home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Fresh Fish 7
/
FreshFishVol7.bin
/
bbs
/
gnu
/
gcc-2.3.3-src.lha
/
GNU
/
src
/
amiga
/
gcc-2.3.3
/
config
/
pa.md
< prev
next >
Wrap
Text File
|
1994-02-06
|
70KB
|
2,502 lines
;;- Machine description for HP PA-RISC architecture for GNU C compiler
;; Copyright (C) 1992 Free Software Foundation, Inc.
;; Contributed by the Center for Software Science at the University
;; of Utah.
;; This file is part of GNU CC.
;; GNU CC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.
;; GNU CC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU CC; see the file COPYING. If not, write to
;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
;; This gcc Version 2 machine description is inspired by sparc.md and
;; mips.md.
;;- See file "rtl.def" for documentation on define_insn, match_*, et. al.
;; Insn type. Used to default other attribute values.
;; type "unary" insns have one input operand (1) and one output operand (0)
;; type "binary" insns have two input operands (1,2) and one output (0)
(define_attr "type"
"move,unary,binary,compare,load,store,branch,cbranch,fbranch,call,dyncall,fpload,fpstore,fpalu,fpcc,fpmul,fpdivsgl,fpdivdbl,fpsqrtsgl,fpsqrtdbl,multi,misc,milli"
(const_string "binary"))
;; Length (in # of insns).
(define_attr "length" ""
(cond [(eq_attr "type" "load,fpload")
(if_then_else (match_operand 1 "symbolic_memory_operand" "")
(const_int 2) (const_int 1))
(eq_attr "type" "store,fpstore")
(if_then_else (match_operand 0 "symbolic_memory_operand" "")
(const_int 2) (const_int 1))
(eq_attr "type" "binary")
(if_then_else (match_operand 2 "arith_operand" "")
(const_int 1) (const_int 3))
(eq_attr "type" "move,unary")
(if_then_else (match_operand 1 "arith_operand" "")
(const_int 1) (const_int 2))]
(const_int 1)))
(define_asm_attributes
[(set_attr "length" "1")
(set_attr "type" "multi")])
;; Attributes for instruction and branch scheduling
(define_attr "in_branch_delay" "false,true"
(if_then_else (and (eq_attr "type" "!branch,cbranch,fbranch,call,dyncall,multi,milli")
(eq_attr "length" "1"))
(const_string "true")
(const_string "false")))
;; Unconditional branch, call, and millicode call delay slot description.
(define_delay (eq_attr "type" "branch,call,milli")
[(eq_attr "in_branch_delay" "true") (nil) (nil)])
;; Floating point conditional branch delay slot description.
(define_delay (eq_attr "type" "fbranch")
[(eq_attr "in_branch_delay" "true")
(eq_attr "in_branch_delay" "true")
(nil)])
;; Integer conditional branch delay slot description.
(define_delay (eq_attr "type" "cbranch")
[(eq_attr "in_branch_delay" "true") (nil) (nil)])
;; Function units of the HPPA. The following data is for the "Snake"
;; (Mustang CPU + Timex FPU) because that's what I have the docs for.
;; Scheduling instructions for PA-83 machines according to the Snake
;; constraints shouldn't hurt.
;; (define_function_unit {name} {num-units} {n-users} {test}
;; {ready-delay} {issue-delay} [{conflict-list}])
;; The integer ALU.
;; (Noted only for documentation; units that take one cycle do not need to
;; be specified.)
;; (define_function_unit "alu" 1 0
;; (eq_attr "type" "unary,binary,move,address") 1 0)
;; Memory. Disregarding Cache misses, the Mustang memory times are:
;; load: 2
;; store, fpstore: 3, no D-cache operations should be scheduled.
;; fpload: 3 (really 2 for flops, but I don't think we can specify that).
(define_function_unit "memory" 1 1 (eq_attr "type" "load") 2 0)
(define_function_unit "memory" 1 1 (eq_attr "type" "store,fpstore") 3 0)
(define_function_unit "memory" 1 1 (eq_attr "type" "fpload") 3 0)
;; The Timex has two floating-point units: ALU, and MUL/DIV/SQRT unit.
;; Timings:
;; Instruction Time Unit Minimum Distance (unit contention)
;; fcpy 3 ALU 2
;; fabs 3 ALU 2
;; fadd 3 ALU 2
;; fsub 3 ALU 2
;; fcmp 3 ALU 2
;; fcnv 3 ALU 2
;; fmpyadd 3 ALU,MPY 2
;; fmpysub 3 ALU,MPY 2
;; fmpycfxt 3 ALU,MPY 2
;; fmpy 3 MPY 2
;; fmpyi 3 MPY 2
;; fdiv,sgl 10 MPY 10
;; fdiv,dbl 12 MPY 12
;; fsqrt,sgl 14 MPY 14
;; fsqrt,dbl 18 MPY 18
(define_function_unit "fp_alu" 1 0 (eq_attr "type" "fpcc") 4 2)
(define_function_unit "fp_alu" 1 0 (eq_attr "type" "fpalu") 3 2)
(define_function_unit "fp_mpy" 1 0 (eq_attr "type" "fpmul") 3 2)
(define_function_unit "fp_mpy" 1 0 (eq_attr "type" "fpdivsgl") 10 10)
(define_function_unit "fp_mpy" 1 0 (eq_attr "type" "fpdivdbl") 12 12)
(define_function_unit "fp_mpy" 1 0 (eq_attr "type" "fpsqrtsgl") 14 14)
(define_function_unit "fp_mpy" 1 0 (eq_attr "type" "fpsqrtdbl") 18 18)
;; Compare instructions.
;; This controls RTL generation and register allocation.
;; We generate RTL for comparisons and branches by having the cmpxx
;; patterns store away the operands. Then, the scc and bcc patterns
;; emit RTL for both the compare and the branch.
;;
(define_expand "cmpsi"
[(set (reg:CC 0)
(compare:CC (match_operand:SI 0 "reg_or_0_operand" "")
(match_operand:SI 1 "arith5_operand" "")))]
""
"
{
hppa_compare_op0 = operands[0];
hppa_compare_op1 = operands[1];
hppa_branch_type = CMP_SI;
DONE;
}")
(define_expand "cmpsf"
[(set (reg:CCFP 0)
(compare:CCFP (match_operand:SF 0 "register_operand" "")
(match_operand:SF 1 "register_operand" "")))]
""
"
{
hppa_compare_op0 = operands[0];
hppa_compare_op1 = operands[1];
hppa_branch_type = CMP_SF;
DONE;
}")
(define_expand "cmpdf"
[(set (reg:CCFP 0)
(compare:CCFP (match_operand:DF 0 "register_operand" "")
(match_operand:DF 1 "register_operand" "")))]
""
"
{
hppa_compare_op0 = operands[0];
hppa_compare_op1 = operands[1];
hppa_branch_type = CMP_DF;
DONE;
}")
(define_insn ""
[(set (reg:CCFP 0)
(match_operator:CCFP 2 "comparison_operator"
[(match_operand:SF 0 "register_operand" "fx")
(match_operand:SF 1 "register_operand" "fx")]))]
""
"fcmp,sgl,%Y2 %0,%1"
[(set_attr "type" "fpcc")])
(define_insn ""
[(set (reg:CCFP 0)
(match_operator:CCFP 2 "comparison_operator"
[(match_operand:DF 0 "register_operand" "fx")
(match_operand:DF 1 "register_operand" "fx")]))]
""
"fcmp,dbl,%Y2 %0,%1"
[(set_attr "type" "fpcc")])
;; scc insns.
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(match_operator:CCFP 1 "comparison_operator" [(reg:CCFP 0)
(const_int 0)]))]
""
"copy 0,%0\;ftest\;ldi 1,%0"
[(set_attr "type" "unary")
(set_attr "length" "3")])
(define_expand "seq"
[(set (match_operand:SI 0 "register_operand" "")
(eq:SI (match_dup 1)
(match_dup 2)))]
""
"
{
if (hppa_branch_type != CMP_SI)
{
emit_insn (gen_cmp_fp (EQ, hppa_compare_op0, hppa_compare_op1));
emit_insn (gen_scond_fp (EQ, operands[0]));
DONE;
}
/* set up operands from compare. */
operands[1] = hppa_compare_op0;
operands[2] = hppa_compare_op1;
/* fall through and generate default code */
}")
(define_expand "sne"
[(set (match_operand:SI 0 "register_operand" "")
(ne:SI (match_dup 1)
(match_dup 2)))]
""
"
{
if (hppa_branch_type != CMP_SI)
{
emit_insn (gen_cmp_fp (NE, hppa_compare_op0, hppa_compare_op1));
emit_insn (gen_scond_fp (NE, operands[0]));
DONE;
}
operands[1] = hppa_compare_op0;
operands[2] = hppa_compare_op1;
}")
(define_expand "slt"
[(set (match_operand:SI 0 "register_operand" "")
(lt:SI (match_dup 1)
(match_dup 2)))]
""
"
{
if (hppa_branch_type != CMP_SI)
{
emit_insn (gen_cmp_fp (LT, hppa_compare_op0, hppa_compare_op1));
emit_insn (gen_scond_fp (LT, operands[0]));
DONE;
}
operands[1] = hppa_compare_op0;
operands[2] = hppa_compare_op1;
}")
(define_expand "sgt"
[(set (match_operand:SI 0 "register_operand" "")
(gt:SI (match_dup 1)
(match_dup 2)))]
""
"
{
if (hppa_branch_type != CMP_SI)
{
emit_insn (gen_cmp_fp (GT, hppa_compare_op0, hppa_compare_op1));
emit_insn (gen_scond_fp (GT, operands[0]));
DONE;
}
operands[1] = hppa_compare_op0;
operands[2] = hppa_compare_op1;
}")
(define_expand "sle"
[(set (match_operand:SI 0 "register_operand" "")
(le:SI (match_dup 1)
(match_dup 2)))]
""
"
{
if (hppa_branch_type != CMP_SI)
{
emit_insn (gen_cmp_fp (LE, hppa_compare_op0, hppa_compare_op1));
emit_insn (gen_scond_fp (LE, operands[0]));
DONE;
}
operands[1] = hppa_compare_op0;
operands[2] = hppa_compare_op1;
}")
(define_expand "sge"
[(set (match_operand:SI 0 "register_operand" "")
(ge:SI (match_dup 1)
(match_dup 2)))]
""
"
{
if (hppa_branch_type != CMP_SI)
{
emit_insn (gen_cmp_fp (GE, hppa_compare_op0, hppa_compare_op1));
emit_insn (gen_scond_fp (GE, operands[0]));
DONE;
}
operands[1] = hppa_compare_op0;
operands[2] = hppa_compare_op1;
}")
(define_expand "sltu"
[(set (match_operand:SI 0 "register_operand" "")
(ltu:SI (match_dup 1)
(match_dup 2)))]
""
"
{
if (hppa_branch_type != CMP_SI)
FAIL;
operands[1] = hppa_compare_op0;
operands[2] = hppa_compare_op1;
}")
(define_expand "sgtu"
[(set (match_operand:SI 0 "register_operand" "")
(gtu:SI (match_dup 1)
(match_dup 2)))]
""
"
{
if (hppa_branch_type != CMP_SI)
FAIL;
operands[1] = hppa_compare_op0;
operands[2] = hppa_compare_op1;
}")
(define_expand "sleu"
[(set (match_operand:SI 0 "register_operand" "")
(leu:SI (match_dup 1)
(match_dup 2)))]
""
"
{
if (hppa_branch_type != CMP_SI)
FAIL;
operands[1] = hppa_compare_op0;
operands[2] = hppa_compare_op1;
}")
(define_expand "sgeu"
[(set (match_operand:SI 0 "register_operand" "")
(geu:SI (match_dup 1)
(match_dup 2)))]
""
"
{
if (hppa_branch_type != CMP_SI)
FAIL;
operands[1] = hppa_compare_op0;
operands[2] = hppa_compare_op1;
}")
;; Instruction canonicalization puts immediate operands second, which
;; is the reverse of what we want.
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r,r")
(match_operator:SI 3 "comparison_operator"
[(match_operand:SI 1 "register_operand" "r,r")
(match_operand:SI 2 "arith11_operand" "r,I")]))]
""
"*
{
if (which_alternative == 0)
return \"comclr,%N3 %1,%2,%0\;ldi 1,%0\";
else
{
if (!(GET_CODE (operands[3]) == EQ || GET_CODE (operands[3]) == NE))
PUT_CODE (operands[3], reverse_relop (GET_CODE (operands[3])));
return \"comiclr,%N3 %2,%1,%0\;ldi 1,%0\";
}
}"
[(set_attr "type" "binary,binary")
(set_attr "length" "2,2")])
;; Conditionals
(define_expand "beq"
[(set (pc)
(if_then_else (eq (match_dup 1) (match_dup 2))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
if (hppa_branch_type != CMP_SI)
{
emit_insn (gen_cmp_fp (EQ, hppa_compare_op0, hppa_compare_op1));
emit_bcond_fp (NE, operands[0]);
DONE;
}
/* set up operands from compare. */
operands[1] = hppa_compare_op0;
operands[2] = hppa_compare_op1;
/* fall through and generate default code */
}")
(define_expand "bne"
[(set (pc)
(if_then_else (ne (match_dup 1) (match_dup 2))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
if (hppa_branch_type != CMP_SI)
{
emit_insn (gen_cmp_fp (NE, hppa_compare_op0, hppa_compare_op1));
emit_bcond_fp (NE, operands[0]);
DONE;
}
operands[1] = hppa_compare_op0;
operands[2] = hppa_compare_op1;
}")
(define_expand "bgt"
[(set (pc)
(if_then_else (gt (match_dup 1) (match_dup 2))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
if (hppa_branch_type != CMP_SI)
{
emit_insn (gen_cmp_fp (GT, hppa_compare_op0, hppa_compare_op1));
emit_bcond_fp (NE, operands[0]);
DONE;
}
operands[1] = hppa_compare_op0;
operands[2] = hppa_compare_op1;
}")
(define_expand "blt"
[(set (pc)
(if_then_else (lt (match_dup 1) (match_dup 2))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
if (hppa_branch_type != CMP_SI)
{
emit_insn (gen_cmp_fp (LT, hppa_compare_op0, hppa_compare_op1));
emit_bcond_fp (NE, operands[0]);
DONE;
}
operands[1] = hppa_compare_op0;
operands[2] = hppa_compare_op1;
}")
(define_expand "bge"
[(set (pc)
(if_then_else (ge (match_dup 1) (match_dup 2))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
if (hppa_branch_type != CMP_SI)
{
emit_insn (gen_cmp_fp (GE, hppa_compare_op0, hppa_compare_op1));
emit_bcond_fp (NE, operands[0]);
DONE;
}
operands[1] = hppa_compare_op0;
operands[2] = hppa_compare_op1;
}")
(define_expand "ble"
[(set (pc)
(if_then_else (le (match_dup 1) (match_dup 2))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
if (hppa_branch_type != CMP_SI)
{
emit_insn (gen_cmp_fp (LE, hppa_compare_op0, hppa_compare_op1));
emit_bcond_fp (NE, operands[0]);
DONE;
}
operands[1] = hppa_compare_op0;
operands[2] = hppa_compare_op1;
}")
(define_expand "bgtu"
[(set (pc)
(if_then_else (gtu (match_dup 1) (match_dup 2))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
if (hppa_branch_type != CMP_SI)
FAIL;
operands[1] = hppa_compare_op0;
operands[2] = hppa_compare_op1;
}")
(define_expand "bltu"
[(set (pc)
(if_then_else (ltu (match_dup 1) (match_dup 2))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
if (hppa_branch_type != CMP_SI)
FAIL;
operands[1] = hppa_compare_op0;
operands[2] = hppa_compare_op1;
}")
(define_expand "bgeu"
[(set (pc)
(if_then_else (geu (match_dup 1) (match_dup 2))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
if (hppa_branch_type != CMP_SI)
FAIL;
operands[1] = hppa_compare_op0;
operands[2] = hppa_compare_op1;
}")
(define_expand "bleu"
[(set (pc)
(if_then_else (leu (match_dup 1) (match_dup 2))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
if (hppa_branch_type != CMP_SI)
FAIL;
operands[1] = hppa_compare_op0;
operands[2] = hppa_compare_op1;
}")
;; Match the branch patterns.
(define_insn ""
[(set (pc)
(if_then_else
(match_operator 3 "comparison_operator"
[(match_operand:SI 1 "register_operand" "r,r")
(match_operand:SI 2 "arith5_operand" "r,L")])
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"*
{
if (which_alternative == 0)
return (get_attr_length (insn) == 1
? \"comb,%C3 %1,%2,%0%#\" : \"comclr,%N3 %1,%2,0\;bl %0,0%#\");
{
enum rtx_code comp_code = GET_CODE (operands[3]);
if (!(comp_code == EQ || comp_code == NE))
PUT_CODE (operands[3], reverse_relop (comp_code));
if (get_attr_length (insn) == 1)
return \"comib,%C3 %2,%1,%0%#\";
else
return \"comiclr,%N3 %2,%1,0\;bl %0,0%#\";
}
}"
[(set_attr "type" "cbranch")
(set (attr "length") (if_then_else (lt (abs (minus (match_dup 0)
(plus (pc) (const_int 2))))
(const_int 1023))
(const_int 1)
(const_int 2)))])
;; Match the negated branch.
(define_insn ""
[(set (pc)
(if_then_else
(match_operator 3 "comparison_operator"
[(match_operand:SI 1 "register_operand" "r,r")
(match_operand:SI 2 "arith5_operand" "r,L")])
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"*
{
if (which_alternative == 0)
return (get_attr_length (insn) == 1
? \"comb,%N3 %1,%2,%0%#\" : \"comclr,%C3 %1,%2,0\;bl %0,0%#\");
{
enum rtx_code comp_code = GET_CODE (operands[3]);
if (!(comp_code == EQ || comp_code == NE))
PUT_CODE (operands[3], reverse_relop (comp_code));
if (get_attr_length (insn) == 1)
return \"comib,%N3 %2,%1,%0%#\";
else
return \"comiclr,%C3 %2,%1,0%#\;bl %0,0%#\";
}
}"
[(set_attr "type" "cbranch")
(set (attr "length") (if_then_else (lt (abs (minus (match_dup 0)
(plus (pc) (const_int 2))))
(const_int 1023))
(const_int 1)
(const_int 2)))])
;; Floating point branches
(define_insn ""
[(set (pc) (if_then_else (ne (reg:CCFP 0) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"*
{
if (INSN_ANNULLED_BRANCH_P (insn))
return \"ftest\;bl,n %0,0\";
else
return \"ftest\;bl%* %0,0\";
}"
[(set_attr "type" "fbranch")
(set_attr "length" "2")])
(define_insn ""
[(set (pc) (if_then_else (ne (reg:CCFP 0) (const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"*
{
if (INSN_ANNULLED_BRANCH_P (insn))
return \"ftest\;add,tr 0,0,0\;bl,n %0,0\";
else
return \"ftest\;add,tr 0,0,0\;bl%* %0,0\";
}"
[(set_attr "type" "fbranch")
(set_attr "length" "3")])
;; Move instructions
(define_expand "movsi"
[(set (match_operand:SI 0 "general_operand" "")
(match_operand:SI 1 "general_operand" ""))]
""
"
{
if (emit_move_sequence (operands, SImode, 0))
DONE;
}")
;; Reloading an SImode or DImode value requires a scratch register if
;; going in to or out of float point registers.
(define_expand "reload_insi"
[(set (match_operand:SI 0 "register_operand" "=z")
(match_operand:SI 1 "general_operand" ""))
(clobber (match_operand:SI 2 "register_operand" "=&r"))]
""
"
{
if (emit_move_sequence (operands, SImode, operands[2]))
DONE;
/* We don't want the clobber emitted, so handle this ourselves. */
emit_insn (gen_rtx (SET, VOIDmode, operands[0], operands[1]));
DONE;
}")
(define_expand "reload_outsi"
[(set (match_operand:SI 0 "general_operand" "")
(match_operand:SI 1 "register_operand""z"))
(clobber (match_operand:SI 2 "register_operand" "=&r"))]
""
"
{
if (emit_move_sequence (operands, SImode, operands[2]))
DONE;
/* We don't want the clobber emitted, so handle this ourselves. */
emit_insn (gen_rtx (SET, VOIDmode, operands[0], operands[1]));
DONE;
}")
;; Moves to and from the shift register.
