home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Fresh Fish 7
/
FreshFishVol7.bin
/
bbs
/
gnu
/
gcc-2.3.3-src.lha
/
GNU
/
src
/
amiga
/
gcc-2.3.3
/
config
/
sparcv4.h
< prev
next >
Wrap
C/C++ Source or Header
|
1994-02-06
|
7KB
|
186 lines
/* Target definitions for GNU compiler for Sparc running System V.4
Copyright (C) 1991, 1992 Free Software Foundation, Inc.
Written by Ron Guilmette (rfg@ncd.com).
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "sparc.h"
/* Undefine some symbols which are defined in "sparc.h" but which are
appropriate only for SunOS 4.x, and not for svr4. */
#undef DBX_DEBUGGING_INFO
#undef WORD_SWITCH_TAKES_ARG
#undef SELECT_SECTION
#undef ASM_DECLARE_FUNCTION_NAME
#undef TEXT_SECTION_ASM_OP
#undef DATA_SECTION_ASM_OP
#include "svr4.h"
/* Undefined some symbols which are defined in "svr4.h" but which are
appropriate only for typical svr4 systems, but not for the specific
case of svr4 running on a Sparc. */
#undef CTORS_SECTION_ASM_OP
#undef DTORS_SECTION_ASM_OP
#undef INIT_SECTION_ASM_OP
#undef CONST_SECTION_ASM_OP
#undef TYPE_OPERAND_FMT
#undef PUSHSECTION_FORMAT
#undef STRING_ASM_OP
#undef COMMON_ASM_OP
#undef SKIP_ASM_OP
#undef SET_ASM_OP /* Has no equivalent. See ASM_OUTPUT_DEF below. */
/* Provide a set of pre-definitions and pre-assertions appropriate for
the Sparc running svr4. __svr4__ is our extension. */
#define CPP_PREDEFINES \
"-Dsparc -Dunix -D__svr4__ -Asystem(unix) -Acpu(sparc) -Amachine(sparc)"
/* The specialized code which needs to appear in the .init section prior
to the prologue code for `__do_global_ctors' (see crtstuff.c).
On Sparcs running svr4, the /usr/ccs/lib/crti.o file (with gets linked
in prior to the crtbegin.o file) has a single `save' instruction in its
.init section. That `save' instruction tries to setup a stack frame for
the sake of any subsequent code in the .init section. Unfortunately,
the size it uses for the stack frame is only a guess, and is not really
adequate for our purposes. More importantly, we independently put our
own standard function prologue (for __do_global_ctors) into the .init
section and that function prologue includes its own `save' instruction!
Thus, unless we do something to correct the situation, we'll get *two*
stack frames allocated when crt0.o calls the code in the .init section,
and havoc will ensue. The following macro definition prevents such woes.
*/
#define INIT_SECTION_PREAMBLE asm ("restore")
/* This is the string used to begin an assembly language comment for the
Sparc/svr4 assembler. */
#define ASM_COMMENT_START "!"
/* Define the names of various pseudo-op used by the Sparc/svr4 assembler.
Note that many of these are different from the typical pseudo-ops used
by most svr4 assemblers. That is probably due to a (misguided?) attempt
to keep the Sparc/svr4 assembler somewhat compatible with the Sparc/SunOS
assembler. */
#define STRING_ASM_OP ".asciz"
#define COMMON_ASM_OP ".common"
#define SKIP_ASM_OP ".skip"
#define UNALIGNED_INT_ASM_OP ".uaword"
#define UNALIGNED_SHORT_ASM_OP ".uahalf"
#define PUSHSECTION_ASM_OP ".pushsection"
#define POPSECTION_ASM_OP ".popsection"
/* This is the format used to print the second operand of a .type pseudo-op
for the Sparc/svr4 assembler. */
#define TYPE_OPERAND_FMT "#%s"
/* This is the format used to print a .pushsection pseudo-op (and its operand)
for the Sparc/svr4 assembler. */
#define PUSHSECTION_FORMAT "\t%s\t\"%s\"\n"
#undef ASM_OUTPUT_CASE_LABEL
#define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, JUMPTABLE) \
do { ASM_OUTPUT_ALIGN ((FILE), 2); \
ASM_OUTPUT_INTERNAL_LABEL ((FILE), PREFIX, NUM); \
} while (0)
/* This is how to equate one symbol to another symbol. The syntax used is
`SYM1=SYM2'. Note that this is different from the way equates are done
with most svr4 assemblers, where the syntax is `.set SYM1,SYM2'. */
#define ASM_OUTPUT_DEF(FILE,LABEL1,LABEL2) \
do { fprintf ((FILE), "\t"); \
assemble_name (FILE, LABEL1); \
fprintf (FILE, " = "); \
assemble_name (FILE, LABEL2); \
fprintf (FILE, "\n"); \
} while (0)
/* Define how the Sparc registers should be numbered for Dwarf output.
The numbering provided here should be compatible with the native
svr4 SDB debugger in the Sparc/svr4 reference port. The numbering
is as follows:
Assembly name gcc internal regno Dwarf regno
----------------------------------------------------------
g0-g7 0-7 0-7
o0-o7 8-15 8-15
l0-l7 16-23 16-23
i0-i7 24-31 24-31
f0-f31 32-63 40-71
*/
#define DBX_REGISTER_NUMBER(REGNO) \
(((REGNO) < 32) ? (REGNO) \
: ((REGNO) < 63) ? ((REGNO) + 8) \
: (abort (), 0))
/* A set of symbol definitions for assembly pseudo-ops which will
get us switched to various sections of interest. These are used
in all places where we simply want to switch to a section, and
*not* to push the previous section name onto the assembler's
section names stack (as we do often in dwarfout.c). */
#define TEXT_SECTION_ASM_OP ".section\t\".text\""
#define DATA_SECTION_ASM_OP ".section\t\".data\""
#define BSS_SECTION_ASM_OP ".section\t\".bss\""
#define CONST_SECTION_ASM_OP ".section\t\".rodata\""
#define INIT_SECTION_ASM_OP ".section\t\".init\",#alloc"
#define CTORS_SECTION_ASM_OP ".section\t\".ctors\",#alloc"
#define DTORS_SECTION_ASM_OP ".section\t\".dtors\",#alloc"
/* If the host and target formats match, output the floats as hex. */
#if HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
#if defined (HOST_WORDS_BIG_ENDIAN) == WORDS_BIG_ENDIAN
/* This is how to output assembly code to define a `float' constant.
We always have to use a .long pseudo-op to do this because the native
SVR4 ELF assembler is buggy and it generates incorrect values when we
try to use the .float pseudo-op instead. */
#undef ASM_OUTPUT_FLOAT
#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
do { long value; \
REAL_VALUE_TO_TARGET_SINGLE ((VALUE), value); \
fprintf((FILE), "\t.long\t0x%x\n", value); \
} while (0)
/* This is how to output assembly code to define a `double' constant.
We always have to use a pair of .long pseudo-ops to do this because
the native SVR4 ELF assembler is buggy and it generates incorrect
values when we try to use the the .double pseudo-op instead. */
#undef ASM_OUTPUT_DOUBLE
#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
do { long value[2]; \
REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), value); \
fprintf((FILE), "\t.long\t0x%x\n", value[0]); \
fprintf((FILE), "\t.long\t0x%x\n", value[1]); \
} while (0)
#endif /* word order matches */
#endif /* HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT */