. */
for (i = -1; cp + i != candidates; i--)
if (cp[i].user == 0)
break;
if (i < -1)
{
tree ttf0;
/* Check that every other candidate requires those conversions
as a strict subset of their conversions. */
if (cp[i].user == cp[-1].user)
goto non_subset;
/* Look at subset relationship more closely. */
while (i != -1)
{
for (ttf = TYPE_ARG_TYPES (TREE_TYPE (cp[i].function)),
ttf0 = TYPE_ARG_TYPES (TREE_TYPE (cp[-1].function)),
index = 0;
index < len;
ttf = TREE_CHAIN (ttf), ttf0 = TREE_CHAIN (ttf0), index++)
if (USER_HARSHNESS (cp[i].harshness[index]))
{
/* If our "best" candidate also needs a conversion,
it must be the same one. */
if (USER_HARSHNESS (cp[-1].harshness[index])
&& TREE_VALUE (ttf) != TREE_VALUE (ttf0))
goto non_subset;
}
i++;
}
/* The best was the best. */
return cp - 1;
non_subset:
/* Use other rules for determining "bestness". */
;
}
/* If the best two candidates we find require user-defined
conversions, we may need to report and error message. */
if (cp[-1].user && cp[-2].user
&& (cp[-1].b_or_d || cp[-2].b_or_d == 0))
{
/* If the best two methods found involved user-defined
type conversions, then we must see whether one
of them is exactly what we wanted. If not, then
we have an ambiguity. */
int best = 0;
tree tta = parms;
tree f1, p1;
/* Stash all of our parameters in safe places
so that we can perform type conversions in place. */
while (tta)
{
TREE_PURPOSE (tta) = TREE_VALUE (tta);
tta = TREE_CHAIN (tta);
}
i = 0;
do
{
int exact_conversions = 0;
i -= 1;
tta = parms;
if (DECL_STATIC_FUNCTION_P (cp[i].function))
tta = TREE_CHAIN (tta);
/* special note, we don't go through len parameters, because we
may only need len-1 parameters because of a call to a static
member. */
for (ttf = TYPE_ARG_TYPES (TREE_TYPE (cp[i].function)), index = 0;
tta;
tta = TREE_CHAIN (tta), ttf = TREE_CHAIN (ttf), index++)
{
if (USER_HARSHNESS (cp[i].harshness[index]))
{
tree this_parm = build_type_conversion (CALL_EXPR, TREE_VALUE (ttf), TREE_PURPOSE (tta), 2);
if (basetype != NULL_TREE)
TREE_VALUE (tta) = this_parm;
if (this_parm)
{
if (TREE_CODE (this_parm) != CONVERT_EXPR
&& (TREE_CODE (this_parm) != NOP_EXPR
|| comp_target_types (TREE_TYPE (this_parm),
TREE_TYPE (TREE_OPERAND (this_parm, 0)), 1)))
exact_conversions += 1;
}
else if (PROMOTES_TO_AGGR_TYPE (TREE_VALUE (ttf), REFERENCE_TYPE))
{
/* To get here we had to have succeeded via
a constructor. */
TREE_VALUE (tta) = TREE_PURPOSE (tta);
exact_conversions += 1;
}
}
}
if (exact_conversions == cp[i].user)
{
if (best == 0)
{
best = i;
f1 = cp[best].function;
p1 = TYPE_ARG_TYPES (TREE_TYPE (f1));
}
else
{
/* Don't complain if next best is from base class. */
tree f2 = cp[i].function;
if (TREE_CODE (TREE_TYPE (f1)) == METHOD_TYPE
&& TREE_CODE (TREE_TYPE (f2)) == METHOD_TYPE
&& BASE_DERIVED_HARSHNESS (cp[i].harshness[0])
&& cp[best].harshness[0] < cp[i].harshness[0])
{
#if 0
tree p2 = TYPE_ARG_TYPES (TREE_TYPE (f2));
/* For LUCID. */
if (! compparms (TREE_CHAIN (p1), TREE_CHAIN (p2), 1))
goto ret0;
else
#endif
continue;
}
else
{
/* Ensure that there's nothing ambiguous about these
two fns. */
int identical = 1;
for (index = 0; index < len; index++)
{
/* Type conversions must be piecewise equivalent. */
if (USER_HARSHNESS (cp[best].harshness[index])
!= USER_HARSHNESS (cp[i].harshness[index]))
goto ret0;
/* If there's anything we like better about the
other function, consider it ambiguous. */
if (cp[i].harshness[index] < cp[best].harshness[index])
goto ret0;
/* If any single one it diffent, then the whole is
not identical. */
if (cp[i].harshness[index] != cp[best].harshness[index])
identical = 0;
}
/* If we can't tell the difference between the two, it
is ambiguous. */
if (identical)
goto ret0;
/* If we made it to here, it means we're satisfied that
BEST is still best. */
continue;
}
}
}
} while (cp + i != candidates);
if (best)
{
int exact_conversions = cp[best].user;
tta = parms;
if (DECL_STATIC_FUNCTION_P (cp[best].function))
tta = TREE_CHAIN (parms);
for (ttf = TYPE_ARG_TYPES (TREE_TYPE (cp[best].function)), index = 0;
exact_conversions > 0;
tta = TREE_CHAIN (tta), ttf = TREE_CHAIN (ttf), index++)
{
if (USER_HARSHNESS (cp[best].harshness[index]))
{
/* We must now fill in the slot we left behind.
@@ This could be optimized to use the value previously
@@ computed by build_type_conversion in some cases. */
if (basetype != NULL_TREE)
TREE_VALUE (tta) = convert (TREE_VALUE (ttf), TREE_PURPOSE (tta));
exact_conversions -= 1;
}
else TREE_VALUE (tta) = TREE_PURPOSE (tta);
}
return cp + best;
}
goto ret0;
}
/* If the best two candidates we find both use default parameters,
we may need to report and error. Don't need to worry if next-best
candidate is forced to use user-defined conversion when best is not. */
if (cp[-2].user == 0
&& cp[-1].harshness[len] != 0 && cp[-2].harshness[len] != 0)
{
tree tt1 = TYPE_ARG_TYPES (TREE_TYPE (cp[-1].function));
tree tt2 = TYPE_ARG_TYPES (TREE_TYPE (cp[-2].function));
unsigned i = cp[-1].harshness[len];
if (cp[-2].harshness[len] < i)
i = cp[-2].harshness[len];
while (--i > 0)
{
if (TYPE_MAIN_VARIANT (TREE_VALUE (tt1))
!= TYPE_MAIN_VARIANT (TREE_VALUE (tt2)))
/* These lists are not identical, so we can choose our best candidate. */
return cp - 1;
tt1 = TREE_CHAIN (tt1);
tt2 = TREE_CHAIN (tt2);
}
/* To get here, both lists had the same parameters up to the defaults
which were used. This is an ambiguous request. */
goto ret0;
}
/* Otherwise, return our best candidate. Note that if we get candidates
from independent base classes, we have an ambiguity, even if one
argument list look a little better than another one. */
if (cp[-1].b_or_d && basetype && TYPE_USES_MULTIPLE_INHERITANCE (basetype))
{
int i = n_candidates - 1, best = i;
tree base1 = NULL_TREE;
if (TREE_CODE (TREE_TYPE (candidates[i].function)) == FUNCTION_TYPE)
return cp - 1;
for (; i >= 0 && candidates[i].user == 0 && candidates[i].evil == 0; i--)
{
if (TREE_CODE (TREE_TYPE (candidates[i].function)) == METHOD_TYPE)
{
tree newbase = DECL_CLASS_CONTEXT (candidates[i].function);
if (base1 != NULL_TREE)
{
/* newbase could be a base or a parent of base1 */
if (newbase != base1 && ! UNIQUELY_DERIVED_FROM_P (newbase, base1)
&& ! UNIQUELY_DERIVED_FROM_P (base1, newbase))
{
error_with_aggr_type (basetype, "ambiguous request for function from distinct base classes of type `%s'");
error ("first candidate is `%s'",
fndecl_as_string (0, candidates[best].function, 1));
error ("second candidate is `%s'",
fndecl_as_string (0, candidates[i].function, 1));
cp[-1].evil = 1;
return cp - 1;
}
}
else
{
best = i;
base1 = newbase;
}
}
else return cp - 1;
}
}
/* Don't accept a candidate as being ideal if it's indistinguishable
from another candidate. */
if (rank_for_overload (cp-1, cp-2) == 0)
{
/* If the types are distinguishably different (like
`long' vs. `unsigned long'), that's ok. But if they are arbitrarily
different, such as `int (*)(void)' vs. `void (*)(int)',
that's not ok. */
tree p1 = TYPE_ARG_TYPES (TREE_TYPE (cp[-1].function));
tree p2 = TYPE_ARG_TYPES (TREE_TYPE (cp[-2].function));
while (p1 && p2)
{
if (TREE_CODE (TREE_VALUE (p1)) == POINTER_TYPE
&& TREE_CODE (TREE_TYPE (TREE_VALUE (p1))) == FUNCTION_TYPE
&& TREE_VALUE (p1) != TREE_VALUE (p2))
return 0;
p1 = TREE_CHAIN (p1);
p2 = TREE_CHAIN (p2);
}
if (p1 || p2)
return 0;
}
return cp - 1;
ret0:
/* In the case where there is no ideal candidate, restore
TREE_VALUE slots of PARMS from TREE_PURPOSE slots. */
while (parms)
{
TREE_VALUE (parms) = TREE_PURPOSE (parms);
parms = TREE_CHAIN (parms);
}
return 0;
}
/* Assume that if the class referred to is not in the
current class hierarchy, that it may be remote.
PARENT is assumed to be of aggregate type here. */
static int
may_be_remote (parent)
tree parent;
{
if (TYPE_OVERLOADS_METHOD_CALL_EXPR (parent) == 0)
return 0;
if (current_class_type == NULL_TREE)
return 0;
if (parent == current_class_type)
return 0;
if (UNIQUELY_DERIVED_FROM_P (parent, current_class_type))
return 0;
return 1;
}
#ifdef ESKIT
/* Return the number of bytes that the arglist in PARMS would
occupy on the stack. */
int
get_arglist_len_in_bytes (parms)
tree parms;
{
register tree parm;
register int bytecount = 0;
for (parm = parms; parm; parm = TREE_CHAIN (parm))
{
register tree pval = TREE_VALUE (parm);
register int used, size;
if (TREE_CODE (pval) == ERROR_MARK)
continue;
else if (TYPE_MODE (TREE_TYPE (pval)) != BLKmode)
{
used = size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (pval)));
#ifdef PUSH_ROUNDING
size = PUSH_ROUNDING (size);
#endif
used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
/ (PARM_BOUNDARY / BITS_PER_UNIT))
* (PARM_BOUNDARY / BITS_PER_UNIT));
}
else
{
register tree size = size_in_bytes (TREE_TYPE (pval));
register tree used_t
= round_up (size, PARM_BOUNDARY / BITS_PER_UNIT);
used = TREE_INT_CST_LOW (used_t);
}
bytecount += used;
}
return bytecount;
}
#endif
tree
build_vfield_ref (datum, type)
tree datum, type;
{
tree rval;
int old_assume_nonnull_objects = flag_assume_nonnull_objects;
/* Vtable references are always made from non-null objects. */
flag_assume_nonnull_objects = 1;
if (TREE_CODE (TREE_TYPE (datum)) == REFERENCE_TYPE)
datum = convert_from_reference (datum);
if (! TYPE_USES_COMPLEX_INHERITANCE (type))
rval = build (COMPONENT_REF, TREE_TYPE (CLASSTYPE_VFIELD (type)),
datum, CLASSTYPE_VFIELD (type));
else
rval = build_component_ref (datum, DECL_NAME (CLASSTYPE_VFIELD (type)), 0, 0);
flag_assume_nonnull_objects = old_assume_nonnull_objects;
return rval;
}
/* Build a call to a member of an object. I.e., one that overloads
operator ()(), or is a pointer-to-function or pointer-to-method. */
static tree
build_field_call (basetype_path, instance_ptr, name, parms, err_name)
tree basetype_path;
tree instance_ptr, name, parms;
char *err_name;
{
tree field, instance;
if (instance_ptr == current_class_decl)
{
/* Check to see if we really have a reference to an instance variable
with `operator()()' overloaded. */
field = IDENTIFIER_CLASS_VALUE (name);
if (field == NULL_TREE)
{
error ("`this' has no member named `%s'", err_name);
return error_mark_node;
}
if (TREE_CODE (field) == FIELD_DECL)
{
/* If it's a field, try overloading operator (),
or calling if the field is a pointer-to-function. */
instance = build_component_ref_1 (C_C_D, field, 0);
if (instance == error_mark_node)
return error_mark_node;
if (TYPE_LANG_SPECIFIC (TREE_TYPE (instance))
&& TYPE_OVERLOADS_CALL_EXPR (TREE_TYPE (instance)))
return build_opfncall (CALL_EXPR, LOOKUP_NORMAL, instance, parms);
if (TREE_CODE (TREE_TYPE (instance)) == POINTER_TYPE)
if (TREE_CODE (TREE_TYPE (TREE_TYPE (instance))) == FUNCTION_TYPE)
return build_function_call (instance, parms);
else if (TREE_CODE (TREE_TYPE (TREE_TYPE (instance))) == METHOD_TYPE)
return build_function_call (instance, tree_cons (NULL_TREE, current_class_decl, parms));
}
return NULL_TREE;
}
/* Check to see if this is not really a reference to an instance variable
with `operator()()' overloaded. */
field = lookup_field (basetype_path, name, 1, 0);
/* This can happen if the reference was ambiguous
or for visibility violations. */
if (field == error_mark_node)
return error_mark_node;
if (field)
{
tree basetype;
tree ftype = TREE_TYPE (field);
if (TYPE_LANG_SPECIFIC (ftype) && TYPE_OVERLOADS_CALL_EXPR (ftype))
{
/* Make the next search for this field very short. */
basetype = DECL_FIELD_CONTEXT (field);
instance_ptr = convert_pointer_to (basetype, instance_ptr);
instance = build_indirect_ref (instance_ptr, 0);
return build_opfncall (CALL_EXPR, LOOKUP_NORMAL,
build_component_ref_1 (instance, field, 0),
parms);
}
if (TREE_CODE (ftype) == POINTER_TYPE)
{
if (TREE_CODE (TREE_TYPE (ftype)) == FUNCTION_TYPE
|| TREE_CODE (TREE_TYPE (ftype)) == METHOD_TYPE)
{
/* This is a member which is a pointer to function. */
tree ref = build_component_ref_1 (build_indirect_ref (instance_ptr, 0),
field, LOOKUP_COMPLAIN);
if (ref == error_mark_node)
return error_mark_node;
return build_function_call (ref, parms);
}
}
else if (TREE_CODE (ftype) == METHOD_TYPE)
{
error ("invalid call via pointer-to-member function");
return error_mark_node;
}
else
return NULL_TREE;
}
return NULL_TREE;
}
tree
find_scoped_type (type, inner_name, inner_types)
tree type, inner_name, inner_types;
{
tree tags = CLASSTYPE_TAGS (type);
while (tags)
{
/* The TREE_PURPOSE of an enum tag (which becomes a member of the
enclosing class) is set to the name for the enum type. So, if
inner_name is `bar', and we strike `baz' for `enum bar { baz }',
then this test will be true. */
if (TREE_PURPOSE (tags) == inner_name)
{
if (inner_types == NULL_TREE)
return DECL_NESTED_TYPENAME (TYPE_NAME (TREE_VALUE (tags)));
return resolve_scope_to_name (TREE_VALUE (tags), inner_types);
}
tags = TREE_CHAIN (tags);
}
/* Look for a TYPE_DECL. */
for (tags = TYPE_FIELDS (type); tags; tags = TREE_CHAIN (tags))
if (TREE_CODE (tags) == TYPE_DECL && DECL_NAME (tags) == inner_name)
{
/* Code by raeburn. */
if (inner_types == NULL_TREE)
return DECL_NESTED_TYPENAME (tags);
return resolve_scope_to_name (TREE_TYPE (tags), inner_types);
}
return NULL_TREE;
}
/* Resolve an expression NAME1::NAME2::...::NAMEn to
the name that names the above nested type. INNER_TYPES
is a chain of nested type names (held together by SCOPE_REFs);
OUTER_TYPE is the type we know to enclose INNER_TYPES.