(define_insn ""
[(set (reg:SI 112)
(match_operand:SI 0 "register_operand" "r"))]
""
"mtsar %0"
[(set_attr "type" "move")])
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(reg:SI 112))]
""
"mfctl 11,%0"
[(set_attr "type" "move")])
;;; Experimental
(define_insn ""
[(set (match_operand:SI 0 "fp_reg_operand" "=fx")
(match_operand:SI 1 "short_memory_operand" "T"))]
""
"fldws%F1 %1,%0"
[(set_attr "type" "fpload")
(set_attr "length" "1")])
(define_insn ""
[(set (match_operand:SI 0 "short_memory_operand" "=T")
(match_operand:SI 1 "fp_reg_operand" "fx"))]
""
"fstws%F0 %1,%0"
[(set_attr "type" "fpstore")
(set_attr "length" "1")])
;;; pic symbol refrences
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(mem:SI (plus:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "symbolic_operand" ""))))]
"flag_pic && operands[1] == pic_offset_table_rtx"
"ldw T'%2(%1),%0"
[(set_attr "type" "load")
(set_attr "length" "1")])
(define_insn ""
[(set (match_operand:SI 0 "reg_or_nonsymb_mem_operand"
"=r,r,Q,!r,!fx,!fx")
(match_operand:SI 1 "move_operand" "rM,Q,rM,!fxy,!r,!fx"))]
""
"@
copy %r1,%0
ldw%M1 %1,%0
stw%M0 %r1,%0
fstws %1,-16(30)\;ldw -16(30),%0
stw %1,-16(30)\;fldws -16(30),%0
fcpy,sgl %1,%0"
[(set_attr "type" "move,load,store,move,move,fpalu")
(set_attr "length" "1,1,1,2,2,1")])
;; For pic
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(match_operand:SI 1 "pic_operand" "i"))
(clobber (match_scratch:SI 2 "=a"))]
""
"*
{
rtx label_rtx = gen_label_rtx ();
rtx xoperands[3];
extern FILE *asm_out_file;
xoperands[0] = operands[0];
xoperands[1] = operands[1];
xoperands[2] = label_rtx;
output_asm_insn (\"bl .+8,%0\;addil L'%1-%2,%0\", xoperands);
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, \"L\", CODE_LABEL_NUMBER (label_rtx));
output_asm_insn (\"ldo R'%1-%2(1),%0\", xoperands);
return \"\";
}
"
[(set_attr "type" "multi")
(set_attr "length" "3")])
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(match_operand:SI 1 "const_int_operand" ""))]
"INT_14_BITS (operands[1]) || (INTVAL (operands[1]) & 0x7ff) == 0"
"*
{
if (INT_14_BITS (operands[1]))
return \"ldo %1(0),%0\";
else
return \"ldil L'%1,%0\";
}"
[(set_attr "type" "move")
(set_attr "length" "1")])
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(match_operand:SI 1 "depi_cint_operand" ""))]
""
"*
{
rtx xoperands[4];
xoperands[0] = operands[0];
compute_xdepi_operands_from_integer (INTVAL (operands[1]), xoperands);
output_asm_insn (\"zdepi %1,%2,%3,%0\", xoperands);
return \"\";
}"
[(set_attr "type" "move")
(set_attr "length" "1")])
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=a,&?*r")
(plus:SI (match_operand:SI 1 "register_operand" "r,r")
(high:SI (match_operand 2 "" ""))))]
"!TARGET_KERNEL"
"@
addil L'%G2,%1
ldil L'%G2,%0\;add %0,%1,%0"
[(set_attr "type" "binary,binary")
(set_attr "length" "1,2")])
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=a")
(plus:SI (match_operand:SI 1 "register_operand" "r")
(high:SI (match_operand 2 "" ""))))]
"TARGET_KERNEL"
"@
addil L'%G2,%1"
[(set_attr "type" "binary")
(set_attr "length" "1")])
(define_split
[(set (match_operand:SI 0 "register_operand" "")
(plus:SI (match_operand:SI 1 "register_operand" "")
(high:SI (match_operand 2 "" ""))))
(clobber (match_scratch:SI 3 ""))]
"reload_completed && REGNO (operands[0]) != 1"
[(set (match_dup 3) (high:SI (match_dup 2)))
(set (match_dup 0) (plus:SI (match_dup 3) (match_dup 1)))]
"")
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(high:SI (match_operand:SI 1 "function_label_operand" "")))]
"TARGET_SHARED_LIBS"
"ldil LP'%G1,%0"
[(set_attr "type" "move")
(set_attr "length" "1")])
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(high:SI (match_operand 1 "" "")))]
"check_pic (1)"
"ldil L'%G1,%0"
[(set_attr "type" "move")
(set_attr "length" "1")])
(define_insn ""
[(set (match_operand:HI 0 "register_operand" "=r")
(high:HI (match_operand 1 "" "")))]
"check_pic (1)"
"ldil L'%G1,%0"
[(set_attr "type" "move")
(set_attr "length" "1")])
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(lo_sum:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "function_label_operand" "")))
(clobber (match_operand:SI 3 "register_operand" "=r"))]
"TARGET_SHARED_LIBS"
"ldo RP'%G2(%1),%0\;extru,= %0,31,1,%3\;ldw -4(%%r27),%3\;add %0,%3,%0"
[(set_attr "type" "multi")
(set_attr "length" "4")])
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(lo_sum:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "immediate_operand" "i")))]
""
"ldo R'%G2(%1),%0"
;; Need to set length for this arith insn because operand2
;; is not an "arith_operand".
[(set_attr "length" "1")])
(define_expand "movhi"
[(set (match_operand:HI 0 "general_operand" "")
(match_operand:HI 1 "general_operand" ""))]
""
"
{
if (emit_move_sequence (operands, HImode, 0))
DONE;
}")
(define_insn ""
[(set (match_operand:HI 0 "reg_or_nonsymb_mem_operand" "=r,r,Q,!r,!*fx,!*fx")
(match_operand:HI 1 "move_operand" "rM,Q,rM,*fx,r,!*fx"))]
""
"@
copy %r1,%0
ldh%M1 %1,%0
sth%M0 %r1,%0
fstws %1,-16(30)\;ldw -16(30),%0
stw %1,-16(30)\;fldws -16(30),%0
fcpy,sgl %1,%0"
[(set_attr "type" "move,load,store,move,move,fpalu")
(set_attr "length" "1,1,1,2,2,1")])
(define_insn ""
[(set (match_operand:HI 0 "register_operand" "=r")
(match_operand:HI 1 "const_int_operand" ""))]
"INT_14_BITS (operands[1]) || (INTVAL (operands[1]) & 0x7ff) == 0"
"*
{
if (INT_14_BITS (operands[1]))
return \"ldo %1(0),%0\";
else
return \"ldil L'%1,%0\";
}"
[(set_attr "type" "move")
(set_attr "length" "1")])
(define_insn ""
[(set (match_operand:HI 0 "register_operand" "=r")
(match_operand:HI 1 "depi_cint_operand" ""))]
""
"*
{
rtx xoperands[4];
xoperands[0] = operands[0];
compute_xdepi_operands_from_integer (INTVAL (operands[1]), xoperands);
output_asm_insn (\"zdepi %1,%2,%3,%0\", xoperands);
return \"\";
}"
[(set_attr "type" "move")
(set_attr "length" "1")])
(define_insn ""
[(set (match_operand:HI 0 "register_operand" "=r")
(lo_sum:HI (match_operand:HI 1 "register_operand" "r")
(match_operand 2 "immediate_operand" "i")))]
""
"ldo R'%G2(%1),%0"
[(set_attr "length" "1")])
(define_expand "movqi"
[(set (match_operand:QI 0 "general_operand" "")
(match_operand:QI 1 "general_operand" ""))]
""
"
{
if (emit_move_sequence (operands, QImode, 0))
DONE;
}")
(define_insn ""
[(set (match_operand:QI 0 "reg_or_nonsymb_mem_operand" "=r,r,Q,!r,!*fx,!*fx")
(match_operand:QI 1 "move_operand" "rM,Q,rM,*fx,r,*fx"))]
""
"@
copy %r1,%0
ldb%M1 %1,%0
stb%M0 %r1,%0
fstws %1,-16(30)\;ldw -16(30),%0
stw %1,-16(30)\;fldws -16(30),%0
fcpy,sgl %1,%0"
[(set_attr "type" "move,load,store,move,move,fpalu")
(set_attr "length" "1,1,1,2,2,1")])
(define_insn ""
[(set (match_operand:QI 0 "register_operand" "=r")
(match_operand:QI 1 "immediate_operand" "J"))]
""
"ldo %1(0),%0"
[(set_attr "type" "move")
(set_attr "length" "1")])
(define_insn ""
[(set (match_operand:QI 0 "register_operand" "=r")
(subreg:QI (lo_sum:SI (match_operand:QI 1 "register_operand" "r")
(match_operand 2 "immediate_operand" "i")) 0))]
""
"ldo R'%G2(%1),%0"
[(set_attr "length" "1")])
;; Sneaky ways of using index modes
;; We don't use unscaled modes since they can't be used unless we can tell
;; which of the registers is the base and which is the index, due to PA's
;; idea of segment selection using the top bits of the base register.
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(mem:SI (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "r")
(const_int 4))
(match_operand:SI 2 "register_operand" "r"))))]
""
"ldwx,s %1(0,%2),%0"
[(set_attr "type" "move")
(set_attr "length" "1")])
; this will never match
;(define_insn ""
; [(set (match_operand:SI 0 "register_operand" "=r")
; (mem:SI (match_operand:SI 1 "register_operand" "+r")))
; (set (match_dup 1)
; (plus:SI (mult:SI (match_operand:SI 2 "register_operand" "r")
; (const_int 4))
; (match_dup 1)))]
; ""
; "ldwx,sm %2(0,%1),%0"
; [(set_attr "type" "move")
; (set_attr "length" "1")])
(define_insn ""
[(set (match_operand:HI 0 "register_operand" "=r")
(mem:HI (plus:SI (mult:SI (match_operand:SI 2 "register_operand" "r")
(const_int 2))
(match_operand:SI 1 "register_operand" "r"))))]
""
"ldhx,s %2(0,%1),%0"
[(set_attr "type" "move")
(set_attr "length" "1")])
; this will never match
;(define_insn ""
; [(set (match_operand:HI 0 "register_operand" "=r")
; (mem:HI (match_operand:SI 1 "register_operand" "+r")))
; (set (match_dup 1)
; (plus:SI (mult:SI (match_operand:SI 2 "register_operand" "r")
; (const_int 2))
; (match_dup 1)))]
; ""
; "ldhx,sm %2(0,%1),%0"
; [(set_attr "type" "move")
; (set_attr "length" "1")])
;; The definition of this insn does not really explain what it does,
;; but it should suffice
;; that anything generated as this insn will be recognized as one
;; and that it will not successfully combine with anything.