Returns NULL_TREE if there is an error. */
tree
resolve_scope_to_name (outer_type, inner_types)
tree outer_type, inner_types;
{
register tree tmp;
tree tags, inner_name;
if (outer_type == NULL_TREE && current_class_type != NULL_TREE)
{
/* We first try to look for a nesting in our current class context. */
tree rval = resolve_scope_to_name (current_class_type, inner_types);
if (rval != NULL_TREE)
return rval;
}
if (TREE_CODE (inner_types) == SCOPE_REF)
{
inner_name = TREE_OPERAND (inner_types, 0);
inner_types = TREE_OPERAND (inner_types, 1);
}
else
{
inner_name = inner_types;
inner_types = 0;
}
if (outer_type == NULL_TREE)
{
/* If we have something that's already a type by itself,
use that. */
if (IDENTIFIER_HAS_TYPE_VALUE (inner_name))
{
if (inner_types)
return resolve_scope_to_name (IDENTIFIER_TYPE_VALUE (inner_name),
inner_types);
return inner_name;
}
return NULL_TREE;
}
if (! IS_AGGR_TYPE (outer_type))
return NULL_TREE;
/* Look for member classes or enums. */
tmp = find_scoped_type (outer_type, inner_name, inner_types);
/* If it's not a type in this class, then go down into the
base classes and search there. */
if (! tmp && TYPE_BINFO (outer_type))
{
tree binfos = TYPE_BINFO_BASETYPES (outer_type);
int i, n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
for (i = 0; i < n_baselinks; i++)
{
tree base_binfo = TREE_VEC_ELT (binfos, i);
tmp = find_scoped_type (BINFO_TYPE (base_binfo),
inner_name, inner_types);
if (tmp)
return tmp;
}
tmp = NULL_TREE;
}
return tmp;
}
/* Build a method call of the form `EXP->SCOPES::NAME (PARMS)'.
This is how virtual function calls are avoided. */
tree
build_scoped_method_call (exp, scopes, name, parms)
tree exp;
tree scopes;
tree name;
tree parms;
{
/* Because this syntactic form does not allow
a pointer to a base class to be `stolen',
we need not protect the derived->base conversion
that happens here.
@@ But we do have to check visibility privileges later. */
tree basename = resolve_scope_to_name (NULL_TREE, scopes);
tree basetype, binfo, decl;
tree type = TREE_TYPE (exp);
if (type == error_mark_node
|| basename == NULL_TREE
|| ! is_aggr_typedef (basename, 1))
return error_mark_node;
if (! IS_AGGR_TYPE (type))
{
error ("base object of scoped method call is not of aggregate type");
return error_mark_node;
}
basetype = IDENTIFIER_TYPE_VALUE (basename);
if (binfo = binfo_or_else (basetype, type))
{
if (binfo == error_mark_node)
return error_mark_node;
if (TREE_CODE (exp) == INDIRECT_REF)
decl = build_indirect_ref (convert_pointer_to (binfo,
build_unary_op (ADDR_EXPR, exp, 0)), 0);
else
decl = build_scoped_ref (exp, scopes);
/* Call to a destructor. */
if (TREE_CODE (name) == BIT_NOT_EXPR)
{
/* Explicit call to destructor. */
name = TREE_OPERAND (name, 0);
if (! is_aggr_typedef (name, 1))
return error_mark_node;
if (TREE_TYPE (decl) != IDENTIFIER_TYPE_VALUE (name))
{
error_with_aggr_type (TREE_TYPE (decl),
"qualified type `%s' does not match destructor type `%s'",
IDENTIFIER_POINTER (name));
return error_mark_node;
}
if (! TYPE_HAS_DESTRUCTOR (TREE_TYPE (decl)))
error_with_aggr_type (TREE_TYPE (decl), "type `%s' has no destructor");
return build_delete (TREE_TYPE (decl), decl, integer_two_node,
LOOKUP_NORMAL|LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR,
0, 0);
}
/* Call to a method. */
return build_method_call (decl, name, parms, NULL_TREE,
LOOKUP_NORMAL|LOOKUP_NONVIRTUAL);
}
return error_mark_node;
}
/* Build something of the form ptr->method (args)
or object.method (args). This can also build
calls to constructors, and find friends.
Member functions always take their class variable
as a pointer.
INSTANCE is a class instance.
NAME is the NAME field of the struct, union, or class
whose type is that of INSTANCE.
PARMS help to figure out what that NAME really refers to.
BASETYPE_PATH, if non-NULL, tells which basetypes of INSTANCE
we should be traversed before starting our search. We need
this information to get protected accesses correct.
FLAGS is the logical disjunction of zero or more LOOKUP_
flags. See cp-tree.h for more info.
If this is all OK, calls build_function_call with the resolved
member function.
This function must also handle being called to perform
initialization, promotion/coercion of arguments, and
instantiation of default parameters.
Note that NAME may refer to an instance variable name. If
`operator()()' is defined for the type of that field, then we return
that result. */
tree
build_method_call (instance, name, parms, basetype_path, flags)
tree instance, name, parms, basetype_path;
int flags;
{
register tree function, fntype, value_type;
register tree basetype, save_basetype;
register tree baselink, result, method_name, parmtypes, parm;
tree last;
int pass;
enum visibility_type visibility;
int rank_for_overload ();
/* Range of cases for vtable optimization. */
enum vtable_needs
{
not_needed, maybe_needed, unneeded, needed,
};
enum vtable_needs need_vtbl = not_needed;
char *err_name;
char *name_kind;
int ever_seen = 0;
tree instance_ptr = NULL_TREE;
int all_virtual = flag_all_virtual;
int static_call_context = 0;
tree saw_private = 0;
tree saw_protected = 0;
#ifdef SOS
/* If call is a call to a constructor, then `dtbl'
will first be initialized with the function table pointer
of the appropriate type (calling "sosFindCode" as a last
resort), the the call to the constructor will go through there. */
tree dtbl = (flags & LOOKUP_DYNAMIC) ? TREE_VALUE (parms) : NULL_TREE;
/* Flag saying whether or not `dtbl' has been inserted into the
parameter list. This is needed because we cannot tell (until
we have a match) whether this parameter should go in or not.
If 1, then `dtbl' is living naturally.
If 0, then `dtbl' is not among the parms that we know about.
If -1, the `dtbl' was place into the parms unnaturally.
Note that we may side-effect the parameter list, but in such a way
that the caller of this function would never know. */
int dtbl_inserted = (flags & LOOKUP_DYNAMIC);
#endif
/* Keep track of `const' and `volatile' objects. */
int constp, volatilep;
#ifdef GATHER_STATISTICS
n_build_method_call++;
#endif
if (instance == error_mark_node
|| name == error_mark_node
|| parms == error_mark_node
|| (instance != 0 && TREE_TYPE (instance) == error_mark_node))
return error_mark_node;
/* This is the logic that magically deletes the second argument to
operator delete, if it is not needed. */
if (name == ansi_opname[(int) DELETE_EXPR] && list_length (parms)==2)
{
tree save_last = TREE_CHAIN (parms);
tree result;
/* get rid of unneeded argument */
TREE_CHAIN (parms) = NULL_TREE;
result = build_method_call (instance, name, parms, basetype_path,
(LOOKUP_SPECULATIVELY|flags)
&~LOOKUP_COMPLAIN);
/* If it works, return it. */
if (result && result != error_mark_node)
return build_method_call (instance, name, parms, basetype_path, flags);
/* If it doesn't work, two argument delete must work */
TREE_CHAIN (parms) = save_last;
}
#if 0
/* C++ 2.1 does not allow this, but ANSI probably will. */
if (TREE_CODE (name) == BIT_NOT_EXPR)
{
error ("invalid call to destructor, use qualified name `%s::~%s'",
IDENTIFIER_POINTER (name), IDENTIFIER_POINTER (name));
return error_mark_node;
}
#else
if (TREE_CODE (name) == BIT_NOT_EXPR)
{
flags |= LOOKUP_DESTRUCTOR;
name = TREE_OPERAND (name, 0);
if (! is_aggr_typedef (name, 1))
return error_mark_node;
if (parms)
error ("destructors take no parameters");
basetype = IDENTIFIER_TYPE_VALUE (name);
if (! TYPE_HAS_DESTRUCTOR (basetype))
{
#if 0 /* ARM says tp->~T() without T::~T() is valid. */
error_with_aggr_type (basetype, "type `%s' has no destructor");
#endif
/* A destructive destructor wouldn't be a bad idea, but let's
not bother for now. */
return build_c_cast (void_type_node, instance);
}
instance = default_conversion (instance);
if (TREE_CODE (TREE_TYPE (instance)) == POINTER_TYPE)