(define_expand "movstrsi"
[(parallel [(set (mem:BLK (match_operand:BLK 0 "general_operand" ""))
(mem:BLK (match_operand:BLK 1 "general_operand" "")))
(clobber (match_dup 0))
(clobber (match_dup 1))
(clobber (match_dup 4))
(clobber (match_dup 5))
(use (match_operand:SI 2 "arith_operand" ""))
(use (match_operand:SI 3 "const_int_operand" ""))])]
""
"
{
/* If the blocks are not at least word-aligned and rather big (>16 items),
or the size is indeterminate, don't inline the copy code. A
procedure call is better since it can check the alignment at
runtime and make the optimal decisions. */
if (INTVAL (operands[3]) < 4
&& (GET_CODE (operands[2]) != CONST_INT
|| (INTVAL (operands[2]) / INTVAL (operands[3]) > 16)))
FAIL;
operands[0] = copy_to_mode_reg (SImode, XEXP (operands[0], 0));
operands[1] = copy_to_mode_reg (SImode, XEXP (operands[1], 0));
operands[4] = gen_reg_rtx (SImode);
operands[5] = gen_reg_rtx (SImode);
}")
;; The operand constraints are written like this to support both compile-time
;; and run-time determined byte count. If the count is run-time determined,
;; the register with the byte count is clobbered by the copying code, and
;; therefore it is forced to operand 2. If the count is compile-time
;; determined, we need two scratch registers for the unrolled code.
(define_insn ""
[(set (mem:BLK (match_operand:SI 0 "register_operand" "+r,r"))
(mem:BLK (match_operand:SI 1 "register_operand" "+r,r")))
(clobber (match_dup 0))
(clobber (match_dup 1))
(clobber (match_operand:SI 2 "register_operand" "=r,r")) ;loop cnt/tmp
(clobber (match_operand:SI 3 "register_operand" "=&r,&r")) ;item tmp
(use (match_operand:SI 4 "arith_operand" "J,2")) ;byte count
(use (match_operand:SI 5 "const_int_operand" "n,n"))] ;alignment
""
"* return output_block_move (operands, !which_alternative);"
[(set_attr "type" "multi,multi")])
;; Floating point move insns
;; This pattern forces (set (reg:DF ...) (const_double ...))
;; to be reloaded by putting the constant into memory.
;; It must come before the more general movdf pattern.
(define_insn ""
[(set (match_operand:DF 0 "general_operand" "=?r,r,fx")
(match_operand:DF 1 "" "?E,G,m"))]
"GET_CODE (operands[1]) == CONST_DOUBLE"
"*
{
switch (which_alternative)
{
case 0:
return output_move_double (operands);
case 1:
return \"copy 0,%0\;copy 0,%R0\";
case 2:
return output_fp_move_double (operands);
}
}"
[(set_attr "type" "load,move,fpload")
(set_attr "length" "3,2,3")])
(define_expand "movdf"
[(set (match_operand:DF 0 "general_operand" "")
(match_operand:DF 1 "general_operand" ""))]
""
"
{
if (emit_move_sequence (operands, DFmode, 0))
DONE;
}")
(define_insn ""
[(set (match_operand:DF 0 "reg_or_nonsymb_mem_operand"
"=fx,*r,Q,?Q,fx,*&r,?fx,?r")
(match_operand:DF 1 "reg_or_nonsymb_mem_operand"
"fx,*r,fx,*r,Q,Q,*r,fx"))]
"register_operand (operands[0], DFmode)
|| register_operand (operands[1], DFmode)"
"*
{
if (FP_REG_P (operands[0]) || FP_REG_P (operands[1]))
return output_fp_move_double (operands);
return output_move_double (operands);
}"
[(set_attr "type" "fpalu,move,fpstore,store,fpload,load,multi,multi")
(set_attr "length" "1,2,1,2,1,2,3,3")])
(define_expand "movdi"
[(set (match_operand:DI 0 "reg_or_nonsymb_mem_operand" "")
(match_operand:DI 1 "general_operand" ""))]
""
"
{
if (emit_move_sequence (operands, DImode, 0))
DONE;
}")
(define_expand "reload_indi"
[(set (match_operand:DI 0 "register_operand" "=z")
(match_operand:DI 1 "general_operand" ""))
(clobber (match_operand:SI 2 "register_operand" "=&r"))]
""
"
{
if (emit_move_sequence (operands, DImode, operands[2]))
DONE;
/* We don't want the clobber emitted, so handle this ourselves. */
emit_insn (gen_rtx (SET, VOIDmode, operands[0], operands[1]));
DONE;
}")
(define_expand "reload_outdi"
[(set (match_operand:DI 0 "general_operand" "")
(match_operand:DI 1 "register_operand" "z"))
(clobber (match_operand:SI 2 "register_operand" "=&r"))]
""
"
{
if (emit_move_sequence (operands, DImode, operands[2]))
DONE;
/* We don't want the clobber emitted, so handle this ourselves. */
emit_insn (gen_rtx (SET, VOIDmode, operands[0], operands[1]));
DONE;
}")
(define_insn ""
[(set (match_operand:DI 0 "register_operand" "=r")
(high:DI (match_operand 1 "" "")))]
"check_pic (1)"
"*
{
rtx op0 = operands[0];
rtx op1 = operands[1];
if (GET_CODE (op1) == CONST_INT)
{
operands[0] = operand_subword (op0, 1, 0, DImode);
output_asm_insn (\"ldil L'%1,%0\", operands);
operands[0] = operand_subword (op0, 0, 0, DImode);
if (INTVAL (op1) < 0)
output_asm_insn (\"ldo -1(0),%0\", operands);
else
output_asm_insn (\"ldo 0(0),%0\", operands);
return \"\";
}
else if (GET_CODE (op1) == CONST_DOUBLE)
{
operands[0] = operand_subword (op0, 1, 0, DImode);
operands[1] = gen_rtx (CONST_INT, VOIDmode, CONST_DOUBLE_LOW (op1));
output_asm_insn (\"ldil L'%1,%0\", operands);
operands[0] = operand_subword (op0, 0, 0, DImode);
operands[1] = gen_rtx (CONST_INT, VOIDmode, CONST_DOUBLE_HIGH (op1));
output_asm_insn (singlemove_string (operands), operands);
return \"\";
}
else
abort ();
}"
[(set_attr "type" "move")
(set_attr "length" "2")])
;;; Experimental
(define_insn ""
[(set (match_operand:DI 0 "fp_reg_operand" "=fx")
(match_operand:DI 1 "short_memory_operand" "T"))]
""
"fldds%F1 %1,%0"
[(set_attr "type" "fpload")
(set_attr "length" "1")])
(define_insn ""
[(set (match_operand:DI 0 "short_memory_operand" "=T")
(match_operand:DI 1 "fp_reg_operand" "fx"))]
""
"fstds%F0 %1,%0"
[(set_attr "type" "fpstore")
(set_attr "length" "1")])
(define_insn ""
[(set (match_operand:DI 0 "reg_or_nonsymb_mem_operand"
"=r,Q,&r,&r,fx,fx,r")
(match_operand:DI 1 "general_operand"
"r,r,Q,i,r,fx,fx"))]
""
"*
{
if (FP_REG_P (operands[0]) || FP_REG_P (operands[1]))
return output_fp_move_double (operands);
return output_move_double (operands);
}"
[(set_attr "type" "move,store,load,misc,multi,fpalu,multi")
(set_attr "length" "2,3,3,3,3,2,3")])
(define_insn ""
[(set (match_operand:DI 0 "register_operand" "=r,r")
(lo_sum:DI (match_operand:DI 1 "register_operand" "0,r")
(match_operand:DI 2 "immediate_operand" "i,i")))]
""
"*
{
/* Don't output a 64 bit constant, since we can't trust the assembler to
handle it correctly. */
if (GET_CODE (operands[2]) == CONST_DOUBLE)
operands[2] = gen_rtx (CONST_INT, VOIDmode, CONST_DOUBLE_LOW (operands[2]));
if (which_alternative == 1)
output_asm_insn (\"copy %1,%0\", operands);
return \"ldo R'%G2(%R1),%R0\";
}"
;; Need to set length for this arith insn because operand2
;; is not an "arith_operand".
[(set_attr "length" "1,2")])
(define_expand "movsf"
[(set (match_operand:SF 0 "general_operand" "")
(match_operand:SF 1 "general_operand" ""))]
""
"
{
if (emit_move_sequence (operands, SFmode, 0))
DONE;
}")
(define_insn ""
[(set (match_operand:SF 0 "reg_or_nonsymb_mem_operand"
"=fx,r,r,fx,fx,r,Q,Q")
(match_operand:SF 1 "reg_or_nonsymb_mem_operand"
"fx,r,!fx,!r,Q,Q,fx,r"))]
""
"@
fcpy,sgl %1,%0
copy %1,%0
fstws %1,-16(0,30)\;ldw -16(0,30),%0
stw %r1,-16(0,30)\;fldws -16(0,30),%0
fldws%F1 %1,%0
ldw%M1 %1,%0
fstws%F0 %r1,%0
stw%M0 %r1,%0"
[(set_attr "type" "fpalu,move,multi,multi,fpload,load,fpstore,store")
(set_attr "length" "1,1,2,2,1,1,1,1")])
;;- zero extension instructions
;; Note that the one starting from HImode comes before those for QImode
;; so that a constant operand will match HImode, not QImode.
(define_expand "zero_extendhisi2"
[(set (match_operand:SI 0 "register_operand" "")
(zero_extend:SI
(match_operand:HI 1 "general_operand" "")))]
""
"
{
if (GET_CODE (operand1) == MEM
&& symbolic_operand (XEXP (operand1, 0), Pmode))
{
rtx temp = copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode,
XEXP (operand1, 0)));
operands[1] = gen_rtx (MEM, HImode,
gen_rtx (LO_SUM, Pmode,
temp, XEXP (operand1, 0)));
}
}")
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r,r")
(zero_extend:SI
(match_operand:HI 1 "reg_or_nonsymb_mem_operand" "r,Q")))]
""
"@
extru %1,31,16,%0
ldh%M1 %1,%0"
[(set_attr "type" "unary,load")])
(define_expand "zero_extendqihi2"
[(set (match_operand:HI 0 "register_operand" "")
(zero_extend:HI
(match_operand:QI 1 "general_operand" "")))]
""
"
{
if (GET_CODE (operand1) == MEM
&& symbolic_operand (XEXP (operand1, 0), Pmode))
{
rtx temp = copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode,
XEXP (operand1, 0)));
operands[1] = gen_rtx (MEM, QImode,
gen_rtx (LO_SUM, Pmode,
temp, XEXP (operand1, 0)));
}
}")
(define_insn ""
[(set (match_operand:HI 0 "register_operand" "=r,r")
(zero_extend:HI
(match_operand:QI 1 "reg_or_nonsymb_mem_operand" "r,Q")))]
""
"@
extru %1,31,8,%0
ldb%M1 %1,%0"
[(set_attr "type" "unary,load")
(set_attr "length" "1,1")])
(define_expand "zero_extendqisi2"
[(set (match_operand:SI 0 "register_operand" "")
(zero_extend:SI
(match_operand:QI 1 "general_operand" "")))]
""
"
{
if (GET_CODE (operand1) == MEM
&& symbolic_operand (XEXP (operand1, 0), Pmode))
{
rtx temp = copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode,
XEXP (operand1, 0)));
operand1 = gen_rtx (MEM, QImode,
gen_rtx (LO_SUM, Pmode,
temp, XEXP (operand1, 0)));
emit_insn (gen_rtx (SET, VOIDmode, operand0,
gen_rtx (ZERO_EXTEND, SImode, operand1)));
DONE;
}
}")
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r,r")
(zero_extend:SI
(match_operand:QI 1 "reg_or_nonsymb_mem_operand" "r,Q")))]
""
"@
extru %1,31,8,%0
ldb%M1 %1,%0"
[(set_attr "type" "unary,load")
(set_attr "length" "1,1")])
;;- sign extension instructions
;; Note that the one starting from HImode comes before those for QImode
;; so that a constant operand will match HImode, not QImode.
(define_insn "extendhisi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(sign_extend:SI (match_operand:HI 1 "register_operand" "r")))]
""
"extrs %1,31,16,%0"
[(set_attr "type" "unary")])
(define_insn "extendqihi2"
[(set (match_operand:HI 0 "register_operand" "=r")
(sign_extend:HI (match_operand:QI 1 "register_operand" "r")))]
""
"extrs %1,31,8,%0"
[(set_attr "type" "unary")])
(define_insn "extendqisi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(sign_extend:SI (match_operand:QI 1 "register_operand" "r")))]
""
"extrs %1,31,8,%0"
[(set_attr "type" "unary")])
;; Conversions between float and double.
(define_insn "extendsfdf2"
[(set (match_operand:DF 0 "register_operand" "=fx")
(float_extend:DF
(match_operand:SF 1 "register_operand" "fx")))]
""
"fcnvff,sgl,dbl %1,%0"
[(set_attr "type" "fpalu")])
(define_insn "truncdfsf2"
[(set (match_operand:SF 0 "register_operand" "=fx")
(float_truncate:SF
(match_operand:DF 1 "register_operand" "fx")))]
""
"fcnvff,dbl,sgl %1,%0"
[(set_attr "type" "fpalu")])
;; Conversion between fixed point and floating point.
;; Note that among the fix-to-float insns
;; the ones that start with SImode come first.
;; That is so that an operand that is a CONST_INT
;; (and therefore lacks a specific machine mode).
;; will be recognized as SImode (which is always valid)
;; rather than as QImode or HImode.
;; This pattern forces (set (reg:SF ...) (float:SF (const_int ...)))
;; to be reloaded by putting the constant into memory.
;; It must come before the more general floatsisf2 pattern.
(define_insn ""
[(set (match_operand:SF 0 "general_operand" "=fx")
(float:SF (match_operand:SI 1 "const_int_operand" "m")))]
""
"* return output_floatsisf2 (operands);"
[(set_attr "type" "fpalu")
(set_attr "length" "3")])
(define_insn "floatsisf2"
[(set (match_operand:SF 0 "general_operand" "=fx")
(float:SF (match_operand:SI 1 "register_operand" "fx")))]
""
"* return output_floatsisf2 (operands);"
[(set_attr "type" "fpalu")
(set_attr "length" "3")])
;; This pattern forces (set (reg:DF ...) (float:DF (const_int ...)))
;; to be reloaded by putting the constant into memory.
;; It must come before the more general floatsidf2 pattern.
(define_insn ""
[(set (match_operand:DF 0 "general_operand" "=fx")
(float:DF (match_operand:SI 1 "const_int_operand" "m")))]
""
"* return output_floatsidf2 (operands);"
[(set_attr "type" "fpalu")
(set_attr "length" "3")])
(define_insn "floatsidf2"
[(set (match_operand:DF 0 "general_operand" "=fx")
(float:DF (match_operand:SI 1 "register_operand" "fx")))]
""
"* return output_floatsidf2 (operands);"
[(set_attr "type" "fpalu")
(set_attr "length" "3")])
;; Convert a float to an actual integer.
;; Truncation is performed as part of the conversion.
(define_insn "fix_truncsfsi2"
[(set (match_operand:SI 0 "register_operand" "=r,fx")
(fix:SI (fix:SF (match_operand:SF 1 "register_operand" "fx,fx"))))
(clobber (match_scratch:SI 2 "=&fx,X"))]
""
"@
fcnvfxt,sgl,sgl %1,%2\;fstws %2,-16(30)\;ldw -16(30),%0
fcnvfxt,sgl,sgl %1,%0"
[(set_attr "type" "fpalu,fpalu")
(set_attr "length" "3,1")])
(define_insn "fix_truncdfsi2"
[(set (match_operand:SI 0 "register_operand" "=r,fx")
(fix:SI (fix:DF (match_operand:DF 1 "register_operand" "fx,fx"))))
(clobber (match_scratch:SI 2 "=&fx,X"))]
""
"@
fcnvfxt,dbl,sgl %1,%2\;fstws %2,-16(30)\;ldw -16(30),%0
fcnvfxt,dbl,sgl %1,%0"
[(set_attr "type" "fpalu,fpalu")
(set_attr "length" "3,1")])
;;- arithmetic instructions
(define_insn "adddi3"
[(set (match_operand:DI 0 "register_operand" "=r")
(plus:DI (match_operand:DI 1 "register_operand" "%r")
(match_operand:DI 2 "arith11_operand" "rI")))]
""
"*
{
if (GET_CODE (operands[2]) == CONST_INT)
{
if (INTVAL (operands[2]) >= 0)
return \"addi %2,%R1,%R0\;addc %1,0,%0\";
else
return \"addi %2,%R1,%R0\;subb %1,0,%0\";
}
else
return \"add %R2,%R1,%R0\;addc %2,%1,%0\";
}"
[(set_attr "length" "2")])
(define_insn "addsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(plus:SI (match_operand:SI 1 "register_operand" "%r,r")
(match_operand:SI 2 "arith_operand" "r,J")))]
""
"@
add %1,%2,%0
ldo %2(%1),%0")
(define_insn "subdi3"
[(set (match_operand:DI 0 "register_operand" "=r")
(minus:DI (match_operand:DI 1 "register_operand" "r")
(match_operand:DI 2 "register_operand" "r")))]
""
"sub %R1,%R2,%R0\;subb %1,%2,%0"
[(set_attr "length" "2")])
(define_insn "subsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(minus:SI (match_operand:SI 1 "arith11_operand" "r,I")
(match_operand:SI 2 "register_operand" "r,r")))]
""
"@
sub %1,%2,%0
subi %1,%2,%0")
;; The mulsi3 insns set up registers for the millicode call.
(define_expand "mulsi3"
[(set (reg:SI 26) (match_operand:SI 1 "srcsi_operand" ""))
(set (reg:SI 25) (match_operand:SI 2 "srcsi_operand" ""))
(parallel [(set (reg:SI 29) (mult:SI (reg:SI 26) (reg:SI 25)))
(clobber (match_scratch:SI 3 ""))
(clobber (reg:SI 26))
(clobber (reg:SI 25))
(clobber (reg:SI 31))])
(set (match_operand:SI 0 "general_operand" "") (reg:SI 29))]
""
"
{
if (TARGET_SNAKE)
{
rtx scratch = gen_reg_rtx (DImode);
operands[1] = force_reg (SImode, operands[1]);
operands[2] = force_reg (SImode, operands[2]);
emit_insn (gen_umulsidi3 (scratch, operands[1], operands[2]));
emit_insn (gen_rtx (SET, VOIDmode,
operands[0],
gen_rtx (SUBREG, SImode, scratch, 1)));
DONE;
}
}")
(define_insn "umulsidi3"
[(set (match_operand:DI 0 "register_operand" "=x")
(mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "x"))
(zero_extend:DI (match_operand:SI 2 "register_operand" "x"))))]
"TARGET_SNAKE"
"xmpyu %1,%2,%0"
[(set_attr "type" "fpmul")])
(define_insn ""
[(set (reg:SI 29) (mult:SI (reg:SI 26) (reg:SI 25)))
(clobber (match_scratch:SI 0 "=a"))
(clobber (reg:SI 26))
(clobber (reg:SI 25))
(clobber (reg:SI 31))]
""
"* return output_mul_insn (0);"
[(set_attr "type" "milli")])
;;; Division and mod.