instance_ptr = instance;
else
instance_ptr = build_unary_op (ADDR_EXPR, instance, 0);
return build_delete (basetype, instance_ptr, integer_two_node,
LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 0, 0);
}
#endif
/* Initialize name for error reporting. */
if (IDENTIFIER_TYPENAME_P (name))
err_name = "type conversion operator";
else if (IDENTIFIER_OPNAME_P (name))
{
char *p = operator_name_string (name);
err_name = (char *)alloca (strlen (p) + 10);
sprintf (err_name, "operator %s", p);
}
else if (TREE_CODE (name) == SCOPE_REF)
err_name = IDENTIFIER_POINTER (TREE_OPERAND (name, 1));
else
err_name = IDENTIFIER_POINTER (name);
if (IDENTIFIER_OPNAME_P (name))
GNU_xref_call (current_function_decl, IDENTIFIER_POINTER (name));
else
GNU_xref_call (current_function_decl, err_name);
if (instance == NULL_TREE)
{
basetype = NULL_TREE;
/* Check cases where this is really a call to raise
an exception. */
if (current_class_type && TREE_CODE (name) == IDENTIFIER_NODE)
{
basetype = purpose_member (name, CLASSTYPE_TAGS (current_class_type));
if (basetype)
basetype = TREE_VALUE (basetype);
}
else if (TREE_CODE (name) == SCOPE_REF
&& TREE_CODE (TREE_OPERAND (name, 0)) == IDENTIFIER_NODE)
{
if (! is_aggr_typedef (TREE_OPERAND (name, 0), 1))
return error_mark_node;
basetype = purpose_member (TREE_OPERAND (name, 1),
CLASSTYPE_TAGS (IDENTIFIER_TYPE_VALUE (TREE_OPERAND (name, 0))));
if (basetype)
basetype = TREE_VALUE (basetype);
}
if (basetype != NULL_TREE)
;
/* call to a constructor... */
else if (IDENTIFIER_HAS_TYPE_VALUE (name))
{
basetype = IDENTIFIER_TYPE_VALUE (name);
name = constructor_name (basetype);
}
else
{
tree typedef_name = lookup_name (name, 1);
if (typedef_name && TREE_CODE (typedef_name) == TYPE_DECL)
{
/* Canonicalize the typedef name. */
basetype = TREE_TYPE (typedef_name);
name = TYPE_IDENTIFIER (basetype);
}
else
{
error ("no constructor named `%s' in visible scope",
IDENTIFIER_POINTER (name));
return error_mark_node;
}
}
if (! IS_AGGR_TYPE (basetype))
{
non_aggr_error:
if ((flags & LOOKUP_COMPLAIN) && TREE_CODE (basetype) != ERROR_MARK)
error ("request for member `%s' in something not a structure or union", err_name);
return error_mark_node;
}
}
else if (instance == C_C_D || instance == current_class_decl)
{
/* When doing initialization, we side-effect the TREE_TYPE of
C_C_D, hence we cannot set up BASETYPE from CURRENT_CLASS_TYPE. */
basetype = TREE_TYPE (C_C_D);
/* Anything manifestly `this' in constructors and destructors
has a known type, so virtual function tables are not needed. */
if (TYPE_VIRTUAL_P (basetype)
&& !(flags & LOOKUP_NONVIRTUAL))
need_vtbl = (dtor_label || ctor_label)
? unneeded : maybe_needed;
instance = C_C_D;
instance_ptr = current_class_decl;
result = build_field_call (TYPE_BINFO (current_class_type),
instance_ptr, name, parms, err_name);
if (result)
return result;
}
else if (TREE_CODE (instance) == RESULT_DECL)
{
basetype = TREE_TYPE (instance);
/* Should we ever have to make a virtual function reference
from a RESULT_DECL, know that it must be of fixed type
within the scope of this function. */
if (!(flags & LOOKUP_NONVIRTUAL) && TYPE_VIRTUAL_P (basetype))
need_vtbl = maybe_needed;
instance_ptr = build1 (ADDR_EXPR, TYPE_POINTER_TO (basetype), instance);
}
else if (instance == current_exception_object)
{
instance_ptr = build1 (ADDR_EXPR, TYPE_POINTER_TO (current_exception_type),
TREE_OPERAND (current_exception_object, 0));
mark_addressable (TREE_OPERAND (current_exception_object, 0));
result = build_field_call (TYPE_BINFO (current_exception_type),
instance_ptr, name, parms, err_name);
if (result)
return result;
error ("exception member `%s' cannot be invoked", err_name);
return error_mark_node;
}
else
{
/* The MAIN_VARIANT of the type that `instance_ptr' winds up being. */
tree inst_ptr_basetype;
static_call_context = (TREE_CODE (instance) == NOP_EXPR
&& TREE_OPERAND (instance, 0) == error_mark_node);
/* the base type of an instance variable is pointer to class */
basetype = TREE_TYPE (instance);
if (TREE_CODE (basetype) == REFERENCE_TYPE)
{
basetype = TYPE_MAIN_VARIANT (TREE_TYPE (basetype));
if (! IS_AGGR_TYPE (basetype))
goto non_aggr_error;
/* Call to convert not needed because we are remaining
within the same type. */
instance_ptr = build1 (NOP_EXPR, TYPE_POINTER_TO (basetype), instance);
inst_ptr_basetype = basetype;
}
else
{
if (TREE_CODE (basetype) == POINTER_TYPE)
{
basetype = TREE_TYPE (basetype);
instance_ptr = instance;
}
if (! IS_AGGR_TYPE (basetype))
goto non_aggr_error;
if (! instance_ptr)
{
if ((lvalue_p (instance)
&& (instance_ptr = build_unary_op (ADDR_EXPR, instance, 0)))
|| (instance_ptr = unary_complex_lvalue (ADDR_EXPR, instance)))
{
if (instance_ptr == error_mark_node)
return error_mark_node;
}
else if (TREE_CODE (instance) == NOP_EXPR
|| TREE_CODE (instance) == CONSTRUCTOR)
{
/* A cast is not an lvalue. Initialize a fresh temp
with the value we are casting from, and proceed with
that temporary. We can't cast to a reference type,
so that simplifies the initialization to something
we can manage. */
tree temp = get_temp_name (TREE_TYPE (instance), 0);
if (IS_AGGR_TYPE (TREE_TYPE (instance)))
expand_aggr_init (temp, instance, 0);
else
{
store_init_value (temp, instance);
expand_decl_init (temp);
}
instance = temp;
instance_ptr = build_unary_op (ADDR_EXPR, instance, 0);
}
else
{
if (TREE_CODE (instance) != CALL_EXPR)
my_friendly_abort (125);
if (TYPE_NEEDS_CONSTRUCTOR (basetype))
instance = build_cplus_new (basetype, instance, 0);
else
{
instance = get_temp_name (basetype, 0);
TREE_ADDRESSABLE (instance) = 1;
}
instance_ptr = build_unary_op (ADDR_EXPR, instance, 0);
}
/* @@ Should we call comp_target_types here? */
inst_ptr_basetype = TREE_TYPE (TREE_TYPE (instance_ptr));
if (TYPE_MAIN_VARIANT (basetype) == TYPE_MAIN_VARIANT (inst_ptr_basetype))
basetype = inst_ptr_basetype;
else
{
instance_ptr = convert (TYPE_POINTER_TO (basetype), instance_ptr);
if (instance_ptr == error_mark_node)
return error_mark_node;
}
}
else
inst_ptr_basetype = TREE_TYPE (TREE_TYPE (instance_ptr));
}
if (basetype_path == NULL_TREE)
basetype_path = TYPE_BINFO (inst_ptr_basetype);
result = build_field_call (basetype_path, instance_ptr, name, parms, err_name);
if (result)
return result;
if (!(flags & LOOKUP_NONVIRTUAL) && TYPE_VIRTUAL_P (basetype))
{
if (TREE_SIDE_EFFECTS (instance_ptr))
{
/* This action is needed because the instance is needed
for providing the base of the virtual function table.
Without using a SAVE_EXPR, the function we are building
may be called twice, or side effects on the instance
variable (such as a post-increment), may happen twice. */
instance_ptr = save_expr (instance_ptr);
instance = build_indirect_ref (instance_ptr, 0);
}
else if (TREE_CODE (TREE_TYPE (instance)) == POINTER_TYPE)
{
/* This happens when called for operator new (). */
instance = build_indirect_ref (instance, 0);
}
need_vtbl = maybe_needed;
}
}
if (TYPE_SIZE (basetype) == 0)
{
/* This is worth complaining about, I think. */
error_with_aggr_type (basetype, "cannot lookup method in incomplete type `%s'");
return error_mark_node;
}
save_basetype = basetype;
#if 0
if (all_virtual == 1
&& (! strncmp (IDENTIFIER_POINTER (name), OPERATOR_METHOD_FORMAT,
OPERATOR_METHOD_LENGTH)
|| instance_ptr == NULL_TREE
|| (TYPE_OVERLOADS_METHOD_CALL_EXPR (basetype) == 0
/*&& TYPE_NEEDS_WRAPPER (basetype) == 0*/ )))
all_virtual = 0;
#endif
last = NULL_TREE;
for (parmtypes = 0, parm = parms; parm; parm = TREE_CHAIN (parm))
{
tree t = TREE_TYPE (TREE_VALUE (parm));
if (TREE_CODE (t) == OFFSET_TYPE)
{
/* Convert OFFSET_TYPE entities to their normal selves. */
TREE_VALUE (parm) = resolve_offset_ref (TREE_VALUE (parm));
t = TREE_TYPE (TREE_VALUE (parm));
}
if (TREE_CODE (t) == ARRAY_TYPE)
{
/* Perform the conversion from ARRAY_TYPE to POINTER_TYPE in place.
This eliminates needless calls to `compute_conversion_costs'. */
TREE_VALUE (parm) = default_conversion (TREE_VALUE (parm));
t = TREE_TYPE (TREE_VALUE (parm));
}
if (t == error_mark_node)
return error_mark_node;
last = build_tree_list (NULL_TREE, t);
parmtypes = chainon (parmtypes, last);
}
if (instance)
{
constp = TREE_READONLY (instance);
volatilep = TREE_THIS_VOLATILE (instance);
parms = tree_cons (NULL_TREE, instance_ptr, parms);
}
else
{
/* Raw constructors are always in charge. */
if (TYPE_USES_VIRTUAL_BASECLASSES (basetype)
&& ! (flags & LOOKUP_HAS_IN_CHARGE))
{
flags |= LOOKUP_HAS_IN_CHARGE;
parms = tree_cons (NULL_TREE, integer_one_node, parms);
parmtypes = tree_cons (NULL_TREE, integer_type_node, parmtypes);
}
if (flag_this_is_variable > 0)
{
constp = 0;
volatilep = 0;
parms = tree_cons (NULL_TREE, build1 (NOP_EXPR, TYPE_POINTER_TO (basetype), integer_zero_node), parms);
}
else
{
constp = 0;
volatilep = 0;
instance_ptr = build_new (NULL_TREE, basetype, void_type_node, 0);
if (instance_ptr == error_mark_node)
return error_mark_node;
instance_ptr = save_expr (instance_ptr);
TREE_CALLS_NEW (instance_ptr) = 1;
instance = build_indirect_ref (instance_ptr, 0);
/* If it's a default argument initialized from a ctor, what we get
from instance_ptr will match the arglist for the FUNCTION_DECL
of the constructor. */
if (parms && TREE_CODE (TREE_VALUE (parms)) == CALL_EXPR
&& TREE_OPERAND (TREE_VALUE (parms), 1)
&& TREE_CALLS_NEW (TREE_VALUE (TREE_OPERAND (TREE_VALUE (parms), 1))))
parms = build_tree_list (NULL_TREE, instance_ptr);
else
parms = tree_cons (NULL_TREE, instance_ptr, parms);
}
}
parmtypes = tree_cons (NULL_TREE,
build_pointer_type (build_type_variant (basetype, constp, volatilep)),
parmtypes);
if (last == NULL_TREE)
last = parmtypes;
/* Look up function name in the structure type definition. */
if ((IDENTIFIER_HAS_TYPE_VALUE (name)
&& IS_AGGR_TYPE (IDENTIFIER_TYPE_VALUE (name)))
|| name == constructor_name (basetype))
{
tree tmp = NULL_TREE;
if (IDENTIFIER_TYPE_VALUE (name) == basetype
|| name == constructor_name (basetype))
tmp = TYPE_BINFO (basetype);
else
tmp = get_binfo (IDENTIFIER_TYPE_VALUE (name), basetype, 0);
if (tmp != 0)
{
name_kind = "constructor";
if (TYPE_USES_VIRTUAL_BASECLASSES (basetype)
&& ! (flags & LOOKUP_HAS_IN_CHARGE))
{
/* Constructors called for initialization
only are never in charge. */
tree tmplist;
flags |= LOOKUP_HAS_IN_CHARGE;
tmplist = tree_cons (NULL_TREE, integer_zero_node,
TREE_CHAIN (parms));
TREE_CHAIN (parms) = tmplist;
tmplist = tree_cons (NULL_TREE, integer_type_node, TREE_CHAIN (parmtypes));
TREE_CHAIN (parmtypes) = tmplist;
}
#ifdef SOS
if (TYPE_DYNAMIC (basetype) && dtbl_inserted == 0)
{
tree parm, parmtype;
dtbl = get_sos_dtable (basetype);
parm = tree_cons (NULL_TREE, dtbl, TREE_CHAIN (parms));
parmtype = tree_cons (NULL_TREE, build_pointer_type (ptr_type_node), TREE_CHAIN (parmtypes));
TREE_CHAIN (parms) = parm;
TREE_CHAIN (parmtypes) = parmtype;
dtbl_inserted = -1;
}
#endif
/* constructors are in very specific places. */
#ifdef SOS
if (dtbl_inserted == -1)
{
TREE_CHAIN (parmtypes) = TREE_CHAIN (TREE_CHAIN (parmtypes));
TREE_CHAIN (parms) = TREE_CHAIN (TREE_CHAIN (parms));
dtbl_inserted = 0;
}
#endif
basetype = BINFO_TYPE (tmp);
}
else
name_kind = "method";
}
else name_kind = "method";
if (basetype_path == NULL_TREE)
basetype_path = TYPE_BINFO (basetype);
result = lookup_fnfields (basetype_path, name,
(flags & LOOKUP_COMPLAIN));
if (result == error_mark_node)
return error_mark_node;
/* Now, go look for this method name. We do not find destructors here.
Putting `void_list_node' on the end of the parmtypes
fakes out `build_decl_overload' into doing the right thing. */
TREE_CHAIN (last) = void_list_node;
method_name = build_decl_overload (name, parmtypes,
1 + (name == constructor_name (save_basetype)));
TREE_CHAIN (last) = NULL_TREE;
for (pass = 0; pass < 2; pass++)
{
struct candidate *candidates;
struct candidate *cp;
int len;
unsigned best = 2;
/* This increments every time we go up the type hierarchy.
The idea is to prefer a function of the derived class if possible. */
int b_or_d = 0;
baselink = result;
if (pass > 0)
{
candidates
= (struct candidate *) alloca ((ever_seen+1)
* sizeof (struct candidate));
cp = candidates;
len = list_length (parms);
/* First see if a global function has a shot at it. */
if (flags & LOOKUP_GLOBAL)
{
tree friend_parms;
tree parm = TREE_VALUE (parms);
if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE)
friend_parms = parms;
else if (TREE_CODE (TREE_TYPE (parm)) == POINTER_TYPE)
{
tree new_type;
parm = build_indirect_ref (parm, "friendifying parms (compiler error)");
new_type = build_reference_type (TREE_TYPE (parm));
/* It is possible that this should go down a layer. */
new_type = build_type_variant (new_type,
TREE_READONLY (parm),
TREE_THIS_VOLATILE (parm));
parm = convert (new_type, parm);
friend_parms = tree_cons (NULL_TREE, parm, TREE_CHAIN (parms));
}
else
my_friendly_assert (0, 167);
cp->harshness
= (unsigned short *)alloca ((len+1) * sizeof (short));
result = build_overload_call (name, friend_parms, 0, cp);
/* If it turns out to be the one we were actually looking for
(it was probably a friend function), the return the
good result. */
if (TREE_CODE (result) == CALL_EXPR)
return result;
while (cp->evil == 0)
{
/* non-standard uses: set the field to 0 to indicate
we are using a non-member function. */
cp->u.field = 0;
if (cp->harshness[len] == 0
&& cp->harshness[len] == 0
&& cp->user == 0 && cp->b_or_d == 0
&& cp->easy < best)
best = cp->easy;
cp += 1;
}
}
}
while (baselink)
{
/* We have a hit (of sorts). If the parameter list is
"error_mark_node", or some variant thereof, it won't
match any methods. Since we have verified that the is
some method vaguely matching this one (in name at least),
silently return.