(define_expand "divsi3"
[(set (reg:SI 26) (match_operand:SI 1 "srcsi_operand" ""))
(set (reg:SI 25) (match_operand:SI 2 "srcsi_operand" ""))
(parallel [(set (reg:SI 29) (div:SI (reg:SI 26) (reg:SI 25)))
(clobber (match_scratch:SI 3 ""))
(clobber (reg:SI 26))
(clobber (reg:SI 25))
(clobber (reg:SI 31))])
(set (match_operand:SI 0 "general_operand" "") (reg:SI 29))]
""
"
{
if (!(GET_CODE (operands[2]) == CONST_INT && emit_hpdiv_const(operands, 0)))
{
emit_move_insn (gen_rtx (REG, SImode, 26), operands[1]);
emit_move_insn (gen_rtx (REG, SImode, 25), operands[2]);
emit
(gen_rtx
(PARALLEL, VOIDmode,
gen_rtvec (5, gen_rtx (SET, VOIDmode, gen_rtx (REG, SImode, 29),
gen_rtx (DIV, SImode,
gen_rtx (REG, SImode, 26),
gen_rtx (REG, SImode, 25))),
gen_rtx (CLOBBER, VOIDmode, gen_rtx (SCRATCH, SImode, 0)),
gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, SImode, 26)),
gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, SImode, 25)),
gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, SImode, 31)))));
emit_move_insn (operands[0], gen_rtx (REG, SImode, 29));
}
DONE;
}")
(define_insn ""
[(set (reg:SI 29)
(div:SI (reg:SI 26) (match_operand:SI 0 "div_operand" "")))
(clobber (match_scratch:SI 1 "=a"))
(clobber (reg:SI 26))
(clobber (reg:SI 25))
(clobber (reg:SI 31))]
""
"*
return output_div_insn (operands, 0);"
[(set_attr "type" "milli")])
(define_expand "udivsi3"
[(set (reg:SI 26) (match_operand:SI 1 "srcsi_operand" ""))
(set (reg:SI 25) (match_operand:SI 2 "srcsi_operand" ""))
(parallel [(set (reg:SI 29) (udiv:SI (reg:SI 26) (reg:SI 25)))
(clobber (match_scratch:SI 3 ""))
(clobber (reg:SI 26))
(clobber (reg:SI 25))
(clobber (reg:SI 31))])
(set (match_operand:SI 0 "general_operand" "") (reg:SI 29))]
""
"
{
if (!(GET_CODE (operands[2]) == CONST_INT && emit_hpdiv_const(operands, 1)))
{
emit_move_insn (gen_rtx (REG, SImode, 26), operands[1]);
emit_move_insn (gen_rtx (REG, SImode, 25), operands[2]);
emit
(gen_rtx
(PARALLEL, VOIDmode,
gen_rtvec (5, gen_rtx (SET, VOIDmode, gen_rtx (REG, SImode, 29),
gen_rtx (UDIV, SImode,
gen_rtx (REG, SImode, 26),
gen_rtx (REG, SImode, 25))),
gen_rtx (CLOBBER, VOIDmode, gen_rtx (SCRATCH, SImode, 0)),
gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, SImode, 26)),
gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, SImode, 25)),
gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, SImode, 31)))));
emit_move_insn (operands[0], gen_rtx (REG, SImode, 29));
}
DONE;
}")
(define_insn ""
[(set (reg:SI 29)
(udiv:SI (reg:SI 26) (match_operand:SI 0 "div_operand" "")))
(clobber (match_scratch:SI 1 "=a"))
(clobber (reg:SI 26))
(clobber (reg:SI 25))
(clobber (reg:SI 31))]
""
"*
return output_div_insn (operands, 1);"
[(set_attr "type" "milli")])
(define_expand "modsi3"
[(set (reg:SI 26) (match_operand:SI 1 "srcsi_operand" ""))
(set (reg:SI 25) (match_operand:SI 2 "srcsi_operand" ""))
(parallel [(set (reg:SI 29) (mod:SI (reg:SI 26) (reg:SI 25)))
(clobber (match_scratch:SI 3 ""))
(clobber (reg:SI 26))
(clobber (reg:SI 25))
(clobber (reg:SI 31))])
(set (match_operand:SI 0 "general_operand" "") (reg:SI 29))]
""
"
{
emit_move_insn (gen_rtx (REG, SImode, 26), operands[1]);
emit_move_insn (gen_rtx (REG, SImode, 25), operands[2]);
emit
(gen_rtx
(PARALLEL, VOIDmode,
gen_rtvec (5, gen_rtx (SET, VOIDmode, gen_rtx (REG, SImode, 29),
gen_rtx (MOD, SImode,
gen_rtx (REG, SImode, 26),
gen_rtx (REG, SImode, 25))),
gen_rtx (CLOBBER, VOIDmode, gen_rtx (SCRATCH, SImode, 0)),
gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, SImode, 26)),
gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, SImode, 25)),
gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, SImode, 31)))));
emit_move_insn (operands[0], gen_rtx (REG, SImode, 29));
DONE;
}")
(define_insn ""
[(set (reg:SI 29) (mod:SI (reg:SI 26) (reg:SI 25)))
(clobber (match_scratch:SI 0 "=a"))
(clobber (reg:SI 26))
(clobber (reg:SI 25))
(clobber (reg:SI 31))]
""
"*
return output_mod_insn (0);"
[(set_attr "type" "milli")])
(define_expand "umodsi3"
[(set (reg:SI 26) (match_operand:SI 1 "srcsi_operand" ""))
(set (reg:SI 25) (match_operand:SI 2 "srcsi_operand" ""))
(parallel [(set (reg:SI 29) (umod:SI (reg:SI 26) (reg:SI 25)))
(clobber (match_scratch:SI 3 ""))
(clobber (reg:SI 26))
(clobber (reg:SI 25))
(clobber (reg:SI 31))])
(set (match_operand:SI 0 "general_operand" "") (reg:SI 29))]
""
"
{
emit_move_insn (gen_rtx (REG, SImode, 26), operands[1]);
emit_move_insn (gen_rtx (REG, SImode, 25), operands[2]);
emit
(gen_rtx
(PARALLEL, VOIDmode,
gen_rtvec (5, gen_rtx (SET, VOIDmode, gen_rtx (REG, SImode, 29),
gen_rtx (UMOD, SImode,
gen_rtx (REG, SImode, 26),
gen_rtx (REG, SImode, 25))),
gen_rtx (CLOBBER, VOIDmode, gen_rtx (SCRATCH, SImode, 0)),
gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, SImode, 26)),
gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, SImode, 25)),
gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, SImode, 31)))));
emit_move_insn (operands[0], gen_rtx (REG, SImode, 29));
DONE;
}")
(define_insn ""
[(set (reg:SI 29) (umod:SI (reg:SI 26) (reg:SI 25)))
(clobber (match_scratch:SI 0 "=a"))
(clobber (reg:SI 26))
(clobber (reg:SI 25))
(clobber (reg:SI 31))]
""
"*
return output_mod_insn (1);"
[(set_attr "type" "milli")])
;;- and instructions
;; We define DImode `and` so with DImode `not` we can get
;; DImode `andn`. Other combinations are possible.
(define_expand "anddi3"
[(set (match_operand:DI 0 "register_operand" "")
(and:DI (match_operand:DI 1 "arith_double_operand" "")
(match_operand:DI 2 "arith_double_operand" "")))]
""
"
{
if (! register_operand (operands[1], DImode)
|| ! register_operand (operands[2], DImode))
/* Let GCC break this into word-at-a-time operations. */
FAIL;
}")
(define_insn ""
[(set (match_operand:DI 0 "register_operand" "=r")
(and:DI (match_operand:DI 1 "register_operand" "%r")
(match_operand:DI 2 "register_operand" "r")))]
""
"and %1,%2,%0\;and %R1,%R2,%R0"
[(set_attr "length" "2")])
(define_insn "andsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(and:SI (match_operand:SI 1 "register_operand" "%r,0")
(match_operand:SI 2 "and_operand" "rO,P")))]
""
"* return output_and (operands); ")
(define_insn ""
[(set (match_operand:DI 0 "register_operand" "=r")
(and:DI (not:DI (match_operand:DI 1 "register_operand" "r"))
(match_operand:DI 2 "register_operand" "r")))]
""
"andcm %2,%1,%0\;andcm %R2,%R1,%R0"
[(set_attr "length" "2")])
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(and:SI (not:SI (match_operand:SI 1 "register_operand" "r"))
(match_operand:SI 2 "register_operand" "r")))]
""
"andcm %2,%1,%0")
(define_expand "iordi3"
[(set (match_operand:DI 0 "register_operand" "")
(ior:DI (match_operand:DI 1 "arith_double_operand" "")
(match_operand:DI 2 "arith_double_operand" "")))]
""
"
{
if (! register_operand (operands[1], DImode)
|| ! register_operand (operands[2], DImode))
/* Let GCC break this into word-at-a-time operations. */
FAIL;
}")
(define_insn ""
[(set (match_operand:DI 0 "register_operand" "=r")
(ior:DI (match_operand:DI 1 "register_operand" "%r")
(match_operand:DI 2 "register_operand" "r")))]
""
"or %1,%2,%0\;or %R1,%R2,%R0"
[(set_attr "length" "2")])
(define_insn "iorsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(ior:SI (match_operand:SI 1 "register_operand" "%r,0")
(match_operand:SI 2 "ior_operand" "r,n")))]
""
"* return output_ior (operands); ")
(define_expand "xordi3"
[(set (match_operand:DI 0 "register_operand" "")
(xor:DI (match_operand:DI 1 "arith_double_operand" "")
(match_operand:DI 2 "arith_double_operand" "")))]
""
"
{
if (! register_operand (operands[1], DImode)
|| ! register_operand (operands[2], DImode))
/* Let GCC break this into word-at-a-time operations. */
FAIL;
}")
(define_insn ""
[(set (match_operand:DI 0 "register_operand" "=r")
(xor:DI (match_operand:DI 1 "register_operand" "%r")
(match_operand:DI 2 "register_operand" "r")))]
""
"xor %1,%2,%0\;xor %R1,%R2,%R0"
[(set_attr "length" "2")])
(define_insn "xorsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(xor:SI (match_operand:SI 1 "register_operand" "%r")
(match_operand:SI 2 "register_operand" "r")))]
""
"xor %1,%2,%0")
(define_insn "negdi2"
[(set (match_operand:DI 0 "register_operand" "=r")
(neg:DI (match_operand:DI 1 "register_operand" "r")))]
""
"sub 0,%R1,%R0\;subb 0,%1,%0"
[(set_attr "type" "unary")
(set_attr "length" "2")])
(define_insn "negsi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(neg:SI (match_operand:SI 1 "register_operand" "r")))]
""
"sub 0,%1,%0"
[(set_attr "type" "unary")])
(define_expand "one_cmpldi2"
[(set (match_operand:DI 0 "register_operand" "")
(not:DI (match_operand:DI 1 "arith_double_operand" "")))]
""
"
{
if (! register_operand (operands[1], DImode))
FAIL;
}")
(define_insn ""
[(set (match_operand:DI 0 "register_operand" "=r")
(not:DI (match_operand:DI 1 "register_operand" "r")))]
""
"uaddcm 0,%1,%0\;uaddcm 0,%R1,%R0"
[(set_attr "type" "unary")
(set_attr "length" "2")])
(define_insn "one_cmplsi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(not:SI (match_operand:SI 1 "register_operand" "r")))]
""
"uaddcm 0,%1,%0"
[(set_attr "type" "unary")])
;; Floating point arithmetic instructions.