Don't stop for friends, however. */
tree basetypes = TREE_PURPOSE (baselink);
function = TREE_VALUE (baselink);
if (TREE_CODE (basetypes) == TREE_LIST)
basetypes = TREE_VALUE (basetypes);
basetype = BINFO_TYPE (basetypes);
/* Cast the instance variable to the appropriate type. */
TREE_VALUE (parmtypes) = TYPE_POINTER_TO (basetype);
if (DESTRUCTOR_NAME_P (DECL_ASSEMBLER_NAME (function)))
function = DECL_CHAIN (function);
for (; function; function = DECL_CHAIN (function))
{
#ifdef GATHER_STATISTICS
n_inner_fields_searched++;
#endif
ever_seen++;
/* Not looking for friends here. */
if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE
&& ! DECL_STATIC_FUNCTION_P (function))
continue;
if (pass == 0
&& DECL_ASSEMBLER_NAME (function) == method_name)
{
if (flags & LOOKUP_PROTECT)
{
visibility = compute_visibility (basetypes, function);
if (visibility == visibility_protected
&& flags & LOOKUP_PROTECTED_OK)
visibility = visibility_public;
}
if ((flags & LOOKUP_PROTECT) == 0
|| visibility == visibility_public)
goto found_and_ok;
else if (visibility == visibility_private)
saw_private = function;
else if (visibility == visibility_protected)
saw_protected = function;
/* If we fail on the exact match, we have
an immediate failure. */
goto found;
}
if (pass > 0)
{
tree these_parms = parms;
#ifdef GATHER_STATISTICS
n_inner_fields_searched++;
#endif
cp->harshness
= (unsigned short *)alloca ((len+1) * sizeof (short));
if (DECL_STATIC_FUNCTION_P (function))
these_parms = TREE_CHAIN (these_parms);
compute_conversion_costs (function, these_parms, cp, len);
cp->b_or_d += b_or_d;
if (cp->evil == 0)
{
cp->u.field = function;
cp->function = function;
if (flags & LOOKUP_PROTECT)
{
enum visibility_type this_v;
this_v = compute_visibility (basetypes, function);
if (this_v == visibility_protected
&& (flags & LOOKUP_PROTECTED_OK))
this_v = visibility_public;
if (this_v != visibility_public)
{
if (this_v == visibility_private)
saw_private = function;
else
saw_protected = function;
continue;
}
}
/* No "two-level" conversions. */
if (flags & LOOKUP_NO_CONVERSION && cp->user != 0)
continue;
/* If we used default parameters, we must
check to see whether anyone else might
use them also, and report a possible
ambiguity. */
if (! TYPE_USES_MULTIPLE_INHERITANCE (save_basetype)
&& cp->harshness[len] == 0
&& CONST_HARSHNESS (cp->harshness[0]) == 0
&& cp->user == 0 && cp->b_or_d == 0
&& cp->easy < best)
{
if (! DECL_STATIC_FUNCTION_P (function))
TREE_VALUE (parms) = cp->arg;
if (best == 2)
goto found_and_maybe_warn;
}
cp++;
}
}
}
/* Now we have run through one link's member functions.
arrange to head-insert this link's links. */
baselink = next_baselink (baselink);
b_or_d += 1;
}
if (pass == 0)
{
/* No exact match could be found. Now try to find match
using default conversions. */
if ((flags & LOOKUP_GLOBAL) && IDENTIFIER_GLOBAL_VALUE (name))
if (TREE_CODE (IDENTIFIER_GLOBAL_VALUE (name)) == FUNCTION_DECL)
ever_seen += 1;
else if (TREE_CODE (IDENTIFIER_GLOBAL_VALUE (name)) == TREE_LIST)
ever_seen += list_length (IDENTIFIER_GLOBAL_VALUE (name));
if (ever_seen == 0)
{
if ((flags & (LOOKUP_SPECULATIVELY|LOOKUP_COMPLAIN))
== LOOKUP_SPECULATIVELY)
return NULL_TREE;
if (flags & LOOKUP_GLOBAL)
error ("no global or member function `%s' defined", err_name);
else
error_with_aggr_type (save_basetype, "no member function `%s::%s'", err_name);
return error_mark_node;
}
continue;
}
if (cp - candidates != 0)
{
/* Rank from worst to best. Then cp will point to best one.
Private fields have their bits flipped. For unsigned
numbers, this should make them look very large.
If the best alternate has a (signed) negative value,
then all we ever saw were private members. */
if (cp - candidates > 1)
{
cp = ideal_candidate (save_basetype, candidates,
cp - candidates, parms, len);
if (cp == 0)
{
error ("ambiguous type conversion requested for %s `%s'",
name_kind, err_name);
return error_mark_node;
}
if (cp->evil)
return error_mark_node;
}
else if (cp[-1].evil == 2)
{
error ("ambiguous type conversion requested for %s `%s'",
name_kind, err_name);
return error_mark_node;
}
else cp--;
/* The global function was the best, so use it. */
if (cp->u.field == 0)
{
/* We must convert the instance pointer into a reference type.
Global overloaded functions can only either take
aggregate objects (which come for free from references)
or reference data types anyway. */
TREE_VALUE (parms) = copy_node (instance_ptr);
TREE_TYPE (TREE_VALUE (parms)) = build_reference_type (TREE_TYPE (TREE_TYPE (instance_ptr)));
return build_function_call (cp->function, parms);
}
function = cp->function;
if (! DECL_STATIC_FUNCTION_P (function))
TREE_VALUE (parms) = cp->arg;
goto found_and_maybe_warn;
}
if ((flags & ~LOOKUP_GLOBAL) & (LOOKUP_COMPLAIN|LOOKUP_SPECULATIVELY))
{
char *tag_name, *buf;
if ((flags & (LOOKUP_SPECULATIVELY|LOOKUP_COMPLAIN))
== LOOKUP_SPECULATIVELY)
return NULL_TREE;
if (DECL_STATIC_FUNCTION_P (cp->function))
parms = TREE_CHAIN (parms);
if (ever_seen)
{
if (((HOST_WIDE_INT)saw_protected|(HOST_WIDE_INT)saw_private) == 0)
{
if (flags & LOOKUP_SPECULATIVELY)
return NULL_TREE;
if (static_call_context && TREE_CODE (TREE_TYPE (cp->function)) == METHOD_TYPE)
error_with_aggr_type (TREE_TYPE (TREE_TYPE (instance_ptr)),
"object missing in call to `%s::%s'",
err_name);
else
report_type_mismatch (cp, parms, name_kind, err_name);
}
else
{
char buf[80];
char *msg;
tree seen = saw_private;
if (saw_private)
if (saw_protected)
msg = "%s %%s (and the like) are private or protected";
else
msg = "the %s %%s is private";
else
{
msg = "the %s %%s is protected";
seen = saw_protected;
}
sprintf (buf, msg, name_kind);
error_with_decl (seen, buf);
error ("within this context");
}
return error_mark_node;
}
if ((flags & (LOOKUP_SPECULATIVELY|LOOKUP_COMPLAIN))
== LOOKUP_COMPLAIN)
{
if (TREE_CODE (save_basetype) == RECORD_TYPE)
tag_name = "structure";
else
tag_name = "union";
buf = (char *)alloca (30 + strlen (err_name));
strcpy (buf, "%s has no method named `%s'");
error (buf, tag_name, err_name);
return error_mark_node;
}
return NULL_TREE;
}
continue;
found_and_maybe_warn:
if (CONST_HARSHNESS (cp->harshness[0]))
{
if (flags & LOOKUP_COMPLAIN)
{
error_with_decl (cp->function, "non-const member function `%s'");
error ("called for const object at this point in file");
}
/* Not good enough for a match. */
else return error_mark_node;
}
goto found_and_ok;
}
/* Silently return error_mark_node. */
return error_mark_node;
found:
if (visibility == visibility_private)
{
if (flags & LOOKUP_COMPLAIN)
error_with_file_and_line (DECL_SOURCE_FILE (function),
DECL_SOURCE_LINE (function),
TREE_PRIVATE (function)
? "%s `%s' is private"
: "%s `%s' is from private base class",
name_kind,
lang_printable_name (function));
return error_mark_node;
}
else if (visibility == visibility_protected)
{
if (flags & LOOKUP_COMPLAIN)
error_with_file_and_line (DECL_SOURCE_FILE (function),
DECL_SOURCE_LINE (function),
TREE_PROTECTED (function)
? "%s `%s' is protected"
: "%s `%s' has protected visibility from this point",
name_kind,
lang_printable_name (function));
return error_mark_node;
}
my_friendly_abort (1);
found_and_ok:
/* From here on down, BASETYPE is the type that INSTANCE_PTR's
type (if it exists) is a pointer to. */
function = DECL_MAIN_VARIANT (function);
/* Declare external function if necessary. */
assemble_external (function);
fntype = TREE_TYPE (function);
if (TREE_CODE (fntype) == POINTER_TYPE)
fntype = TREE_TYPE (fntype);
basetype = DECL_CLASS_CONTEXT (function);
/* If we are referencing a virtual function from an object
of effectively static type, then there is no need
to go through the virtual function table. */
if (need_vtbl == maybe_needed)
{
int fixed_type = resolves_to_fixed_type_p (instance, 0);
if (all_virtual == 1
&& DECL_VINDEX (function)
&& may_be_remote (basetype))
need_vtbl = needed;
else if (DECL_VINDEX (function))
need_vtbl = fixed_type ? unneeded : needed;
else
need_vtbl = not_needed;
if (fixed_type && DECL_ABSTRACT_VIRTUAL_P (function))
{
error_with_decl (function, "invalid call to abstract function `%s'");
return error_mark_node;
}
}
if (TREE_CODE (fntype) == METHOD_TYPE && static_call_context)
{
/* Let's be nice to the user for now, and give reasonable
default behavior. */
instance_ptr = current_class_decl;
if (instance_ptr)
{
if (basetype != current_class_type)
{
tree binfo = get_binfo (basetype, current_class_type, 1);
if (binfo == 0)
{
error_not_base_type (function, current_class_type);
return error_mark_node;
}
else if (basetype == error_mark_node)
return error_mark_node;
}
}
else if (! TREE_STATIC (function))
{
error_with_aggr_type (basetype, "cannot call member function `%s::%s' without object",
err_name);
return error_mark_node;
}
}
value_type = TREE_TYPE (fntype) ? TREE_TYPE (fntype) : void_type_node;
if (TYPE_SIZE (value_type) == 0)
{
if (flags & LOOKUP_COMPLAIN)
incomplete_type_error (0, value_type);
return error_mark_node;
}
/* We do not pass FUNCTION into `convert_arguments', because by
now everything should be ok. If not, then we have a serious error. */
if (DECL_STATIC_FUNCTION_P (function))
parms = convert_arguments (NULL_TREE, TYPE_ARG_TYPES (fntype),
TREE_CHAIN (parms), NULL_TREE, LOOKUP_NORMAL);
else if (need_vtbl == unneeded)
{
int sub_flags = DECL_CONSTRUCTOR_P (function) ? flags : LOOKUP_NORMAL;
basetype = TREE_TYPE (instance);
if (TYPE_METHOD_BASETYPE (TREE_TYPE (function)) != TYPE_MAIN_VARIANT (basetype)
&& TYPE_USES_COMPLEX_INHERITANCE (basetype))
{
basetype = DECL_CLASS_CONTEXT (function);
instance_ptr = convert_pointer_to (basetype, instance_ptr);
instance = build_indirect_ref (instance_ptr, 0);
}
parms = tree_cons (NULL_TREE, instance_ptr,
convert_arguments (NULL_TREE, TREE_CHAIN (TYPE_ARG_TYPES (fntype)), TREE_CHAIN (parms), NULL_TREE, sub_flags));
}
else
{
if ((flags & LOOKUP_NONVIRTUAL) == 0)
basetype = DECL_CONTEXT (function);
/* First parm could be integer_zerop with casts like
((Object*)0)->Object::IsA() */
if (!integer_zerop (TREE_VALUE (parms)))
{
instance_ptr = convert_pointer_to (build_type_variant (basetype, constp, volatilep),
TREE_VALUE (parms));
if (TREE_CODE (instance_ptr) == COND_EXPR)
{
instance_ptr = save_expr (instance_ptr);
instance = build_indirect_ref (instance_ptr, 0);
}
else if (TREE_CODE (instance_ptr) == NOP_EXPR
&& TREE_CODE (TREE_OPERAND (instance_ptr, 0)) == ADDR_EXPR
&& TREE_OPERAND (TREE_OPERAND (instance_ptr, 0), 0) == instance)
;
/* The call to `convert_pointer_to' may return error_mark_node. */
else if (TREE_CODE (instance_ptr) == ERROR_MARK)
return instance_ptr;
else if (instance == NULL_TREE
|| TREE_CODE (instance) != INDIRECT_REF
|| TREE_OPERAND (instance, 0) != instance_ptr)
instance = build_indirect_ref (instance_ptr, 0);
}
parms = tree_cons (NULL_TREE, instance_ptr,
convert_arguments (NULL_TREE, TREE_CHAIN (TYPE_ARG_TYPES (fntype)), TREE_CHAIN (parms), NULL_TREE, LOOKUP_NORMAL));
}
#if 0
/* Constructors do not overload method calls. */
else if (TYPE_OVERLOADS_METHOD_CALL_EXPR (basetype)
&& name != TYPE_IDENTIFIER (basetype)
&& (TREE_CODE (function) != FUNCTION_DECL
|| strncmp (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (function)),
OPERATOR_METHOD_FORMAT,
OPERATOR_METHOD_LENGTH))
#if 0
&& (may_be_remote (basetype)
|| (C_C_D ? TREE_TYPE (instance) != current_class_type : 1))
#else
/* This change by Larry Ketcham. */
&& (may_be_remote (basetype) || instance != C_C_D)
#endif
)
{
tree fn_as_int;
#ifdef ESKIT
register int bytecount = 0;
parms = tree_cons (NULL_TREE, build_int_2 (bytecount, 0),
TREE_CHAIN (parms));
#else
parms = TREE_CHAIN (parms);
#endif
if (!all_virtual && TREE_CODE (function) == FUNCTION_DECL)
fn_as_int = build_unary_op (ADDR_EXPR, function, 0);
else
fn_as_int = convert (TREE_TYPE (default_conversion (function)), DECL_VINDEX (function));
if (all_virtual == 1)
fn_as_int = convert (integer_type_node, fn_as_int);
result = build_opfncall (METHOD_CALL_EXPR, LOOKUP_NORMAL, instance, fn_as_int, parms);
if (result == NULL_TREE)
{
compiler_error ("could not overload `operator->()(...)'");
return error_mark_node;
}
else if (result == error_mark_node)
return error_mark_node;
#if 0
/* Do this if we want the result of operator->() to inherit
the type of the function it is subbing for. */
TREE_TYPE (result) = value_type;
#endif
#ifdef ESKIT
{
int used, size;
/* Count the number of bytes of arguments to operator->(),
not to the method itself. In the tally, don't count bytes
for pointer to member function or for the bytecount. */
parms = TREE_OPERAND (result, 1);
bytecount = get_arglist_len_in_bytes (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (parms))));
used = size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_VALUE (parms))));
#ifdef PUSH_ROUNDING
size = PUSH_ROUNDING (size);
#endif
used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
/ (PARM_BOUNDARY / BITS_PER_UNIT))
* (PARM_BOUNDARY / BITS_PER_UNIT));
bytecount += used;
TREE_CHAIN (TREE_CHAIN (parms))
= tree_cons (NULL_TREE, build_int_2 (bytecount, 0),
TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (parms))));
}
#endif
return result;
}
#endif
if (need_vtbl == needed)
{
function = build_vfn_ref (&TREE_VALUE (parms), instance, DECL_VINDEX (function));
TREE_TYPE (function) = build_pointer_type (fntype);
}
#ifdef SOS
else if (basetype && TYPE_DYNAMIC (basetype))
{
function = build_array_ref (dtbl, DECL_DINDEX (function));
TREE_TYPE (function) = build_pointer_type (fntype);
}
#endif
if (TREE_CODE (function) == FUNCTION_DECL)
GNU_xref_call (current_function_decl,
IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (function)));
if (TREE_CODE (function) == FUNCTION_DECL)
{
if (DECL_INLINE (function))
function = build1 (ADDR_EXPR, build_pointer_type (fntype), function);
else
{
assemble_external (function);
TREE_USED (function) = 1;
function = default_conversion (function);
}
}
else
function = default_conversion (function);
result =
build_nt (CALL_EXPR, function, parms, NULL_TREE);
TREE_TYPE (result) = value_type;
TREE_SIDE_EFFECTS (result) = 1;
TREE_RAISES (result)
= TYPE_RAISES_EXCEPTIONS (fntype) || (parms && TREE_RAISES (parms));
return result;
}
/* Similar to `build_method_call', but for overloaded non-member functions.
The name of this function comes through NAME. The name depends
on PARMS.
Note that this function must handle simple `C' promotions,
as well as variable numbers of arguments (...), and
default arguments to boot.
If the overloading is successful, we return a tree node which
contains the call to the function.
If overloading produces candidates which are probable, but not definite,
we hold these candidates. If FINAL_CP is non-zero, then we are free
to assume that final_cp points to enough storage for all candidates that
this function might generate. The `harshness' array is preallocated for
the first candidate, but not for subsequent ones.
Note that the DECL_RTL of FUNCTION must be made to agree with this
function's new name. */
tree
build_overload_call_real (fnname, parms, complain, final_cp, buildxxx)
tree fnname, parms;
int complain;
struct candidate *final_cp;
int buildxxx;
{
/* must check for overloading here */
tree overload_name, functions, function, parm;
tree parmtypes = NULL_TREE, last = NULL_TREE;
register tree outer;
int length;
int parmlength = list_length (parms);
struct candidate *candidates, *cp;
int rank_for_overload ();
if (final_cp)
{
final_cp[0].evil = 0;
final_cp[0].user = 0;
final_cp[0].b_or_d = 0;
final_cp[0].easy = 0;
final_cp[0].function = 0;
/* end marker. */
final_cp[1].evil = 1;
}
for (parm = parms; parm; parm = TREE_CHAIN (parm))
{
register tree t = TREE_TYPE (TREE_VALUE (parm));
if (t == error_mark_node)
{
if (final_cp)
final_cp->evil = 1;
return error_mark_node;
}
if (TREE_CODE (t) == ARRAY_TYPE || TREE_CODE (t) == OFFSET_TYPE)
{
/* Perform the conversion from ARRAY_TYPE to POINTER_TYPE in place.
Also convert OFFSET_TYPE entities to their normal selves.
This eliminates needless calls to `compute_conversion_costs'. */
TREE_VALUE (parm) = default_conversion (TREE_VALUE (parm));
t = TREE_TYPE (TREE_VALUE (parm));
}
last = build_tree_list (NULL_TREE, t);
parmtypes = chainon (parmtypes, last);
}
if (last)
TREE_CHAIN (last) = void_list_node;
else
parmtypes = void_list_node;
overload_name = build_decl_overload (fnname, parmtypes, 0);
/* Now check to see whether or not we can win.
Note that if we are called from `build_method_call',
then we cannot have a mis-match, because we would have
already found such a winning case. */
if (IDENTIFIER_GLOBAL_VALUE (overload_name))
if (TREE_CODE (IDENTIFIER_GLOBAL_VALUE (overload_name)) != TREE_LIST)
return build_function_call (DECL_MAIN_VARIANT (IDENTIFIER_GLOBAL_VALUE (overload_name)), parms);
functions = IDENTIFIER_GLOBAL_VALUE (fnname);
if (functions == NULL_TREE)
{
if (complain)
error ("only member functions apply");
if (final_cp)
final_cp->evil = 1;
return error_mark_node;
}
if (TREE_CODE (functions) == FUNCTION_DECL)
{
functions = DECL_MAIN_VARIANT (functions);
if (final_cp)
{
/* We are just curious whether this is a viable alternative or not. */
compute_conversion_costs (functions, parms, final_cp, parmlength);
return functions;
}
else
return build_function_call (functions, parms);
}
if (TREE_VALUE (functions) == NULL_TREE)
{
if (complain)
error ("function `%s' declared overloaded, but no instances of that function declared",
IDENTIFIER_POINTER (TREE_PURPOSE (functions)));
if (final_cp)
final_cp->evil = 1;
return error_mark_node;
}
if (TREE_CODE (TREE_VALUE (functions)) == TREE_LIST)
{
register tree outer;
length = 0;
/* The list-of-lists should only occur for class things. */
my_friendly_assert (functions == IDENTIFIER_CLASS_VALUE (fnname), 168);
for (outer = functions; outer; outer = TREE_CHAIN (outer))
{
/* member functions. */
length += decl_list_length (TREE_VALUE (TREE_VALUE (outer)));
/* friend functions. */
length += list_length (TREE_TYPE (TREE_VALUE (outer)));
}
}
else
{
length = list_length (functions);
}
if (final_cp)
candidates = final_cp;
else
candidates = (struct candidate *)alloca ((length+1) * sizeof (struct candidate));
cp = candidates;
my_friendly_assert (TREE_CODE (TREE_VALUE (functions)) != TREE_LIST, 169);
/* OUTER is the list of FUNCTION_DECLS, in a TREE_LIST. */
for (outer = functions; outer; outer = TREE_CHAIN (outer))
{
int template_cost = 0;
function = TREE_VALUE (outer);
if (TREE_CODE (function) != FUNCTION_DECL
&& ! (TREE_CODE (function) == TEMPLATE_DECL
&& ! DECL_TEMPLATE_IS_CLASS (function)
&& TREE_CODE (DECL_TEMPLATE_RESULT (function)) == FUNCTION_DECL))
{
enum tree_code code = TREE_CODE (function);
if (code == TEMPLATE_DECL)
code = TREE_CODE (DECL_TEMPLATE_RESULT (function));
if (code == CONST_DECL)
error_with_decl (function, "enumeral value `%s' conflicts with function of same name");
else if (code == VAR_DECL)
if (TREE_STATIC (function))
error_with_decl (function, "variable `%s' conflicts with function of same name");
else
error_with_decl (function, "constant field `%s' conflicts with function of same name");
else if (code == TYPE_DECL)
continue;
else my_friendly_abort (2);
error ("at this point in file");
continue;
}
if (TREE_CODE (function) == TEMPLATE_DECL)
{
int ntparms = TREE_VEC_LENGTH (DECL_TEMPLATE_PARMS (function));
tree *targs = (tree *) alloca (sizeof (tree) * ntparms);
int i;
i = type_unification (DECL_TEMPLATE_PARMS (function), targs,
TYPE_ARG_TYPES (TREE_TYPE (function)),
parms, &template_cost);
if (i == 0)
function = instantiate_template (function, targs);
}
if (TREE_CODE (function) == TEMPLATE_DECL)
/* Unconverted template -- failed match. */
cp->evil = 1, cp->function = function, cp->u.bad_arg = -4;
else
{
function = DECL_MAIN_VARIANT (function);
/* Can't use alloca here, since result might be
passed to calling function. */
cp->harshness
= (unsigned short *)oballoc ((parmlength+1) * sizeof (short));
compute_conversion_costs (function, parms, cp, parmlength);
/* Should really add another field... */
cp->easy = cp->easy * 128 + template_cost;
if (cp[0].evil == 0)
{
cp[1].evil = 1;
if (final_cp
&& cp[0].user == 0 && cp[0].b_or_d == 0
&& template_cost == 0
&& cp[0].easy <= 1)
{
final_cp[0].easy = cp[0].easy;
return function;
}
cp++;
}
}
}
if (cp - candidates)
{
tree rval = error_mark_node;
/* Leave marker. */
cp[0].evil = 1;
if (cp - candidates > 1)
{
struct candidate *best_cp
= ideal_candidate (NULL_TREE, candidates,
cp - candidates, parms, parmlength);
if (best_cp == 0)
{
if (complain)
error ("call of overloaded `%s' is ambiguous", IDENTIFIER_POINTER (fnname));
return error_mark_node;
}
else
rval = best_cp->function;
}
else
{
cp -= 1;
if (cp->evil > 1)
{
if (complain)
error ("type conversion ambiguous");
}
else
rval = cp->function;
}
if (final_cp)
return rval;
return buildxxx ? build_function_call_maybe (rval, parms)
: build_function_call (rval, parms);
}
else if (complain)
{
tree name;
char *err_name;
/* Initialize name for error reporting. */
if (TREE_CODE (functions) == TREE_LIST)
name = TREE_PURPOSE (functions);
else if (TREE_CODE (functions) == ADDR_EXPR)
/* Since the implicit `operator new' and `operator delete' functions
are set up to have IDENTIFIER_GLOBAL_VALUEs that are unary ADDR_EXPRs
by default_conversion(), we must compensate for that here by
using the name of the ADDR_EXPR's operand. */
name = DECL_NAME (TREE_OPERAND (functions, 0));
else
name = DECL_NAME (functions);
if (IDENTIFIER_OPNAME_P (name))
{
char *opname = operator_name_string (name);
err_name = (char *)alloca (strlen (opname) + 12);
sprintf (err_name, "operator %s", opname);
}
else
err_name = IDENTIFIER_POINTER (name);
report_type_mismatch (cp, parms, "function", err_name);
}
return error_mark_node;
}
tree
build_overload_call (fnname, parms, complain, final_cp)
tree fnname, parms;
int complain;
struct candidate *final_cp;
{
return build_overload_call_real (fnname, parms, complain, final_cp, 0);
}
tree
build_overload_call_maybe (fnname, parms, complain, final_cp)
tree fnname, parms;
int complain;
struct candidate *final_cp;
{
return build_overload_call_real (fnname, parms, complain, final_cp, 1);
}