(define_insn "adddf3"
[(set (match_operand:DF 0 "register_operand" "=fx")
(plus:DF (match_operand:DF 1 "register_operand" "fx")
(match_operand:DF 2 "register_operand" "fx")))]
""
"fadd,dbl %1,%2,%0"
[(set_attr "type" "fpalu")])
(define_insn "addsf3"
[(set (match_operand:SF 0 "register_operand" "=fx")
(plus:SF (match_operand:SF 1 "register_operand" "fx")
(match_operand:SF 2 "register_operand" "fx")))]
""
"fadd,sgl %1,%2,%0"
[(set_attr "type" "fpalu")])
(define_insn "subdf3"
[(set (match_operand:DF 0 "register_operand" "=fx")
(minus:DF (match_operand:DF 1 "register_operand" "fx")
(match_operand:DF 2 "register_operand" "fx")))]
""
"fsub,dbl %1,%2,%0"
[(set_attr "type" "fpalu")])
(define_insn "subsf3"
[(set (match_operand:SF 0 "register_operand" "=fx")
(minus:SF (match_operand:SF 1 "register_operand" "fx")
(match_operand:SF 2 "register_operand" "fx")))]
""
"fsub,sgl %1,%2,%0"
[(set_attr "type" "fpalu")])
(define_insn "muldf3"
[(set (match_operand:DF 0 "register_operand" "=fx")
(mult:DF (match_operand:DF 1 "register_operand" "fx")
(match_operand:DF 2 "register_operand" "fx")))]
""
"fmpy,dbl %1,%2,%0"
[(set_attr "type" "fpmul")])
(define_insn "mulsf3"
[(set (match_operand:SF 0 "register_operand" "=fx")
(mult:SF (match_operand:SF 1 "register_operand" "fx")
(match_operand:SF 2 "register_operand" "fx")))]
""
"fmpy,sgl %1,%2,%0"
[(set_attr "type" "fpmul")])
(define_insn "divdf3"
[(set (match_operand:DF 0 "register_operand" "=fx")
(div:DF (match_operand:DF 1 "register_operand" "fx")
(match_operand:DF 2 "register_operand" "fx")))]
""
"fdiv,dbl %1,%2,%0"
[(set_attr "type" "fpdivdbl")])
(define_insn "divsf3"
[(set (match_operand:SF 0 "register_operand" "=fx")
(div:SF (match_operand:SF 1 "register_operand" "fx")
(match_operand:SF 2 "register_operand" "fx")))]
""
"fdiv,sgl %1,%2,%0"
[(set_attr "type" "fpdivsgl")])
(define_insn "negdf2"
[(set (match_operand:DF 0 "register_operand" "=fx")
(neg:DF (match_operand:DF 1 "register_operand" "fx")))]
""
"fsub,dbl 0,%1,%0"
[(set_attr "type" "fpalu")])
(define_insn "negsf2"
[(set (match_operand:SF 0 "register_operand" "=fx")
(neg:SF (match_operand:SF 1 "register_operand" "fx")))]
""
"fsub,sgl 0, %1,%0"
[(set_attr "type" "fpalu")])
(define_insn "absdf2"
[(set (match_operand:DF 0 "register_operand" "=fx")
(abs:DF (match_operand:DF 1 "register_operand" "fx")))]
""
"fabs,dbl %1,%0"
[(set_attr "type" "fpalu")])
(define_insn "abssf2"
[(set (match_operand:SF 0 "register_operand" "=fx")
(abs:SF (match_operand:SF 1 "register_operand" "fx")))]
""
"fabs,sgl %1,%0"
[(set_attr "type" "fpalu")])
(define_insn "sqrtdf2"
[(set (match_operand:DF 0 "register_operand" "=fx")
(sqrt:DF (match_operand:DF 1 "register_operand" "fx")))]
""
"fsqrt,dbl %1,%0"
[(set_attr "type" "fpsqrtdbl")])
(define_insn "sqrtsf2"
[(set (match_operand:SF 0 "register_operand" "=fx")
(sqrt:SF (match_operand:SF 1 "register_operand" "fx")))]
""
"fsqrt,sgl %1,%0"
[(set_attr "type" "fpsqrtsgl")])
;;- Shift instructions
;; Optimized special case of shifting.
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(lshiftrt:SI (match_operand:SI 1 "memory_operand" "m")
(const_int 24)))]
""
"ldb%M1 %1,%0"
[(set_attr "type" "load")
(set_attr "length" "1")])
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(lshiftrt:SI (match_operand:SI 1 "memory_operand" "m")
(const_int 16)))]
""
"ldh%M1 %1,%0"
[(set_attr "type" "load")
(set_attr "length" "1")])
;; Using shadd_operand works around a bug in reload. For 2.4 fix
;; reload and use register_operand instead.
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(plus:SI (mult:SI (match_operand:SI 2 "register_operand" "r")
(const_int 2))
(match_operand:SI 1 "shadd_operand" "r")))]
""
"sh1add %2,%1,%0")
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(plus:SI (mult:SI (match_operand:SI 2 "register_operand" "r")
(const_int 4))
(match_operand:SI 1 "shadd_operand" "r")))]
""
"sh2add %2,%1,%0")
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(plus:SI (mult:SI (match_operand:SI 2 "register_operand" "r")
(const_int 8))
(match_operand:SI 1 "shadd_operand" "r")))]
""
"sh3add %2,%1,%0")
(define_insn "sar_sub"
[(set (match_operand:SI 0 "register_operand" "=r")
(if_then_else (gtu:SI (match_operand:SI 2 "register_operand" "r")
(match_operand:SI 1 "int11_operand" "I"))
(const_int 0)
(minus:SI (match_dup 1) (match_dup 2))))]
""
"subi,>>= %1,%2,%0\;copy 0,%0"
[(set_attr "length" "2" )])
(define_expand "ashlsi3"
[(set (match_operand:SI 0 "register_operand" "")
(ashift:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "arith32_operand" "")))]
""
"
{
if (GET_CODE (operands[2]) != CONST_INT)
{
rtx temp = gen_reg_rtx (SImode);
emit_insn (gen_sar_sub (temp,
gen_rtx (CONST_INT, VOIDmode, 31),
operands[2]));
emit_insn (gen_rtx (SET, VOIDmode, gen_rtx (REG, SImode, 112), temp));
emit_insn (gen_rtx (SET, VOIDmode,
operands[0],
gen_rtx (ASHIFT, SImode,
operands[1],
gen_rtx (MINUS, SImode,
gen_rtx (CONST_INT, VOIDmode, 31),
gen_rtx (REG, SImode, 112)))));
DONE;
}
}")
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(ashift:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "const_int_operand" "n")))]
""
"*
{
rtx xoperands[4];
xoperands[0] = operands[0];
xoperands[1] = operands[1];
xoperands[2] = gen_rtx (CONST_INT, VOIDmode,
31 - (INTVAL (operands[2]) & 31));
xoperands[3] = gen_rtx (CONST_INT, VOIDmode,
32 - (INTVAL (operands[2]) & 31));
output_asm_insn (\"zdep %1,%2,%3,%0\", xoperands);
return \"\";
}")
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(ashift:SI (match_operand:SI 1 "register_operand" "r")
(minus:SI (const_int 31)
(reg:SI 112))))]
""
"zvdep %1,32,%0")
(define_expand "ashrsi3"
[(set (match_operand:SI 0 "register_operand" "")
(ashiftrt:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "arith32_operand" "")))]
""
"
{
if (GET_CODE (operands[2]) != CONST_INT)
{
rtx temp = gen_reg_rtx (SImode);
emit_insn (gen_sar_sub (temp,
gen_rtx (CONST_INT, VOIDmode, 31),
operands[2]));
emit_insn (gen_rtx (SET, VOIDmode, gen_rtx (REG, SImode, 112), temp));
emit_insn (gen_rtx (SET, VOIDmode,
operands[0],
gen_rtx (ASHIFTRT, SImode,
operands[1],
gen_rtx (MINUS, SImode,
gen_rtx (CONST_INT, VOIDmode, 31),
gen_rtx (REG, SImode, 112)))));
DONE;
}
}")
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(ashiftrt:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "const_int_operand" "n")))]
""
"*
{
rtx xoperands[4];
xoperands[0] = operands[0];
xoperands[1] = operands[1];
xoperands[2] = gen_rtx (CONST_INT, VOIDmode,
31 - (INTVAL (operands[2]) & 31));
xoperands[3] = gen_rtx (CONST_INT, VOIDmode,
32 - (INTVAL (operands[2]) & 31));
output_asm_insn (\"extrs %1,%2,%3,%0\", xoperands);
return \"\";
}")
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(ashiftrt:SI (match_operand:SI 1 "register_operand" "r")
(minus:SI (const_int 31)
(reg:SI 112))))]
""
"vextrs %1,32,%0")
(define_expand "lshrsi3"
[(set (match_operand:SI 0 "register_operand" "")
(lshiftrt:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "arith32_operand" "")))]
""
"
{
if (GET_CODE (operands[2]) != CONST_INT)
{
rtx temp = gen_reg_rtx (SImode);
emit_insn (gen_sar_sub (temp,
gen_rtx (CONST_INT, VOIDmode, 31),
operands[2]));
emit_insn (gen_rtx (SET, VOIDmode, gen_rtx (REG, SImode, 112), temp));
emit_insn (gen_rtx (SET, VOIDmode,
operands[0],
gen_rtx (LSHIFTRT, SImode,
operands[1],
gen_rtx (MINUS, SImode,
gen_rtx (CONST_INT, VOIDmode, 31),
gen_rtx (REG, SImode, 112)))));
DONE;
}
}")
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(lshiftrt:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "const_int_operand" "n")))]
""
"*
{
rtx xoperands[4];
xoperands[0] = operands[0];
xoperands[1] = operands[1];
xoperands[2] = gen_rtx (CONST_INT, VOIDmode,
31 - (INTVAL (operands[2]) & 31));
xoperands[3] = gen_rtx (CONST_INT, VOIDmode,
32 - (INTVAL (operands[2]) & 31));
output_asm_insn (\"extru %1,%2,%3,%0\", xoperands);
return \"\";
}")
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(lshiftrt:SI (match_operand:SI 1 "register_operand" "r")
(minus:SI (const_int 31)
(reg:SI 112))))]
""
"vextru %1,32,%0")
;; Unconditional and other jump instructions.
(define_insn "jump"
[(set (pc) (label_ref (match_operand 0 "" "")))]
""
"bl%* %l0,0"
[(set_attr "type" "branch")])
;; Subroutines of "casesi".
;; operand 0 is index
;; operand 1 is the minimum bound
;; operand 2 is the maximum bound - minimum bound + 1
;; operand 3 is CODE_LABEL for the table;
;; operand 4 is the CODE_LABEL to go to if index out of range.
(define_expand "casesi"
[(match_operand:SI 0 "general_operand" "")
(match_operand:SI 1 "const_int_operand" "")
(match_operand:SI 2 "const_int_operand" "")
(match_operand 3 "" "")
(match_operand 4 "" "")]
""
"
{
if (GET_CODE (operands[0]) != REG)
operands[0] = force_reg (SImode, operands[0]);
if (operands[1] != const0_rtx)
{
rtx reg = gen_reg_rtx (SImode);
operands[1] = gen_rtx (CONST_INT, VOIDmode, -INTVAL (operands[1]));
if (!INT_14_BITS (operands[1]))
operands[1] = force_reg (SImode, operands[1]);
emit_insn (gen_addsi3 (reg, operands[0], operands[1]));
operands[0] = reg;
}
if (!INT_11_BITS (operands[2]))
operands[2] = force_reg (SImode, operands[2]);
emit_jump_insn (gen_casesi0 (operands[0], operands[2],
operands[3], operands[4]));
DONE;
}")
(define_insn "casesi0"
[(set (pc)
(if_then_else (leu (match_operand:SI 0 "register_operand" "r")
(match_operand:SI 1 "arith11_operand" "rI"))
(plus:SI (mem:SI (plus:SI (pc) (match_dup 0)))
(label_ref (match_operand 2 "" "")))
(pc)))
(use (label_ref (match_operand 3 "" "")))]
""
"*
{
if (GET_CODE (operands[1]) == CONST_INT)
{
operands[1] = gen_rtx (CONST_INT, VOIDmode, ~INTVAL (operands[1]));
return \"addi,uv %1,%0,0\;blr,n %0,0\;b,n %l3\";
}
else
{
return \"sub,>> %0,%1,0\;blr,n %0,0\;b,n %l3\";
}
}"
[(set_attr "length" "3")])
;; Need nops for the calls because execution is supposed to continue
;; past; we don't want to nullify an instruction that we need.
;;- jump to subroutine
(define_expand "call"
[(parallel [(call (match_operand:SI 0 "" "")
(match_operand 1 "" ""))
(clobber (reg:SI 31))
(clobber (reg:SI 2))])]
""
"
{
if (TARGET_LONG_CALLS)
operands[0] = gen_rtx (MEM, SImode,
force_reg (SImode, XEXP (operands[0], 0)));
else
operands[0] = gen_rtx (MEM, SImode, XEXP (operands[0], 0));
}")
(define_insn ""
[(call (mem:SI (match_operand:SI 0 "call_operand_address" "r,S"))
(match_operand 1 "" "i,i"))
(clobber (reg:SI 31))
(clobber (reg:SI 2))]
""
"*
{
if (which_alternative == 0)
return \"copy %0,22\;.CALL\\tARGW0=GR\;bl $$dyncall,31\;copy 31,2\";
else
{
output_arg_descriptor (insn);
return \"bl %0,2%#\";
}
}"
[(set_attr "type" "dyncall,call")
(set_attr "length" "3,1")])
(define_expand "call_value"
[(parallel [(set (match_operand 0 "" "")
(call (match_operand:SI 1 "" "")
(match_operand 2 "" "")))
(clobber (reg:SI 31))
(clobber (reg:SI 2))])]
;;- Don't use operand 1 for most machines.
""
"
{
if (TARGET_LONG_CALLS)
operands[1] = gen_rtx (MEM, SImode,
force_reg (SImode, XEXP (operands[1], 0)));
else
operands[1] = gen_rtx (MEM, SImode, XEXP (operands[1], 0));
}")
(define_insn ""
[(set (match_operand 0 "" "=rfx,rfx")
(call (mem:SI (match_operand:SI 1 "call_operand_address" "r,S"))
(match_operand 2 "" "i,i")))
(clobber (reg:SI 31))
(clobber (reg:SI 2))]
;;- Don't use operand 1 for most machines.
""
"*
{
if (which_alternative == 0)
return \"copy %1,22\;.CALL\\tARGW0=GR\;bl $$dyncall,31\;copy 31,2\";
else
{
output_arg_descriptor (insn);
return \"bl %1,2%#\";
}
}"
[(set_attr "type" "dyncall,call")
(set_attr "length" "3,1")])
(define_insn "nop"
[(const_int 0)]
""
"nop")
;;; Hope this is only within a function...
(define_insn "indirect_jump"
[(set (pc) (match_operand:SI 0 "register_operand" "r"))]
""
"bv%* 0(%0)"
[(set_attr "type" "branch")])
(define_insn "extzv"
[(set (match_operand:SI 0 "register_operand" "=r")
(zero_extract:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "uint5_operand" "")
(match_operand:SI 3 "uint5_operand" "")))]
""
"extru %1,%3+%2-1,%2,%0")
(define_insn "extv"
[(set (match_operand:SI 0 "register_operand" "=r")
(sign_extract:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "uint5_operand" "")
(match_operand:SI 3 "uint5_operand" "")))]
""
"extrs %1,%3+%2-1,%2,%0")
(define_insn "insv"
[(set (zero_extract:SI (match_operand:SI 0 "register_operand" "+r,r")
(match_operand:SI 1 "uint5_operand" "")
(match_operand:SI 2 "uint5_operand" ""))
(match_operand:SI 3 "arith5_operand" "r,L"))]
""
"@
dep %3,%2+%1-1,%1,%0
depi %3,%2+%1-1,%1,%0")
;; Optimize insertion of const_int values of type 1...1xxxx.
(define_insn ""
[(set (zero_extract:SI (match_operand:SI 0 "register_operand" "+r")
(match_operand:SI 1 "uint5_operand" "")
(match_operand:SI 2 "uint5_operand" ""))
(match_operand:SI 3 "const_int_operand" ""))]
"(INTVAL (operands[3]) & 0x10) != 0 &&
(~INTVAL (operands[3]) & (1L << INTVAL (operands[1])) - 1 & ~0xf) == 0"
"*
{
operands[3] = gen_rtx (CONST_INT, VOIDmode, (INTVAL (operands[3]) & 0xf) - 0x10);
return \"depi %3,%2+%1-1,%1,%0\";
}")
;; This insn is used for some loop tests, typically loops reversed when
;; strength reduction is used. It is actually created when the instruction
;; combination phase combines the special loop test. Since this insn
;; is both a jump insn and has an output, it must deal with it's own
;; reloads, hence the `m' constraints. The `!' constraints direct reload
;; to not choose the register alternatives in the event a reload is needed.
(define_insn "decrement_and_branch_until_zero"
[(set (pc)
(if_then_else
(ge (plus:SI (match_operand:SI 0 "register_operand" "+!r,m")
(const_int -1))
(const_int 0))
(label_ref (match_operand 1 "" ""))
(pc)))
(set (match_dup 0)
(plus:SI (match_dup 0)
(const_int -1)))
(clobber (match_scratch:SI 2 "=X,r"))]
"find_reg_note (insn, REG_NONNEG, 0)"
"*
{
if (which_alternative == 0)
if (get_attr_length (insn) == 1)
return \"addib,>= -1,%0,%1%#\";
else
return \"addi,< -1,%0,%0\;bl %1,0%#\";
else
{
output_asm_insn (\"ldw %0,%2\;ldo -1(%2),%2\;stw %2,%0\", operands);
if (get_attr_length (insn) == 4)
return \"comb,> 0,%2,%1%#\";
else
return \"comclr,<= 0,%2,0\;bl %1,0%#\";
}
}"
[(set_attr "type" "cbranch")
(set (attr "length")
(if_then_else (eq (symbol_ref "which_alternative") (const_int 0))
(if_then_else (lt (abs (minus (match_dup 1)
(plus (pc) (const_int 2))))
(const_int 1023))
(const_int 1)
(const_int 2))
(if_then_else (lt (match_dup 1)
(pc))
(if_then_else
(lt (abs (minus (match_dup 1)
(plus (pc)
(const_int 5))))
(const_int 1023))
(const_int 4)
(const_int 5))
(if_then_else
(lt (abs (minus (match_dup 1)
(plus (pc)
(const_int 2))))
(const_int 1023))
(const_int 4)
(const_int 5)))))])
;;- Local variables:
;;- mode:emacs-lisp
;;- comment-start: ";;- "
;;- eval: (set-syntax-table (copy-sequence (syntax-table)))
;;- eval: (modify-syntax-entry ?[ "(]")
;;- eval: (modify-syntax-entry ?] ")[")
;;- eval: (modify-syntax-entry ?{ "(}")
;;- eval: (modify-syntax-entry ?} "){")
;;- End: