home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Fresh Fish 7
/
FreshFishVol7.bin
/
bbs
/
gnu
/
gcc-2.3.3-src.lha
/
GNU
/
src
/
amiga
/
gcc-2.3.3
/
config
/
a29k.md
< prev
next >
Wrap
Text File
|
1994-02-06
|
86KB
|
2,909 lines
;;- Machine description for AMD Am29000 for GNU C compiler
;; Copyright (C) 1991, 1992 Free Software Foundation, Inc.
;; Contributed by Richard Kenner (kenner@nyu.edu)
;; This file is part of GNU CC.
;; GNU CC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.
;; GNU CC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU CC; see the file COPYING. If not, write to
;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
;;- See file "rtl.def" for documentation on define_insn, match_*, et. al.
;; The insns in this file are presented in the same order as the AMD 29000
;; User's Manual (i.e., alphabetical by machine op-code).
;;
;; DEFINE_EXPAND's are located near the first occurrence of the major insn
;; that they generate.
;; The only attribute we have is the type. We only care about calls, branches,
;; loads, stores, floating-point operations, and multi-word insns.
;; Everything else is miscellaneous.
(define_attr "type"
"call,branch,load,store,fadd,fmul,fam,fdiv,fsqrt,dmul,dam,ddiv,dsqrt,multi,misc"
(const_string "misc"))
;; ASM insns cannot go into a delay slot, so call them "multi".
(define_asm_attributes [(set_attr "type" "multi")])
(define_attr "in_delay_slot" "yes,no"
(if_then_else (eq_attr "type" "call,branch,multi") (const_string "no")
(const_string "yes")))
;; Branch and call insns require a single delay slot. Annulling is not
;; supported.
(define_delay (eq_attr "type" "call,branch")
[(eq_attr "in_delay_slot" "yes") (nil) (nil)])
;; Define the function unit usages. We first define memory as a unit.
(define_function_unit "memory" 1 0 (eq_attr "type" "load") 6 5
[(eq_attr "type" "load")])
(define_function_unit "memory" 1 0 (eq_attr "type" "load") 6 6
[(eq_attr "type" "store")])
(define_function_unit "memory" 1 0 (eq_attr "type" "store") 1 0)
;; Now define the function units for the floating-point support. Most
;; units are pipelined and can accept an input every cycle.
;;
;; Note that we have an inaccuracy here. If a fmac insn is issued, followed
;; 2 cycles later by a fadd, there will be a conflict for the floating
;; adder that we can't represent. Also, all insns will conflict for the
;; floating-point rounder. It isn't clear how to represent this.
(define_function_unit "multiplier" 1 0 (eq_attr "type" "fmul") 3 0)
(define_function_unit "multiplier" 1 0 (eq_attr "type" "dmul") 6 4)
(define_function_unit "multiplier" 1 0 (eq_attr "type" "fam") 6 0)
(define_function_unit "multiplier" 1 0 (eq_attr "type" "dam") 9 4)
(define_function_unit "adder" 1 0 (eq_attr "type" "fadd,fam,dam") 3 0)
(define_function_unit "divider" 1 0 (eq_attr "type" "fdiv") 11 10)
(define_function_unit "divider" 1 0 (eq_attr "type" "fsqrt") 28 27)
(define_function_unit "divider" 1 0 (eq_attr "type" "ddiv") 18 17)
(define_function_unit "divider" 1 0 (eq_attr "type" "dsqrt") 57 56)
;; ADD
(define_insn "addsi3"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(plus:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r")
(match_operand:SI 2 "add_operand" "rI,N")))]
""
"@
add %0,%1,%2
sub %0,%1,%n2")
(define_insn "adddi3"
[(set (match_operand:DI 0 "gpc_reg_operand" "=r")
(plus:DI (match_operand:DI 1 "gpc_reg_operand" "%r")
(match_operand:DI 2 "gpc_reg_operand" "r")))]
""
"add %L0,%L1,%L2\;addc %0,%1,%2"
[(set_attr "type" "multi")])
;; AND/ANDN
(define_insn "andsi3"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(and:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r")
(match_operand:SI 2 "and_operand" "rI,K")))]
""
"@
and %0,%1,%2
andn %0,%1,%C2")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(and:SI (not:SI (match_operand:SI 1 "srcb_operand" "rI"))
(match_operand:SI 2 "gpc_reg_operand" "r")))]
""
"andn %0,%2,%1")
;; CALLI
;;
;; Start with a subroutine to write out CLOBBERs starting at lr2 up to,
;; but not including, the next parameter register. If operand[0] is null,
;; it means that all the argument registers have been used.
(define_expand "clobbers_to"
[(clobber (match_operand:SI 0 "" ""))]
""
"
{
int i;
int high_regno;
if (operands[0] == 0)
high_regno = R_LR (18);
else if (GET_CODE (operands[0]) != REG || REGNO (operands[0]) < R_LR (0)
|| REGNO (operands[0]) > R_LR (18))
abort ();
else
high_regno = REGNO (operands[0]);
for (i = R_LR (2); i < high_regno; i++)
emit_insn (gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, SImode, i)));
DONE;
}")
;; We indicate that LR0 is clobbered in the CALL_INSN itself. Otherwise,
;; reorg will think it is just clobbered by the called function.
(define_expand "call"
[(parallel [(call (match_operand:SI 0 "" "")
(match_operand 1 "" ""))
(clobber (scratch:SI))])
(match_operand 2 "" "")]
""
"
{
if (GET_CODE (operands[0]) != MEM)
abort ();
/* We tell here whether this is a recursive call, since this insn may
later be inlined into another function. */
if (! TARGET_SMALL_MEMORY
&& GET_CODE (XEXP (operands[0], 0)) == SYMBOL_REF)
operands[0] = gen_rtx (MEM, SImode,
force_reg (Pmode, XEXP (operands[0], 0)));
operands[2] = gen_clobbers_to (operands[2]);
}")
(define_expand "call_value"
[(parallel [(set (match_operand:SI 0 "gpc_reg_operand" "")
(call (match_operand:SI 1 "" "")
(match_operand 2 "" "")))
(clobber (scratch:SI))])
(match_operand 3 "" "")]
""
"
{
if (GET_CODE (operands[1]) != MEM)
abort ();
/* We tell here whether this is a recursive call, since this insn may
later be inlined into another function. */
if (! TARGET_SMALL_MEMORY
&& GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF)
operands[1] = gen_rtx (MEM, SImode,
force_reg (Pmode, XEXP (operands[1], 0)));
operands[3] = gen_clobbers_to (operands[3]);
}")
(define_insn ""
[(call (match_operand:SI 0 "memory_operand" "m")
(match_operand 1 "" ""))
(clobber (match_scratch:SI 2 "=&l"))]
"GET_CODE (XEXP (operands[0], 0)) != CONST_INT"
"calli lr0,%0%#"
[(set_attr "type" "call")])
(define_insn ""
[(call (mem:SI (match_operand:SI 0 "call_operand" "i"))
(match_operand:SI 1 "general_operand" "g"))
(clobber (match_scratch:SI 2 "=&l"))]
""
"call lr0,%F0"
[(set_attr "type" "call")])
(define_insn ""
[(set (match_operand 0 "gpc_reg_operand" "=r")
(call (match_operand:SI 1 "memory_operand" "m")
(match_operand 2 "" "")))
(clobber (match_scratch:SI 3 "=&l"))]
"GET_CODE (XEXP (operands[1], 0)) != CONST_INT"
"calli lr0,%1%#"
[(set_attr "type" "call")])
(define_insn ""
[(set (match_operand 0 "gpc_reg_operand" "=r")
(call (mem:SI (match_operand:SI 1 "call_operand" "i"))
(match_operand:SI 2 "general_operand" "g")))
(clobber (match_scratch:SI 3 "=&l"))]
""
"call lr0,%F1"
[(set_attr "type" "call")])
(define_expand "probe"
[(call (mem:SI (symbol_ref:SI "_msp_check"))
(const_int 1))]
"TARGET_STACK_CHECK"
"")
;; This is used for internal routine calls via TPC. Currently used only
;; in probe, above.
(define_insn ""
[(call (mem:SI (match_operand:SI 0 "immediate_operand" "s"))
(const_int 1))]
""
"call %*,%0"
[(set_attr "type" "call")])
;; CONST, CONSTH, CONSTN
;;
;; Many of these are generated from move insns.
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(and:SI (match_operand:SI 1 "immediate_operand" "i")
(const_int 65535)))]
""
"const %0,%1")
(define_insn ""
[(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r")
(const_int 16)
(match_operand:SI 1 "const_0_operand" ""))
(ashiftrt:SI (match_operand:SI 2 "immediate_operand" "i")
(const_int 16)))]
""
"consth %0,%2")
(define_insn ""
[(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r")
(const_int 16)
(match_operand:SI 1 "const_0_operand" ""))
(match_operand:SI 2 "cint_16_operand" "J"))]
""
"consth %0,%m2")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ior:SI (zero_extend:SI (match_operand:HI 1 "gpc_reg_operand" "0"))
(match_operand:SI 2 "const_int_operand" "n")))]
"(INTVAL (operands[2]) & 0xffff) == 0"
"consth %0,%2")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ior:SI (zero_extend:SI (match_operand:HI 1 "gpc_reg_operand" "0"))
(and:SI (match_operand:SI 2 "immediate_operand" "i")
(const_int -65536))))]
""
"consth %0,%2")
;; CONVERT
(define_insn "fix_truncsfsi2"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(fix:SI (match_operand:SF 1 "register_operand" "r")))]
""
"convert %0,%1,0,3,0,1")
(define_insn "fix_truncdfsi2"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(fix:SI (match_operand:DF 1 "register_operand" "r")))]
""
"convert %0,%1,0,3,0,2")
(define_insn "fixuns_truncsfsi2"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(unsigned_fix:SI (match_operand:SF 1 "register_operand" "r")))]
""
"convert %0,%1,1,3,0,1")
(define_insn "fixuns_truncdfsi2"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(unsigned_fix:SI (match_operand:DF 1 "register_operand" "r")))]
""
"convert %0,%1,1,3,0,2")
(define_insn "truncdfsf2"
[(set (match_operand:SF 0 "register_operand" "=r")
(float_truncate:SF (match_operand:DF 1 "register_operand" "r")))]
""
"convert %0,%1,0,4,1,2")
(define_insn "extendsfdf2"
[(set (match_operand:DF 0 "register_operand" "=r")
(float_extend:DF (match_operand:SF 1 "register_operand" "r")))]
""
"convert %0,%1,0,4,2,1")
(define_insn "floatsisf2"
[(set (match_operand:SF 0 "register_operand" "=r")
(float:SF (match_operand:SI 1 "gpc_reg_operand" "r")))]
""
"convert %0,%1,0,4,1,0")
(define_insn "floatsidf2"
[(set (match_operand:DF 0 "register_operand" "=r")
(float:DF (match_operand:SI 1 "gpc_reg_operand" "r")))]
""
"convert %0,%1,0,4,2,0")
(define_insn "floatunssisf2"
[(set (match_operand:SF 0 "register_operand" "=r")
(unsigned_float:SF (match_operand:SI 1 "gpc_reg_operand" "r")))]
""
"convert %0,%1,1,4,1,0")
(define_insn "floatunssidf2"
[(set (match_operand:DF 0 "register_operand" "=r")
(unsigned_float:DF (match_operand:SI 1 "gpc_reg_operand" "r")))]
""
"convert %0,%1,1,4,2,0")
;; CPxxx, DEQ, DGT, DGE, FEQ, FGT, FGE
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(match_operator 3 "comparison_operator"
[(match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "srcb_operand" "rI")]))]
""
"cp%J3 %0,%1,%2")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(match_operator 3 "fp_comparison_operator"
[(match_operand:SF 1 "register_operand" "r")
(match_operand:SF 2 "register_operand" "r")]))]
""
"f%J3 %0,%1,%2"
[(set_attr "type" "fadd")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(match_operator 3 "fp_comparison_operator"
[(match_operand:DF 1 "register_operand" "r")
(match_operand:DF 2 "register_operand" "r")]))]
""
"d%J3 %0,%1,%2"
[(set_attr "type" "fadd")])
;; DADD
(define_expand "adddf3"
[(set (match_operand:DF 0 "register_operand" "")
(plus:DF (match_operand:DF 1 "register_operand" "")
(match_operand:DF 2 "register_operand" "")))]
""
"")
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=r")
(plus:DF (match_operand:DF 1 "register_operand" "%r")
(match_operand:DF 2 "register_operand" "r")))]
"! TARGET_29050 "
"dadd %0,%1,%2"
[(set_attr "type" "fadd")])
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=r,a")
(plus:DF (match_operand:DF 1 "register_operand" "%r,r")
(match_operand:DF 2 "register_operand" "r,0")))]
"TARGET_29050"
"@
dadd %0,%1,%2
dmac 8,%0,%1,%1"
[(set_attr "type" "fadd,dam")])
;; DDIV
(define_insn "divdf3"
[(set (match_operand:DF 0 "register_operand" "=r")
(div:DF (match_operand:DF 1 "register_operand" "=r")
(match_operand:DF 2 "register_operand" "r")))]
""
"ddiv %0,%1,%2"
[(set_attr "type" "ddiv")])
;; DIVIDE
;;
;; We must set Q to the sign extension of the dividend first. For MOD, we
;; must get the remainder from Q.
;;
;; For divmod: operand 1 is divided by operand 2; quotient goes to operand
;; 0 and remainder to operand 3.
(define_expand "divmodsi4"
[(set (match_dup 4)
(ashiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "")
(const_int 31)))
(parallel [(set (match_operand:SI 0 "gpc_reg_operand" "")
(div:SI (match_dup 1)
(match_operand:SI 2 "gpc_reg_operand" "")))
(set (match_operand:SI 3 "gpc_reg_operand" "")
(mod:SI (match_dup 1)
(match_dup 2)))
(use (match_dup 4))])]
""
"
{
operands[4] = gen_reg_rtx (SImode);
}")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(div:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "gpc_reg_operand" "r")))
(set (match_operand:SI 3 "register_operand" "=q")
(mod:SI (match_dup 1)
(match_dup 2)))
(use (match_operand:SI 4 "register_operand" "3"))]
""
"divide %0,%1,%2")
;; DIVIDU
;;
;; Similar to DIVIDE.
(define_expand "udivmodsi4"
[(parallel [(set (match_operand:SI 0 "gpc_reg_operand" "")
(udiv:SI (match_operand:SI 1 "gpc_reg_operand" "")
(match_operand:SI 2 "gpc_reg_operand" "")))
(set (match_operand:SI 3 "gpc_reg_operand" "")
(umod:SI (match_dup 1)
(match_dup 2)))
(use (const_int 0))])]
""
"")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(udiv:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:SI 2 "gpc_reg_operand" "r")))
(set (match_operand:SI 3 "register_operand" "=q")
(umod:SI (match_dup 1)
(match_dup 2)))
(use (match_operand:SI 4 "const_int_operand" "3"))]
""
"dividu %0,%1,%2")
;; DMAC/DMSM
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=a,*r")
(plus:DF (mult:DF (match_operand:DF 1 "register_operand" "%r,A")
(match_operand:DF 2 "register_operand" "r,r"))
(match_operand:DF 3 "register_operand" "0,*r")))]
"TARGET_29050"
"@
dmac 0,%0,%1,%2
dmsm %0,%2,%3"
[(set_attr "type" "dam")])
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=a")
(plus:DF (mult:DF (neg:DF (match_operand:DF 1 "register_operand" "r"))
(match_operand:DF 2 "register_operand" "r"))
(match_operand:DF 3 "register_operand" "0")))]
"TARGET_29050"
"dmac 1,%0,%2,%1"
[(set_attr "type" "dam")])
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=a")
(minus:DF (mult:DF (match_operand:DF 1 "register_operand" "%r")
(match_operand:DF 2 "register_operand" "r"))
(match_operand:DF 3 "register_operand" "0")))]
"TARGET_29050"
"dmac 2,%0,%1,%2"
[(set_attr "type" "dam")])
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=a")
(minus:DF (mult:DF (match_operand:DF 1 "register_operand" "r")
(neg:DF (match_operand:DF 2 "register_operand" "r")))
(match_operand:DF 3 "register_operand" "0")))]
"TARGET_29050"
"dmac 3,%0,%1,%2"
[(set_attr "type" "dam")])
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=a")
(mult:DF (neg:DF (match_operand:DF 1 "register_operand" "r"))
(match_operand:DF 2 "register_operand" "r")))]
"TARGET_29050"
"dmac 5,%0,%2,%1"
[(set_attr "type" "dam")])
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=a")
(minus:DF (neg:DF (match_operand:DF 1 "register_operand" "r"))
(match_operand:DF 2 "register_operand" "0")))]
"TARGET_29050"
"dmac 11,%0,%1,%1"
[(set_attr "type" "dam")])
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=a")
(neg:DF (plus:DF (match_operand:DF 1 "register_operand" "%r")
(match_operand:DF 2 "register_operand" "0"))))]
"TARGET_29050"
"dmac 11,%0,%1,%1"
[(set_attr "type" "dam")])
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=r,r,a")
(neg:DF (match_operand:DF 1 "register_operand" "0,r,r")))
(clobber (match_scratch:SI 2 "=&r,&r,X"))]
"TARGET_29050"
"@
cpeq %2,gr1,gr1\;xor %0,%1,%2
cpeq %2,gr1,gr1\;xor %0,%1,%2\;sll %L0,%L1,0
dmac 13,%0,%1,%1"
[(set_attr "type" "multi,multi,dam")])
;; DMUL
(define_expand "muldf3"
[(set (match_operand:DF 0 "register_operand" "")
(mult:DF (match_operand:DF 1 "register_operand" "")
(match_operand:DF 2 "register_operand" "")))]
""
"")
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=r")
(mult:DF (match_operand:DF 1 "register_operand" "%r")
(match_operand:DF 2 "register_operand" "r")))]
"! TARGET_29050"
"dmul %0,%1,%2"
[(set_attr "type" "dmul")])
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=r,a")
(mult:DF (match_operand:DF 1 "register_operand" "%r,r")
(match_operand:DF 2 "register_operand" "r,r")))]
"TARGET_29050"
"@
dmul %0,%1,%2
dmac 4,%0,%1,%2"
[(set_attr "type" "dmul,dam")])
;; DSUB
(define_expand "subdf3"
[(set (match_operand:DF 0 "register_operand" "=r")
(minus:DF (match_operand:DF 1 "register_operand" "r")
(match_operand:DF 2 "register_operand" "r")))]
""
"")
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=r")
(minus:DF (match_operand:DF 1 "register_operand" "r")
(match_operand:DF 2 "register_operand" "r")))]
"! TARGET_29050"
"dsub %0,%1,%2"
[(set_attr "type" "fadd")])
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=r,a,a")
(minus:DF (match_operand:DF 1 "register_operand" "r,0,r")
(match_operand:DF 2 "register_operand" "r,r,0")))]
"TARGET_29050"
"@
dsub %0,%1,%2
dmac 9,%0,%2,%2
dmac 10,%0,%1,%1"
[(set_attr "type" "fadd,dam,dam")])
;; EXBYTE
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ior:SI (and:SI (match_operand:SI 1 "srcb_operand" "rI")
(const_int -256))
(zero_extract:SI (match_operand:SI 2 "gpc_reg_operand" "r")
(const_int 8)
(ashift:PSI
(match_operand:PSI 3 "register_operand" "b")
(const_int 3)))))]
""
"exbyte %0,%2,%1")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(zero_extract:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(const_int 8)
(ashift:PSI
(match_operand:PSI 2 "register_operand" "b")
(const_int 3))))]
""
"exbyte %0,%1,0")
(define_insn ""
[(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r")
(const_int 8)
(match_operand:PSI 1 "const_24_operand" ""))
(zero_extract:SI (match_operand:SI 2 "gpc_reg_operand" "r")
(const_int 8)
(ashift:PSI
(match_operand:PSI 3 "register_operand" "b")
(const_int 3))))]
""
"exbyte %0,%2,%0")
(define_expand "extzv"
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(zero_extract:SI (match_operand:SI 1 "gpc_reg_operand" "")
(match_operand:SI 2 "general_operand" "")
(match_operand:SI 3 "general_operand" "")))]
""
"
{
int size, pos;
if (GET_CODE (operands[2]) != CONST_INT
|| GET_CODE (operands[3]) != CONST_INT)
FAIL;
size = INTVAL (operands[2]);
pos = INTVAL (operands[3]);
/* Can't do this unless a byte extraction. If extracting the high
or low byte, don't do this because a shift or AND is shorter.
Don't do 16-bit extracts, since the only two are the high and low
ends, and it is faster to do them with CONSTH and SRL. */
if (size != 8 || (pos != 8 && pos != 16))
FAIL;
operands[3] = gen_rtx (ASHIFT, PSImode,
force_reg (PSImode, GEN_INT (pos / 8)),
GEN_INT (3));
}")
;; EXHW
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ior:SI (and:SI (match_operand:SI 1 "srcb_operand" "rI")
(const_int -65536))
(zero_extract:SI (match_operand:SI 2 "gpc_reg_operand" "r")
(const_int 16)
(ashift:PSI
(match_operand:PSI 3 "register_operand" "b")
(const_int 3)))))]
""
"exhw %0,%2,%1")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(zero_extract:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(const_int 16)
(ashift:PSI
(match_operand:PSI 2 "register_operand" "b")
(const_int 3))))]
""
"exhw %0,%1,0")
(define_insn ""
[(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r")
(const_int 16)
(match_operand:PSI 1 "const_16_operand" ""))
(zero_extract:SI (match_operand:SI 2 "gpc_reg_operand" "r")
(const_int 16)
(ashift:PSI
(match_operand:PSI 3 "register_operand" "b")
(const_int 3))))]
""
"exhw %0,%2,%0")
;; EXHWS
;;
;; This is probably unused. The high-order 16-bits are obtained with an SRA
;; insn. The low-order 16 bits are a sign-extend, which is a pair of
;; shifts. Setting BP followed by the insn is equivalent, so we don't
;; bother going to any trouble to generate this insn.
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(sign_extract:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(const_int 16)
(ashift:PSI
(match_operand:PSI 2 "register_operand" "b")
(const_int 3))))]
""
"exhws %0,%1")
;; EXTRACT
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:PSI 2 "register_operand" "f")))]
""
"extract %0,%1,%1")
(define_expand "rotlsi3"
[(set (match_dup 3)
(match_operand:SI 2 "gpc_reg_or_immediate_operand" ""))
(set (match_operand:SI 0 "gpc_reg_operand" "")
(rotate:SI (match_operand:SI 1 "gpc_reg_operand" "")
(match_dup 3)))]
""
"
{ operands[2] = gen_lowpart (PSImode, operands[2]);
operands[3] = gen_reg_rtx (PSImode);
}")
;; It would be nice to be able to have a define_split corresponding to the
;; above, but there is no way to tell combine we need a PSImode temporary.
;; If we put a (clobber (scratch:PSI)) there, combine would merge the above
;; two insns. This is bad because it then thinks only one insn is needed.
;; FADD
(define_expand "addsf3"
[(set (match_operand:SF 0 "register_operand" "")
(plus:SF (match_operand:SF 1 "register_operand" "")
(match_operand:SF 2 "register_operand" "")))]
""
"")
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=r")
(plus:SF (match_operand:SF 1 "register_operand" "%r")
(match_operand:SF 2 "register_operand" "r")))]
"! TARGET_29050"
"fadd %0,%1,%2"
[(set_attr "type" "fadd")])
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=r,a")
(plus:SF (match_operand:SF 1 "register_operand" "%r,r")
(match_operand:SF 2 "register_operand" "r,0")))]
"TARGET_29050"
"@
fadd %0,%1,%2
fmac 8,%0,%1,%1"
[(set_attr "type" "fadd,fam")])
;; FDIV
(define_insn "divsf3"
[(set (match_operand:SF 0 "register_operand" "=r")
(div:SF (match_operand:SF 1 "register_operand" "=r")
(match_operand:SF 2 "register_operand" "r")))]
""
"fdiv %0,%1,%2"
[(set_attr "type" "fdiv")])
;; FDMUL
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=r")
(mult:DF (float_extend:DF (match_operand:SF 1 "register_operand" "%r"))
(float_extend:DF (match_operand:SF 2 "register_operand" "r"))))]
""
"fdmul %0,%1,%2")
;; FMAC/FMSM
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=a,*r")
(plus:SF (mult:SF (match_operand:SF 1 "register_operand" "%r,A")
(match_operand:SF 2 "register_operand" "r,r"))
(match_operand:SF 3 "register_operand" "0,*r")))]
"TARGET_29050"
"@
fmac 0,%0,%1,%2
fmsm %0,%2,%3"
[(set_attr "type" "fam")])
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=a")
(plus:SF (mult:SF (neg:SF (match_operand:SF 1 "register_operand" "r"))
(match_operand:SF 2 "register_operand" "r"))
(match_operand:SF 3 "register_operand" "0")))]
"TARGET_29050"
"fmac 1,%0,%2,%1"
[(set_attr "type" "fam")])
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=a")
(minus:SF (mult:SF (match_operand:SF 1 "register_operand" "%r")
(match_operand:SF 2 "register_operand" "r"))
(match_operand:SF 3 "register_operand" "0")))]
"TARGET_29050"
"fmac 2,%0,%1,%2"
[(set_attr "type" "fam")])
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=a")
(minus:SF (mult:SF (neg:SF (match_operand:SF 1 "register_operand" "r"))
(match_operand:SF 2 "register_operand" "r"))
(match_operand:SF 3 "register_operand" "0")))]
"TARGET_29050"
"fmac 3,%0,%2,%1"
[(set_attr "type" "fam")])
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=a")
(mult:SF (neg:SF (match_operand:SF 1 "register_operand" "r"))
(match_operand:SF 2 "register_operand" "r")))]
"TARGET_29050"
"fmac 5,%0,%2,%1"
[(set_attr "type" "fam")])
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=a")
(minus:SF (neg:SF (match_operand:SF 1 "register_operand" "%r"))
(match_operand:SF 2 "register_operand" "0")))]
"TARGET_29050"
"fmac 11,%0,%1,%1"
[(set_attr "type" "fam")])
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=a")
(neg:SF (plus:SF (match_operand:SF 1 "register_operand" "%r")
(match_operand:SF 2 "register_operand" "0"))))]
"TARGET_29050"
"fmac 11,%0,%1,%1"
[(set_attr "type" "fam")])
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=r,a")
(neg:SF (match_operand:SF 1 "register_operand" "r,r")))
(clobber (match_scratch:SI 2 "=&r,X"))]
"TARGET_29050"
"@
cpeq %2,gr1,gr1\;xor %0,%1,%2
fmac 13,%0,%1,%1"
[(set_attr "type" "multi,fam")])
;; FMUL
(define_expand "mulsf3"
[(set (match_operand:SF 0 "register_operand" "")
(mult:SF (match_operand:SF 1 "register_operand" "")
(match_operand:SF 2 "register_operand" "")))]
""
"")
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=r")
(mult:SF (match_operand:SF 1 "register_operand" "%r")
(match_operand:SF 2 "register_operand" "r")))]
"! TARGET_29050"
"fmul %0,%1,%2"
[(set_attr "type" "fmul")])
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=r,a")
(mult:SF (match_operand:SF 1 "register_operand" "%r,r")
(match_operand:SF 2 "register_operand" "r,r")))]
"TARGET_29050"
"@
fmul %0,%1,%2
fmac 4,%0,%1,%2"
[(set_attr "type" "fmul,fam")])
;; FSUB
(define_expand "subsf3"
[(set (match_operand:SF 0 "register_operand" "")
(minus:SF (match_operand:SF 1 "register_operand" "")
(match_operand:SF 2 "register_operand" "")))]
""
"")
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=r")
(minus:SF (match_operand:SF 1 "register_operand" "r")
(match_operand:SF 2 "register_operand" "r")))]
"! TARGET_29050"
"fsub %0,%1,%2"
[(set_attr "type" "fadd")])
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=r,a,a")
(minus:SF (match_operand:SF 1 "register_operand" "r,0,r")
(match_operand:SF 2 "register_operand" "r,r,0")))]
"TARGET_29050"
"@
fsub %0,%1,%2
fmac 9,%0,%2,%2
fmac 10,%0,%1,%1"
[(set_attr "type" "fadd,fam,fam")])
;; INBYTE
(define_insn ""
[(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r")
(const_int 8)
(ashift:PSI
(match_operand:PSI 2 "register_operand" "b")
(const_int 3)))
(match_operand:SI 1 "srcb_operand" "rI"))]
""
"inbyte %0,%0,%1")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ior:SI (and:SI
(not:SI
(ashift:SI (const_int 255)
(ashift:PSI
(match_operand:PSI 3 "register_operand" "b")
(const_int 3))))
(match_operand:SI 1 "gpc_reg_operand" "r"))
(ashift:SI (zero_extend:SI
(match_operand:QI 2 "srcb_operand" "rI"))
(ashift:PSI (match_dup 3) (const_int 3)))))]
""
"inbyte %0,%1,%2")
;; INHW
(define_insn ""
[(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r")
(const_int 16)
(ashift:PSI
(match_operand:PSI 2 "register_operand" "b")
(const_int 3)))
(match_operand:SI 1 "srcb_operand" "rI"))]
""
"inhw %0,%0,%1")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ior:SI (and:SI
(not:SI
(ashift:SI (const_int 65535)
(ashift:PSI
(match_operand:PSI 3 "register_operand" "b")
(const_int 3))))
(match_operand:SI 1 "gpc_reg_operand" "r"))
(ashift:SI (zero_extend:SI
(match_operand:HI 2 "srcb_operand" "rI"))
(ashift:PSI (match_dup 3) (const_int 3)))))]
""
"inhw %0,%1,%2")
(define_expand "insv"
[(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "")
(match_operand:SI 1 "general_operand" "")
(match_operand:SI 2 "general_operand" ""))
(match_operand:SI 3 "srcb_operand" ""))]
""
"
{
int size, pos;
if (GET_CODE (operands[1]) != CONST_INT
|| GET_CODE (operands[2]) != CONST_INT)
FAIL;
size = INTVAL (operands[1]);
pos = INTVAL (operands[2]);
if ((size != 8 && size != 16) || pos % size != 0)
FAIL;
operands[2] = gen_rtx (ASHIFT, PSImode,
force_reg (PSImode, GEN_INT (pos / 8)),
GEN_INT (3));
}")
;; LOAD (also used by move insn).
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(mem:SI (and:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(const_int -4))))
(set (match_operand:PSI 2 "register_operand" "=b")
(truncate:PSI (match_dup 1)))]
"! TARGET_DW_ENABLE"
"load 0,16,%0,%1"
[(set_attr "type" "load")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(zero_extend:SI (match_operand:QI 1 "memory_operand" "m")))]
"TARGET_DW_ENABLE"
"load 0,1,%0,%1"
[(set_attr "type" "load")])
(define_insn ""
[(set (match_operand:HI 0 "gpc_reg_operand" "=r")
(zero_extend:HI (match_operand:QI 1 "memory_operand" "m")))]
"TARGET_DW_ENABLE"
"load 0,1,%0,%1"
[(set_attr "type" "load")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(zero_extend:SI (match_operand:HI 1 "memory_operand" "m")))]
"TARGET_DW_ENABLE"
"load 0,2,%0,%1"
[(set_attr "type" "load")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(sign_extend:SI (match_operand:QI 1 "memory_operand" "m")))
(clobber (match_scratch:PSI 2 "=&b"))]
"TARGET_DW_ENABLE"
"load 0,17,%0,%1"
[(set_attr "type" "load")])
(define_insn ""
[(set (match_operand:HI 0 "gpc_reg_operand" "=r")
(sign_extend:HI (match_operand:QI 1 "memory_operand" "m")))
(clobber (match_scratch:PSI 2 "=&b"))]
"TARGET_DW_ENABLE"
"load 0,17,%0,%1"
[(set_attr "type" "load")])
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(sign_extend:SI (match_operand:HI 1 "memory_operand" "m")))
(clobber (match_scratch:PSI 2 "=&b"))]
"TARGET_DW_ENABLE"
"load 0,18,%0,%1"
[(set_attr "type" "load")])
;; LOADM
(define_expand "load_multiple"
[(set (match_dup 4)
(match_operand:PSI 2 "const_int_operand" ""))
(match_par_dup 3 [(set (match_operand:SI 0 "" "")
(match_operand:SI 1 "" ""))])]
""
"
{
int regno;
int count;
rtx from;
int i;
/* Support only loading a constant number of hard registers from memory. */
if (GET_CODE (operands[2]) != CONST_INT
|| operands[2] == const1_rtx
|| GET_CODE (operands[1]) != MEM
|| GET_CODE (operands[0]) != REG
|| REGNO (operands[0]) >= FIRST_PSEUDO_REGISTER)
FAIL;
count = INTVAL (operands[2]);
regno = REGNO (operands[0]);
/* CR gets set to the number of registers minus one. */
operands[2] = GEN_INT(count - 1);
operands[3] = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (count + 2));
from = memory_address (SImode, XEXP (operands[1], 0));
XVECEXP (operands[3], 0, 0) = gen_rtx (SET, VOIDmode,
gen_rtx (REG, SImode, regno),
gen_rtx (MEM, SImode, from));
operands[4] = gen_reg_rtx (PSImode);
XVECEXP (operands[3], 0, 1) = gen_rtx (USE, VOIDmode, operands[4]);
XVECEXP (operands[3], 0, 2) = gen_rtx (CLOBBER, VOIDmode, operands[4]);
for (i = 1; i < count; i++)
XVECEXP (operands[3], 0, i + 2)
= gen_rtx (SET, VOIDmode, gen_rtx (REG, SImode, regno + i),
gen_rtx (MEM, SImode, plus_constant (from, i * 4)));
}")
;; Indicate that CR is used and is then clobbered.
(define_insn ""
[(set (match_operand 0 "gpc_reg_operand" "=r")
(match_operand 1 "memory_operand" "m"))
(use (match_operand:PSI 2 "register_operand" "+c"))
(clobber (match_dup 2))]
"GET_MODE (operands[0]) == GET_MODE (operands[1])
&& GET_MODE_SIZE (GET_MODE (operands[0])) > UNITS_PER_WORD
&& ! TARGET_29050"
"loadm 0,0,%0,%1"
[(set_attr "type" "load")])
(define_insn ""
[(set (match_operand 0 "gpc_reg_operand" "=&r")
(match_operand 1 "memory_operand" "m"))
(use (match_operand:PSI 2 "register_operand" "+c"))
(clobber (match_dup 2))]
"GET_MODE (operands[0]) == GET_MODE (operands[1])
&& GET_MODE_SIZE (GET_MODE (operands[0])) > UNITS_PER_WORD
&& TARGET_29050"
"loadm 0,0,%0,%1"
[(set_attr "type" "load")])
(define_insn ""
[(match_parallel 0 "load_multiple_operation"
[(set (match_operand:SI 1 "gpc_reg_operand" "=r")
(match_operand:SI 2 "memory_operand" "m"))
(use (match_operand:PSI 3 "register_operand" "+c"))
(clobber (match_dup 3))])]
"! TARGET_29050"
"loadm 0,0,%1,%2"
[(set_attr "type" "load")])
(define_insn ""
[(match_parallel 0 "load_multiple_operation"
[(set (match_operand:SI 1 "gpc_reg_operand" "=&r")
(match_operand:SI 2 "memory_operand" "m"))
(use (match_operand:PSI 3 "register_operand" "+c"))
(clobber (match_dup 3))])]
"TARGET_29050"
"loadm 0,0,%1,%2"
[(set_attr "type" "load")])
;; MTSR (used also by move insn)
(define_insn ""
[(set (match_operand:SI 0 "spec_reg_operand" "=*h,*h")
(and:SI (match_operand:SI 1 "gpc_reg_or_immediate_operand" "r,i")
(match_operand:SI 2 "const_int_operand" "n,n")))]
"masks_bits_for_special (operands[0], operands[2])"
"@
mtsr %0,%1
mtsrim %0,%1")
(define_insn ""
[(set (match_operand:PSI 0 "register_operand" "=h,h")
(truncate:PSI
(match_operand:SI 1 "gpc_reg_or_immediate_operand" "r,i")))]
""
"@
mtsr %0,%1
mtsrim %0,%1")
;; MULTIPLY, MULTM, MULTMU
(define_insn "mulsi3"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(mult:SI (match_operand:SI 1 "gpc_reg_operand" "%r")
(match_operand:SI 2 "gpc_reg_operand" "r")))]
""
"multiply %0,%1,%2")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(subreg:SI
(mult:DI
(sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "%r"))
(sign_extend:DI (match_operand:SI 2 "gpc_reg_operand" "r"))) 0))]
""
"multm %0,%1,%2")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(subreg:SI
(mult:DI
(zero_extend:DI (match_operand:SI 1 "gpc_reg_operand" "%r"))
(zero_extend:DI (match_operand:SI 2 "gpc_reg_operand" "r"))) 0))]
""
"multmu %0,%1,%2")
(define_insn "mulsidi3"
[(set (match_operand:DI 0 "gpc_reg_operand" "=r")
(mult:DI (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "r"))
(sign_extend:DI (match_operand:SI 2 "gpc_reg_operand" "r"))))]
""
"multiply %L0,%1,%2\;multm %0,%1,%2"
[(set_attr "type" "multi")])
(define_split
[(set (match_operand:DI 0 "gpc_reg_operand" "")
(mult:DI (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" ""))
(sign_extend:DI (match_operand:SI 2 "gpc_reg_operand" ""))))]
"reload_completed"
[(set (match_dup 3)
(mult:SI (match_dup 1) (match_dup 2)))
(set (match_dup 4)
(subreg:SI (mult:DI
(sign_extend:DI (match_dup 1))
(sign_extend:DI (match_dup 2))) 0))]
"
{ operands[3] = operand_subword (operands[0], 1, 1, DImode);
operands[4] = operand_subword (operands[1], 0, 1, DImode); } ")
(define_insn "umulsidi3"
[(set (match_operand:DI 0 "gpc_reg_operand" "=r")
(mult:DI (zero_extend:DI (match_operand:SI 1 "gpc_reg_operand" "r"))
(zero_extend:DI (match_operand:SI 2 "gpc_reg_operand" "r"))))]
""
"multiplu %L0,%1,%2\;multmu %0,%1,%2"
[(set_attr "type" "multi")])
(define_split
[(set (match_operand:DI 0 "gpc_reg_operand" "")
(mult:DI (zero_extend:DI (match_operand:SI 1 "gpc_reg_operand" ""))
(zero_extend:DI (match_operand:SI 2 "gpc_reg_operand" ""))))]
"reload_completed"
[(set (match_dup 3)
(mult:SI (match_dup 1) (match_dup 2)))
(set (match_dup 4)
(subreg:SI (mult:DI (zero_extend:DI (match_dup 1))
(zero_extend:DI (match_dup 2))) 0))]
"
{ operands[3] = operand_subword (operands[0], 1, 1, DImode);
operands[4] = operand_subword (operands[1], 0, 1, DImode); } ")
;; NAND
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ior:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "%r"))
(not:SI (match_operand:SI 2 "srcb_operand" "rI"))))]
""
"nand %0,%1,%2")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ior:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r"))
(match_operand:SI 2 "const_int_operand" "K")))]
"((unsigned) ~ INTVAL (operands[2])) < 256"
"nand %0,%1,%C2")
;; NOR
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(and:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "%r"))
(not:SI (match_operand:SI 2 "srcb_operand" "rI"))))]
""
"nor %0,%1,%2")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(and:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r"))
(match_operand:SI 2 "const_int_operand" "K")))]
"((unsigned) ~ INTVAL (operands[2])) < 256"
"nor %0,%1,%C2")
(define_insn "one_cmplsi2"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(not:SI (match_operand:SI 1 "gpc_reg_operand" "r")))]
""
"nor %0,%1,0")
;; OR/ORN
(define_expand "iorsi3"
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(ior:SI (match_operand:SI 1 "gpc_reg_operand" "")
(match_operand:SI 2 "srcb_operand" "")))]
""
"")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ior:SI (match_operand:SI 1 "gpc_reg_operand" "%r")
(match_operand:SI 2 "srcb_operand" "rI")))]
"! TARGET_29050"
"or %0,%1,%2")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(ior:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r")
(match_operand:SI 2 "srcb_operand" "rI,K")))]
"TARGET_29050"
"@
or %0,%1,%2
orn %0,%1,%C2")
;; SLL (also used by move insn)
(define_insn "nop"
[(const_int 0)]
""
"aseq 0x40,gr1,gr1")
(define_insn "ashlsi3"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:QI 2 "srcb_operand" "rn")))]
""
"sll %0,%1,%Q2")
;; SQRT
(define_insn "sqrtsf2"
[(set (match_operand:SF 0 "gpc_reg_operand" "=r")
(sqrt:SF (match_operand:SF 1 "gpc_reg_operand" "r")))]
"TARGET_29050"
"sqrt %0,%1,1"
[(set_attr "type" "fsqrt")])
(define_insn "sqrtdf2"
[(set (match_operand:DF 0 "gpc_reg_operand" "=r")
(sqrt:DF (match_operand:DF 1 "gpc_reg_operand" "r")))]
"TARGET_29050"
"sqrt %0,%1,2"
[(set_attr "type" "dsqrt")])
;; SRA
(define_insn "ashrsi3"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(ashiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:QI 2 "srcb_operand" "rn")))]
""
"sra %0,%1,%Q2")
;; SRL
(define_insn "lshrsi3"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r")
(match_operand:QI 2 "srcb_operand" "rn")))]
""
"srl %0,%1,%Q2")
;; STORE
;;
;; These somewhat bogus patterns exist to set OPT = 001/010 for partial-word
;; stores on systems with DW not set.
(define_insn ""
[(set (mem:SI (and:SI (match_operand:SI 0 "gpc_reg_operand" "r")
(const_int -4)))
(match_operand:SI 1 "gpc_reg_operand" "r"))]
"! TARGET_DW_ENABLE"
"store 0,1,%1,%0"
[(set_attr "type" "store")])
(define_insn ""
[(set (mem:SI (and:SI (match_operand:SI 0 "gpc_reg_operand" "r")
(const_int -3)))
(match_operand:SI 1 "gpc_reg_operand" "r"))]
"! TARGET_DW_ENABLE"
"store 0,2,%1,%0"
[(set_attr "type" "store")])
;; STOREM
(define_expand "store_multiple"
[(use (match_operand 0 "" ""))
(use (match_operand 1 "" ""))
(use (match_operand 2 "" ""))]
""
"
{ rtx pat;
if (TARGET_NO_STOREM_BUG)
pat = gen_store_multiple_no_bug (operands[0], operands[1], operands[2]);
else
pat = gen_store_multiple_bug (operands[0], operands[1], operands[2]);
if (pat)
emit_insn (pat);
else
FAIL;
DONE;
}")
(define_expand "store_multiple_no_bug"
[(set (match_dup 4)
(match_operand:PSI 2 "const_int_operand" ""))
(match_par_dup 3 [(set (match_operand:SI 0 "" "")
(match_operand:SI 1 "" ""))])]
""
"
{
int regno;
int count;
rtx from;
int i;
/* Support only storing a constant number of hard registers to memory. */
if (GET_CODE (operands[2]) != CONST_INT
|| operands[2] == const1_rtx
|| GET_CODE (operands[0]) != MEM
|| GET_CODE (operands[1]) != REG
|| REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER)
FAIL;
count = INTVAL (operands[2]);
regno = REGNO (operands[1]);
/* CR gets set to the number of registers minus one. */
operands[2] = GEN_INT(count - 1);
operands[3] = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (count + 2));
from = memory_address (SImode, XEXP (operands[0], 0));
XVECEXP (operands[3], 0, 0) = gen_rtx (SET, VOIDmode,
gen_rtx (MEM, SImode, from),
gen_rtx (REG, SImode, regno));
operands[4] = gen_reg_rtx (PSImode);
XVECEXP (operands[3], 0, 1) = gen_rtx (USE, VOIDmode, operands[4]);
XVECEXP (operands[3], 0, 2) = gen_rtx (CLOBBER, VOIDmode, operands[4]);
for (i = 1; i < count; i++)
XVECEXP (operands[3], 0, i + 2)
= gen_rtx (SET, VOIDmode,
gen_rtx (MEM, SImode, plus_constant (from, i * 4)),
gen_rtx (REG, SImode, regno + i));
}")
(define_expand "store_multiple_bug"
[(match_par_dup 3 [(set (match_operand:SI 0 "" "")
(match_operand:SI 1 "" ""))
(use (match_operand:SI 2 "" ""))])]
""
"
{
int regno;
int count;
rtx from;
int i;
/* Support only storing a constant number of hard registers to memory. */
if (GET_CODE (operands[2]) != CONST_INT
|| operands[2] == const1_rtx
|| GET_CODE (operands[0]) != MEM
|| GET_CODE (operands[1]) != REG
|| REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER)
FAIL;
count = INTVAL (operands[2]);
regno = REGNO (operands[1]);
operands[3] = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (count + 1));
from = memory_address (SImode, XEXP (operands[0], 0));
XVECEXP (operands[3], 0, 0) = gen_rtx (SET, VOIDmode,
gen_rtx (MEM, SImode, from),
gen_rtx (REG, SImode, regno));
XVECEXP (operands[3], 0, 1)
= gen_rtx (CLOBBER, VOIDmode, gen_rtx (SCRATCH, PSImode));
for (i = 1; i < count; i++)
XVECEXP (operands[3], 0, i + 1)
= gen_rtx (SET, VOIDmode,
gen_rtx (MEM, SImode, plus_constant (from, i * 4)),
gen_rtx (REG, SImode, regno + i));
}")
(define_insn ""
[(set (match_operand 0 "memory_operand" "=m")
(match_operand 1 "gpc_reg_operand" "r"))
(clobber (match_scratch:PSI 2 "=&c"))]
"!TARGET_NO_STOREM_BUG
&& GET_MODE (operands[0]) == GET_MODE (operands[1])
&& GET_MODE_SIZE (GET_MODE (operands[0])) > UNITS_PER_WORD"
"mtsrim cr,%S1\;storem 0,0,%1,%0"
[(set_attr "type" "multi")])
(define_insn ""
[(match_parallel 0 "store_multiple_operation"
[(set (match_operand:SI 1 "memory_operand" "=m")
(match_operand:SI 2 "gpc_reg_operand" "r"))
(clobber (match_scratch:PSI 3 "=&c"))])]
"!TARGET_NO_STOREM_BUG"
"mtsrim cr,%V0\;storem 0,0,%2,%1"
[(set_attr "type" "multi")])
(define_insn ""
[(set (match_operand 0 "memory_operand" "=m")
(match_operand 1 "gpc_reg_operand" "r"))
(use (match_operand:PSI 2 "register_operand" "+c"))
(clobber (match_dup 2))]
"TARGET_NO_STOREM_BUG
&& GET_MODE (operands[0]) == GET_MODE (operands[1])
&& GET_MODE_SIZE (GET_MODE (operands[0])) > UNITS_PER_WORD"
"storem 0,0,%1,%0"
[(set_attr "type" "store")])
(define_insn ""
[(match_parallel 0 "store_multiple_operation"
[(set (match_operand:SI 1 "memory_operand" "=m")
(match_operand:SI 2 "gpc_reg_operand" "r"))
(use (match_operand:PSI 3 "register_operand" "+c"))
(clobber (match_dup 3))])]
"TARGET_NO_STOREM_BUG"
"storem 0,0,%2,%1"
[(set_attr "type" "store")])
;; SUB
;;
;; Either operand can be a register or an 8-bit constant, but both cannot be
;; constants (can't usually occur anyway).
(define_expand "subsi3"
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(minus:SI (match_operand:SI 1 "srcb_operand" "")
(match_operand:SI 2 "srcb_operand" "")))]
""
"
{
if (GET_CODE (operands[0]) == CONST_INT
&& GET_CODE (operands[1]) == CONST_INT)
operands[1] = force_reg (SImode, operands[1]);
}")
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r,r")
(minus:SI (match_operand:SI 1 "srcb_operand" "r,I")
(match_operand:SI 2 "srcb_operand" "rI,r")))]
"register_operand (operands[1], SImode)
|| register_operand (operands[2], SImode)"
"@
sub %0,%1,%2
subr %0,%2,%1")
(define_insn "subdi3"
[(set (match_operand:DI 0 "gpc_reg_operand" "=r")
(minus:DI (match_operand:DI 1 "gpc_reg_operand" "r")
(match_operand:DI 2 "gpc_reg_operand" "r")))]
""
"sub %L0,%L1,%L2\;subc %0,%1,%2"
[(set_attr "type" "multi")])
;; SUBR (also used above in SUB)
(define_insn "negdi2"
[(set (match_operand:DI 0 "gpc_reg_operand" "=r")
(neg:DI (match_operand:DI 1 "gpc_reg_operand" "r")))]
""
"subr %L0,%L1,0\;subrc %0,%1,0"
[(set_attr "type" "multi")])
(define_insn "negsi2"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(neg:SI (match_operand:SI 1 "gpc_reg_operand" "r")))]
""
"subr %0,%1,0")
;; XNOR
(define_insn ""
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(not:SI (xor:SI (match_operand:SI 1 "gpc_reg_operand" "%r")
(match_operand:SI 2 "srcb_operand" "rI"))))]
""
"xnor %0,%1,%2")
;; XOR
(define_insn "xorsi3"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(xor:SI (match_operand:SI 1 "gpc_reg_operand" "%r")
(match_operand:SI 2 "srcb_operand" "rI")))]
""
"xor %0,%1,%2")
;; Can use XOR to negate floating-point values, but we are better off not doing
;; it that way on the 29050 so it can combine with the fmac insns.
(define_expand "negsf2"
[(parallel [(set (match_operand:SF 0 "register_operand" "")
(neg:SF (match_operand:SF 1 "register_operand" "")))
(clobber (match_scratch:SI 2 ""))])]
""
"
{
rtx result;
rtx target;
if (! TARGET_29050)
{
target = operand_subword_force (operands[0], 0, SFmode);
result = expand_binop (SImode, xor_optab,
operand_subword_force (operands[1], 0, SFmode),
GEN_INT(0x80000000), target, 0, OPTAB_WIDEN);
if (result == 0)
abort ();
if (result != target)
emit_move_insn (result, target);
/* Make a place for REG_EQUAL. */
emit_move_insn (operands[0], operands[0]);
DONE;
}
}")
(define_expand "negdf2"
[(parallel [(set (match_operand:DF 0 "register_operand" "")
(neg:DF (match_operand:DF 1 "register_operand" "")))
(clobber (match_scratch:SI 2 ""))])]
""
"
{
rtx result;
rtx target;
rtx insns;
if (! TARGET_29050)
{
start_sequence ();
target = operand_subword (operands[0], 0, 1, DFmode);
result = expand_binop (SImode, xor_optab,
operand_subword_force (operands[1], 0, DFmode),
GEN_INT(0x80000000), target, 0, OPTAB_WIDEN);
if (result == 0)
abort ();
if (result != target)
emit_move_insn (result, target);
emit_move_insn (operand_subword (operands[0], 1, 1, DFmode),
operand_subword_force (operands[1], 1, DFmode));
insns = get_insns ();
end_sequence ();
emit_no_conflict_block (insns, operands[0], operands[1], 0, 0);
DONE;
}
}")
;; Sign extend and truncation operations.
(define_insn "zero_extendqihi2"
[(set (match_operand:HI 0 "gpc_reg_operand" "=r")
(zero_extend:HI (match_operand:QI 1 "gpc_reg_operand" "r")))]
""
"and %0,%1,255")
(define_insn "zero_extendqisi2"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(zero_extend:SI (match_operand:QI 1 "gpc_reg_operand" "r")))]
""
"and %0,%1,255")
(define_insn "zero_extendhisi2"
[(set (match_operand:SI 0 "gpc_reg_operand" "=r")
(zero_extend:SI (match_operand:HI 1 "gpc_reg_operand" "0")))]
""
"consth %0,0")
(define_expand "extendqihi2"
[(set (match_dup 2)
(ashift:SI (match_operand:QI 1 "gpc_reg_operand" "")
(const_int 24)))
(set (match_operand:HI 0 "gpc_reg_operand" "")
(ashiftrt:SI (match_dup 2)
(const_int 24)))]
""
"
{ operands[0] = gen_lowpart (SImode, operands[0]);
operands[1] = gen_lowpart (SImode, operands[1]);
operands[2] = gen_reg_rtx (SImode); }")
(define_expand "extendqisi2"
[(set (match_dup 2)
(ashift:SI (match_operand:QI 1 "gpc_reg_operand" "")
(const_int 24)))
(set (match_operand:SI 0 "gpc_reg_operand" "")
(ashiftrt:SI (match_dup 2)
(const_int 24)))]
""
"
{ operands[1] = gen_lowpart (SImode, operands[1]);
operands[2] = gen_reg_rtx (SImode); }")
(define_expand "extendhisi2"
[(set (match_dup 2)
(ashift:SI (match_operand:HI 1 "gpc_reg_operand" "")
(const_int 16)))
(set (match_operand:SI 0 "gpc_reg_operand" "")
(ashiftrt:SI (match_dup 2)
(const_int 16)))]
""
"
{ operands[1] = gen_lowpart (SImode, operands[1]);
operands[2] = gen_reg_rtx (SImode); }")
;; Define the methods used to move data around.
;;
;; movsi:
;;
;; If storing into memory, force source into register.
(define_expand "movsi"
[(set (match_operand:SI 0 "general_operand" "")
(match_operand:SI 1 "general_operand" ""))]
""
"
{
if (GET_CODE (operands[0]) == MEM && ! gpc_reg_operand (operands[1], SImode))
operands[1] = copy_to_mode_reg (SImode, operands[1]);
else if (spec_reg_operand (operands[0], SImode)
&& ! (register_operand (operands[1], SImode)
|| cint_16_operand (operands[1], SImode)))
operands[1] = force_reg (SImode, operands[1]);
}")
(define_expand "movpsi"
[(set (match_operand:PSI 0 "general_operand" "")
(match_operand:PSI 1 "general_operand" ""))]
""
"
{
if (GET_CODE (operands[0]) == MEM
&& ! gpc_reg_operand (operands[1], PSImode))
operands[1] = copy_to_mode_reg (PSImode, operands[1]);
else if (spec_reg_operand (operands[0], PSImode)
&& ! (register_operand (operands[1], PSImode)
|| cint_16_operand (operands[1], PSImode)))
operands[1] = force_reg (PSImode, operands[1]);
}")
(define_split
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(match_operand:SI 1 "long_const_operand" ""))]
""
[(set (match_dup 0)
(and:SI (match_dup 1)
(const_int 65535)))
(set (match_dup 0)
(ior:SI (zero_extend:SI (match_dup 2))
(and:SI (match_dup 1)
(const_int -65536))))]
" operands[2] = gen_lowpart (HImode, operands[0]); ")
;; Subroutines to load/store halfwords. Operands 0 and 1 are the output and
;; input, respectively, except that the address is passed for a MEM instead
;; of the MEM itself and the short item is passed in QImode.
;;
;; Operand 2 is a scratch general register and operand 3 is a scratch register
;; used for BP. When called before reload, pseudos are passed for both
;; operands. During reload, R_TAV is used for the general register, and
;; a reload register of class BR_REGS (R_VP) for BP.
;;
;; We have two versions of the store operations, for when halfword writes are
;; supported and when they are not.
(define_expand "loadhi"
[(parallel [(set (match_operand:SI 2 "gpc_reg_operand" "")
(mem:SI (and:SI (match_operand:SI 1 "gpc_reg_operand" "")
(const_int -4))))
(set (match_operand:PSI 3 "register_operand" "")
(truncate:PSI (match_dup 1)))])
(set (match_operand:SI 0 "gpc_reg_operand" "")
(zero_extract:SI (match_dup 2)
(const_int 16)
(ashift:PSI (match_dup 3) (const_int 3))))]
""
"")
(define_expand "storehinhww"
[(parallel [(set (match_operand:SI 2 "gpc_reg_operand" "")
(mem:SI (and:SI (match_operand:SI 0 "gpc_reg_operand" "")
(const_int -4))))
(set (match_operand:PSI 3 "register_operand" "")
(truncate:PSI (match_dup 0)))])
(set (zero_extract:SI (match_dup 2)
(const_int 16)
(ashift:PSI (match_dup 3) (const_int 3)))
(match_operand:SI 1 "gpc_reg_operand" ""))
(set (mem:SI (match_dup 0))
(match_dup 2))]
""
"")
(define_expand "storehihww"
[(set (match_operand:PSI 3 "register_operand" "")
(truncate:PSI (match_operand:SI 0 "gpc_reg_operand" "")))
(set (match_operand:SI 2 "gpc_reg_operand" "")
(ior:SI (and:SI (not:SI (ashift:SI (const_int 65535)
(ashift:PSI (match_dup 3)
(const_int 3))))
(match_operand:SI 1 "gpc_reg_operand" ""))
(ashift:SI (zero_extend:SI (match_dup 4))
(ashift:PSI (match_dup 3) (const_int 3)))))
(set (mem:SI (and:SI (match_dup 0)
(const_int -3)))
(match_dup 2))]
""
"
{ operands[4] = gen_lowpart (HImode, operands[1]); }")
(define_expand "movhi"
[(set (match_operand:HI 0 "general_operand" "")
(match_operand:HI 1 "general_operand" ""))]
""
"
{ if (GET_CODE (operands[0]) == MEM)
{
if (! gpc_reg_operand (operands[1], HImode))
operands[1] = copy_to_mode_reg (HImode, operands[1]);
if (! TARGET_DW_ENABLE)
{
rtx general = gen_reg_rtx (SImode);
rtx bp = gen_reg_rtx (PSImode);
rtx (*fcn) ()
= TARGET_BYTE_WRITES ? gen_storehihww : gen_storehinhww;
rtx seq = (*fcn) (XEXP (operands[0], 0),
gen_lowpart (SImode, operands[1]),
general, bp);
a29k_set_memflags (seq, operands[0]);
emit_insn (seq);
DONE;
}
}
else if (GET_CODE (operands[1]) == MEM)
{
if (! TARGET_DW_ENABLE)
{
rtx general = gen_reg_rtx (SImode);
rtx bp = gen_reg_rtx (PSImode);
rtx seq = gen_loadqi (gen_lowpart (SImode, operands[0]),
XEXP (operands[1], 0), general, bp);
a29k_set_memflags (seq, operands[1]);
emit_insn (seq);
DONE;
}
}
}")
(define_expand "reload_inhi"
[(parallel [(match_operand:SI 0 "register_operand" "=r")
(match_operand:SI 1 "reload_memory_operand" "m")
(match_operand:PSI 2 "register_operand" "=b")])]
"! TARGET_DW_ENABLE"
"
{ rtx seq = gen_loadhi (gen_lowpart (SImode, operands[0]),
a29k_get_reloaded_address (operands[1]),
gen_rtx (REG, SImode, R_TAV),
operands[2]);
a29k_set_memflags (seq, operands[1]);
emit_insn (seq);
DONE;
}")
(define_expand "reload_outhi"
[(parallel [(match_operand:SI 0 "reload_memory_operand" "=m")
(match_operand:SI 1 "register_operand" "m")
(match_operand:PSI 2 "register_operand" "=b")])]
"! TARGET_DW_ENABLE"
"
{ rtx (*fcn) () = TARGET_BYTE_WRITES ? gen_storehihww : gen_storehinhww;
rtx seq = (*fcn) (a29k_get_reloaded_address (operands[0]),
gen_lowpart (SImode, operands[1]),
gen_rtx (REG, SImode, R_TAV), operands[2]);
a29k_set_memflags (seq, operands[0]);
emit_insn (seq);
DONE;
}")
;; Subroutines to load/store bytes. Operands 0 and 1 are the output and
;; input, respectively, except that the address is passed for a MEM instead
;; of the MEM itself and the short item is passed in QImode.
;;
;; Operand 2 is a scratch general register and operand 3 is a scratch register
;; used for BP. When called before reload, pseudos are passed for both
;; operands. During reload, R_TAV is used for the general register, and
;; a reload register of class BR_REGS (R_VP) for BP.
;;
;; We have two versions of the store operations, for when byte writes are
;; supported and when they are not.
(define_expand "loadqi"
[(parallel [(set (match_operand:SI 2 "gpc_reg_operand" "")
(mem:SI (and:SI (match_operand:SI 1 "gpc_reg_operand" "")
(const_int -4))))
(set (match_operand:PSI 3 "register_operand" "")
(truncate:PSI (match_dup 1)))])
(set (match_operand:SI 0 "gpc_reg_operand" "")
(zero_extract:SI (match_dup 2)
(const_int 8)
(ashift:PSI (match_dup 3) (const_int 3))))]
""
"")
(define_expand "storeqinhww"
[(parallel [(set (match_operand:SI 2 "gpc_reg_operand" "")
(mem:SI (and:SI (match_operand:SI 0 "gpc_reg_operand" "")
(const_int -4))))
(set (match_operand:PSI 3 "register_operand" "")
(truncate:PSI (match_dup 0)))])
(set (zero_extract:SI (match_dup 2)
(const_int 8)
(ashift:PSI (match_dup 3)
(const_int 3)))
(match_operand:SI 1 "gpc_reg_operand" ""))
(set (mem:SI (match_dup 0))
(match_dup 2))]
""
"")
(define_expand "storeqihww"
[(set (match_operand:PSI 3 "register_operand" "")
(truncate:PSI (match_operand:SI 0 "gpc_reg_operand" "")))
(set (match_operand:SI 2 "gpc_reg_operand" "")
(ior:SI (and:SI (not:SI (ashift:SI (const_int 255)
(ashift:PSI (match_dup 3)
(const_int 3))))
(match_operand:SI 1 "gpc_reg_operand" ""))
(ashift:SI (zero_extend:SI (match_dup 4))
(ashift:PSI (match_dup 3)
(const_int 3)))))
(set (mem:SI (and:SI (match_dup 0)
(const_int -4)))
(match_dup 2))]
""
"
{ operands[4] = gen_lowpart (QImode, operands[1]); }")
(define_expand "movqi"
[(set (match_operand:QI 0 "general_operand" "")
(match_operand:QI 1 "general_operand" ""))]
""
"
{ if (GET_CODE (operands[0]) == MEM)
{
if (! gpc_reg_operand (operands[1], QImode))
operands[1] = copy_to_mode_reg (QImode, operands[1]);
if (! TARGET_DW_ENABLE)
{
rtx general = gen_reg_rtx (SImode);
rtx bp = gen_reg_rtx (PSImode);
rtx (*fcn) ()
= TARGET_BYTE_WRITES ? gen_storeqihww : gen_storeqinhww;
rtx seq = (*fcn) (XEXP (operands[0], 0),
gen_lowpart (SImode, operands[1]),
general, bp);
a29k_set_memflags (seq, operands[0]);
emit_insn (seq);
}
}
else if (GET_CODE (operands[1]) == MEM)
{
if (! TARGET_DW_ENABLE)
{
rtx general = gen_reg_rtx (SImode);
rtx bp = gen_reg_rtx (PSImode);
rtx seq = gen_loadqi (gen_lowpart (SImode, operands[0]),
XEXP (operands[1], 0), general, bp);
a29k_set_memflags (seq, operands[1]);
emit_insn (seq);
DONE;
}
}
}")
(define_expand "reload_inqi"
[(parallel [(match_operand:SI 0 "register_operand" "=r")
(match_operand:SI 1 "reload_memory_operand" "m")
(match_operand:PSI 2 "register_operand" "=b")])]
"! TARGET_DW_ENABLE"
"
{ rtx seq = gen_loadqi (gen_lowpart (SImode, operands[0]),
a29k_get_reloaded_address (operands[1]),
gen_rtx (REG, SImode, R_TAV),
operands[2]);
a29k_set_memflags (seq, operands[1]);
emit_insn (seq);
DONE;
}")
(define_expand "reload_outqi"
[(parallel [(match_operand:SI 0 "reload_memory_operand" "=m")
(match_operand:SI 1 "register_operand" "m")
(match_operand:PSI 2 "register_operand" "=b")])]
"! TARGET_DW_ENABLE"
"
{ rtx (*fcn) () = TARGET_BYTE_WRITES ? gen_storeqihww : gen_storeqinhww;
rtx seq = (*fcn) (a29k_get_reloaded_address (operands[0]),
gen_lowpart (SImode, operands[1]),
gen_rtx (REG, SImode, R_TAV), operands[2]);
a29k_set_memflags (seq, operands[0]);
emit_insn (seq);
DONE;
}")
;; Now the actual insns used to move data around. We include here the
;; DEFINE_SPLITs that may be needed. In some cases these will be
;; split again. For floating-point, if we can look inside the constant,
;; always split it. This can eliminate unnecessary insns.
(define_insn ""
[(set (match_operand:SF 0 "out_operand" "=r,r,r,r,m")
(match_operand:SF 1 "in_operand" "r,E,F,m,r"))]
"(gpc_reg_operand (operands[0], SFmode)
|| gpc_reg_operand (operands[1], SFmode))
&& ! TARGET_29050"
"@
sll %0,%1,0
#
const %0,%1\;consth %0,%1
load 0,0,%0,%1
store 0,0,%1,%0"
[(set_attr "type" "misc,multi,multi,load,store")])
(define_insn ""
[(set (match_operand:SF 0 "out_operand" "=r,r,r,r,m,*a,r")
(match_operand:SF 1 "in_operand" "r,E,F,m,r,r,*a"))]
"(gpc_reg_operand (operands[0], SFmode)
|| gpc_reg_operand (operands[1], SFmode))
&& TARGET_29050"
"@
sll %0,%1,0
#
const %0,%1\;consth %0,%1
load 0,0,%0,%1
store 0,0,%1,%0
mtacc %1,1,%0
mfacc %0,1,%1"
[(set_attr "type" "misc,multi,multi,load,store,fadd,fadd")])
;; Turn this into SImode. It will then be split up that way.
(define_split
[(set (match_operand:SF 0 "register_operand" "")
(match_operand:SF 1 "float_const_operand" ""))]
"HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT"
[(set (match_dup 0)
(match_dup 1))]
"
{ operands[0] = operand_subword (operands[0], 0, 0, SFmode);
operands[1] = operand_subword (operands[1], 0, 0, SFmode);
if (operands[0] == 0 || operands[1] == 0)
FAIL;
}")
(define_insn ""
[(set (match_operand:DF 0 "out_operand" "=?r,?r,r,m")
(match_operand:DF 1 "in_operand" "rE,F,m,r"))
(clobber (match_scratch:PSI 2 "=X,X,&c,&c"))]
"(gpc_reg_operand (operands[0], DFmode)
|| gpc_reg_operand (operands[1], DFmode))
&& ! TARGET_29050"
"@
#
const %0,%1\;consth %0,%1\;const %L0,%L1\;consth %L0,%L1
mtsrim cr,1\;loadm 0,0,%0,%1
mtsrim cr,1\;storem 0,0,%1,%0"
[(set_attr "type" "multi")])
(define_insn ""
[(set (match_operand:DF 0 "out_operand" "=?r,?r,&r,m,?*a,?r")
(match_operand:DF 1 "in_operand" "rE,F,m,r,r,*a"))
(clobber (match_scratch:PSI 2 "=X,X,&c,&c,X,X"))]
"(gpc_reg_operand (operands[0], DFmode)
|| gpc_reg_operand (operands[1], DFmode))
&& TARGET_29050"
"@
#
const %0,%1\;consth %0,%1\;const %L0,%L1\;consth %L0,%L1
mtsrim cr,1\;loadm 0,0,%0,%1
mtsrim cr,1\;storem 0,0,%1,%0
mtacc %1,2,%0
mfacc %0,2,%1"
[(set_attr "type" "multi,multi,multi,multi,fadd,fadd")])
;; Split register-register copies and constant loads into two SImode loads,
;; one for each word. In the constant case, they will get further split.
;; Don't so this until register allocation, though, since it will
;; interfere with register allocation. Normally copy the lowest-addressed
;; word first; the exception is if we are copying register to register and
;; the lowest register of the first operand is the highest register of the
;; second operand.
(define_split
[(set (match_operand:DF 0 "gpc_reg_operand" "")
(match_operand:DF 1 "gpc_reg_or_float_constant_operand" ""))
(clobber (match_scratch:PSI 2 ""))]
"reload_completed"
[(set (match_dup 3) (match_dup 4))
(set (match_dup 5) (match_dup 6))]
"
{ if (GET_CODE (operands[1]) == REG
&& REGNO (operands[0]) == REGNO (operands[1]) + 1)
{
operands[3] = operand_subword (operands[0], 1, 1, DFmode);
operands[4] = operand_subword (operands[1], 1, 1, DFmode);
operands[5] = operand_subword (operands[0], 0, 1, DFmode);
operands[6] = operand_subword (operands[1], 0, 1, DFmode);
}
else
{
operands[3] = operand_subword (operands[0], 0, 1, DFmode);
operands[4] = operand_subword (operands[1], 0, 1, DFmode);
operands[5] = operand_subword (operands[0], 1, 1, DFmode);
operands[6] = operand_subword (operands[1], 1, 1, DFmode);
}
if (operands[3] == 0 || operands[4] == 0
|| operands[5] == 0 || operands[6] == 0)
FAIL;
}")
;; Split memory loads and stores into the MTSR and LOADM/STOREM.
(define_split
[(set (match_operand:DF 0 "out_operand" "")
(match_operand:DF 1 "in_operand" ""))
(clobber (reg:PSI 179))]
"TARGET_NO_STOREM_BUG
&& (memory_operand (operands[0], DFmode)
|| memory_operand (operands[1], DFmode))"
[(set (reg:PSI 179) (const_int 1))
(parallel [(set (match_dup 0) (match_dup 1))
(use (reg:PSI 179))
(clobber (reg:PSI 179))])]
"")
;; DI move is similar to DF move.
(define_insn ""
[(set (match_operand:DI 0 "out_operand" "=?r,r,m")
(match_operand:DI 1 "in_operand" "rn,m,r"))
(clobber (match_scratch:PSI 2 "=X,&c,&c"))]
"(gpc_reg_operand (operands[0], DImode)
|| gpc_reg_operand (operands[1], DImode))
&& ! TARGET_29050"
"@
#
mtsrim cr,1\;loadm 0,0,%0,%1
mtsrim cr,1\;storem 0,0,%1,%0"
[(set_attr "type" "multi")])
(define_insn ""
[(set (match_operand:DI 0 "out_operand" "=?r,&r,m")
(match_operand:DI 1 "in_operand" "rn,m,r"))
(clobber (match_scratch:PSI 2 "=X,&c,&c"))]
"(gpc_reg_operand (operands[0], DImode)
|| gpc_reg_operand (operands[1], DImode))
&& TARGET_29050"
"@
#
mtsrim cr,1\;loadm 0,0,%0,%1
mtsrim cr,1\;storem 0,0,%1,%0"
[(set_attr "type" "multi")])
(define_split
[(set (match_operand:DI 0 "gpc_reg_operand" "")
(match_operand:DI 1 "gpc_reg_or_integer_constant_operand" ""))
(clobber (match_scratch:PSI 2 ""))]
"reload_completed"
[(set (match_dup 3) (match_dup 4))
(set (match_dup 5) (match_dup 6))]
"
{ if (GET_CODE (operands[1]) == REG
&& REGNO (operands[0]) == REGNO (operands[1]) + 1)
{
operands[3] = operand_subword (operands[0], 1, 1, DImode);
operands[4] = operand_subword (operands[1], 1, 1, DImode);
operands[5] = operand_subword (operands[0], 0, 1, DImode);
operands[6] = operand_subword (operands[1], 0, 1, DImode);
}
else
{
operands[3] = operand_subword (operands[0], 0, 1, DImode);
operands[4] = operand_subword (operands[1], 0, 1, DImode);
operands[5] = operand_subword (operands[0], 1, 1, DImode);
operands[6] = operand_subword (operands[1], 1, 1, DImode);
}
}")
(define_split
[(set (match_operand:DI 0 "out_operand" "")
(match_operand:DI 1 "in_operand" ""))
(clobber (reg:PSI 179))]
"TARGET_NO_STOREM_BUG
&& (memory_operand (operands[0], DImode)
|| memory_operand (operands[1], DImode))"
[(set (reg:PSI 179) (const_int 1))
(parallel [(set (match_dup 0) (match_dup 1))
(use (reg:PSI 179))
(clobber (reg:PSI 179))])]
"")
;; TImode moves are very similar to DImode moves, except that we can't
;; have constants.
(define_insn ""
[(set (match_operand:TI 0 "out_operand" "=?r,r,m")
(match_operand:TI 1 "in_operand" "r,m,r"))
(clobber (match_scratch:PSI 2 "=X,&c,&c"))]
"(gpc_reg_operand (operands[0], TImode)
|| gpc_reg_operand (operands[1], TImode))
&& ! TARGET_29050"
"@
#
mtsrim cr,3\;loadm 0,0,%0,%1
mtsrim cr,3\;storem 0,0,%1,%0"
[(set_attr "type" "multi,multi,multi")])
(define_insn ""
[(set (match_operand:TI 0 "out_operand" "=?r,&r,m")
(match_operand:TI 1 "in_operand" "r,m,r"))
(clobber (match_scratch:PSI 2 "=X,&c,&c"))]
"(gpc_reg_operand (operands[0], TImode)
|| gpc_reg_operand (operands[1], TImode))
&& TARGET_29050"
"@
#
mtsrim cr,3\;loadm 0,0,%0,%1
mtsrim cr,3\;storem 0,0,%1,%0"
[(set_attr "type" "multi,multi,multi")])
(define_split
[(set (match_operand:TI 0 "gpc_reg_operand" "")
(match_operand:TI 1 "gpc_reg_operand" ""))
(clobber (match_scratch:PSI 2 ""))]
"reload_completed"
[(set (match_dup 3) (match_dup 4))
(set (match_dup 5) (match_dup 6))
(set (match_dup 7) (match_dup 8))
(set (match_dup 9) (match_dup 10))]
"
{
if (REGNO (operands[0]) >= REGNO (operands[1]) + 1
&& REGNO (operands[0]) <= REGNO (operands[1]) + 3)
{
operands[3] = gen_rtx (REG, SImode, REGNO (operands[0]) + 3);
operands[4] = gen_rtx (REG, SImode, REGNO (operands[1]) + 3);
operands[5] = gen_rtx (REG, SImode, REGNO (operands[0]) + 2);
operands[6] = gen_rtx (REG, SImode, REGNO (operands[1]) + 2);
operands[7] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
operands[8] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
operands[9] = gen_rtx (REG, SImode, REGNO (operands[0]));
operands[10] = gen_rtx (REG, SImode, REGNO (operands[1]));
}
else
{
operands[3] = gen_rtx (REG, SImode, REGNO (operands[0]));
operands[4] = gen_rtx (REG, SImode, REGNO (operands[1]));
operands[5] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
operands[6] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
operands[7] = gen_rtx (REG, SImode, REGNO (operands[0]) + 2);
operands[8] = gen_rtx (REG, SImode, REGNO (operands[1]) + 2);
operands[9] = gen_rtx (REG, SImode, REGNO (operands[0]) + 3);
operands[10] = gen_rtx (REG, SImode, REGNO (operands[1]) + 3);
}
}")
(define_split
[(set (match_operand:TI 0 "out_operand" "")
(match_operand:TI 1 "in_operand" ""))
(clobber (reg:PSI 179))]
"TARGET_NO_STOREM_BUG
&& (memory_operand (operands[0], TImode)
|| memory_operand (operands[1], TImode))"
[(set (reg:PSI 179) (const_int 1))
(parallel [(set (match_dup 0) (match_dup 1))
(use (reg:PSI 179))
(clobber (reg:PSI 179))])]
"")
(define_insn ""
[(set (match_operand:SI 0 "out_operand" "=r,r,r,r,r,r,r,m,*h,*h")
(match_operand:SI 1 "in_operand" "r,J,M,O,i,m,*h,r,r,J"))]
"(gpc_reg_operand (operands[0], SImode)
|| gpc_reg_operand (operands[1], SImode)
|| (spec_reg_operand (operands[0], SImode)
&& cint_16_operand (operands[1], SImode)))
&& ! TARGET_29050"
"@
sll %0,%1,0
const %0,%1
constn %0,%M1
cpeq %0,gr1,gr1
#
load 0,0,%0,%1
mfsr %0,%1
store 0,0,%1,%0
mtsr %0,%1
mtsrim %0,%1"
[(set_attr "type" "misc,misc,misc,misc,multi,load,misc,store,misc,misc")])
(define_insn ""
[(set (match_operand:SI 0 "out_operand" "=r,r,r,r,r,r,r,m,*h,*h")
(match_operand:SI 1 "in_operand" "r,J,M,O,i,m,*h,r,r,J"))]
"(gpc_reg_operand (operands[0], SImode)
|| gpc_reg_operand (operands[1], SImode)
|| (spec_reg_operand (operands[0], SImode)
&& cint_16_operand (operands[1], SImode)))
&& TARGET_29050"
"@
sll %0,%1,0
const %0,%1
constn %0,%M1
consthz %0,%1
#
load 0,0,%0,%1
mfsr %0,%1
store 0,0,%1,%0
mtsr %0,%1
mtsrim %0,%1"
[(set_attr "type" "misc,misc,misc,misc,multi,load,misc,store,misc,misc")])
(define_insn ""
[(set (match_operand:PSI 0 "out_operand" "=*r,*r,*r,*r,m,h,h")
(match_operand:PSI 1 "in_operand" "r,i,m,h,r,r,J"))]
"(gpc_reg_operand (operands[0], PSImode)
|| gpc_reg_operand (operands[1], PSImode)
|| (spec_reg_operand (operands[0], PSImode)
&& cint_16_operand (operands[1], PSImode)))"
"@
sll %0,%1,0
const %0,%1
load 0,0,%0,%1
mfsr %0,%1
store 0,0,%1,%0
mtsr %0,%1
mtsrim %0,%1"
[(set_attr "type" "misc,multi,load,misc,store,misc,misc")])
(define_insn ""
[(set (match_operand:HI 0 "out_operand" "=r,r,r,m,r,*h,*h")
(match_operand:HI 1 "in_operand" "r,i,m,r,*h,r,i"))]
"gpc_reg_operand (operands[0], HImode)
|| gpc_reg_operand (operands[1], HImode)
|| (spec_reg_operand (operands[0], HImode)
&& cint_16_operand (operands[1], HImode))"
"@
sll %0,%1,0
const %0,%1
load 0,2,%0,%1
store 0,2,%1,%0
mfsr %0,%1
mtsr %0,%1
mtsrim %0,%1"
[(set_attr "type" "misc,misc,load,store,misc,misc,misc")])
(define_insn ""
[(set (match_operand:QI 0 "out_operand" "=r,r,r,m,r,*h,*h")
(match_operand:QI 1 "in_operand" "r,i,m,r,*h,r,i"))]
"gpc_reg_operand (operands[0], QImode)
|| gpc_reg_operand (operands[1], QImode)
|| (spec_reg_operand (operands[0], HImode)
&& cint_16_operand (operands[1], HImode))"
"@
sll %0,%1,0
const %0,%1
load 0,1,%0,%1
store 0,1,%1,%0
mfsr %0,%1
mtsr %0,%1
mtsrim %0,%1"
[(set_attr "type" "misc,misc,load,store,misc,misc,misc")])
;; Define move insns for DI, TI, SF, and DF.
;;
;; In no case do we support mem->mem directly.
;;
;; For DI move of constant to register, split apart at this time since these
;; can require anywhere from 2 to 4 insns and determining which is complex.
;;
;; In other cases, handle similarly to SImode moves.
;;
;; However, indicate that DI, TI, and DF moves may clobber CR (reg 179).
(define_expand "movdi"
[(parallel [(set (match_operand:DI 0 "general_operand" "")
(match_operand:DI 1 "general_operand" ""))
(clobber (scratch:PSI))])]
""
"
{
if (GET_CODE (operands[0]) == MEM)
operands[1] = force_reg (DImode, operands[1]);
}")
(define_expand "movsf"
[(set (match_operand:SF 0 "general_operand" "")
(match_operand:SF 1 "general_operand" ""))]
""
"
{ if (GET_CODE (operands[0]) == MEM)
operands[1] = force_reg (SFmode, operands[1]);
}")
(define_expand "movdf"
[(parallel [(set (match_operand:DF 0 "general_operand" "")
(match_operand:DF 1 "general_operand" ""))
(clobber (scratch:PSI))])]
""
"
{ if (GET_CODE (operands[0]) == MEM)
operands[1] = force_reg (DFmode, operands[1]);
}")
(define_expand "movti"
[(parallel [(set (match_operand:TI 0 "general_operand" "")
(match_operand:TI 1 "general_operand" ""))
(clobber (scratch:PSI))])]
""
"
{
if (GET_CODE (operands[0]) == MEM)
operands[1] = force_reg (TImode, operands[1]);
/* We can't handle constants in general because there is no rtl to represent
128 bit constants. Splitting happens to work for CONST_INTs so we split
them for good code. Other constants will get forced to memory. */
if (GET_CODE (operands[1]) == CONST_INT)
{
rtx part0, part1, part2, part3;
part0 = operand_subword (operands[0], 0, 1, TImode);
part1 = operand_subword (operands[0], 1, 1, TImode);
part2 = operand_subword (operands[0], 2, 1, TImode);
part3 = operand_subword (operands[0], 3, 1, TImode);
emit_move_insn (part0, const0_rtx);
emit_move_insn (part1, const0_rtx);
emit_move_insn (part2, const0_rtx);
emit_move_insn (part3, const0_rtx);
DONE;
}
else if (CONSTANT_P (operands[1]))
{
operands[1] = force_const_mem (TImode, operands[1]);
if (! memory_address_p (TImode, XEXP (operands[1], 0))
&& ! reload_in_progress)
operands[1] = change_address (operands[1], TImode,
XEXP (operands[1], 0));
}
}")
;; Here are the variants of the above for use during reload.
(define_expand "reload_indf"
[(parallel [(set (match_operand:DF 0 "register_operand" "=r")
(match_operand:DF 1 "reload_memory_operand" "m"))
(clobber (match_operand:PSI 2 "register_operand" "=&c"))])]
""
"")
(define_expand "reload_outdf"
[(parallel [(set (match_operand:DF 0 "reload_memory_operand" "=m")
(match_operand:DF 1 "register_operand" "r"))
(clobber (match_operand:PSI 2 "register_operand" "=&c"))])]
""
"")
(define_expand "reload_indi"
[(parallel [(set (match_operand:DI 0 "register_operand" "=r")
(match_operand:DI 1 "reload_memory_operand" "m"))
(clobber (match_operand:PSI 2 "register_operand" "=&c"))])]
""
"")
(define_expand "reload_outdi"
[(parallel [(set (match_operand:DI 0 "reload_memory_operand" "=m")
(match_operand:DI 1 "register_operand" "r"))
(clobber (match_operand:PSI 2 "register_operand" "=&c"))])]
""
"")
(define_expand "reload_inti"
[(parallel [(set (match_operand:TI 0 "register_operand" "=r")
(match_operand:TI 1 "reload_memory_operand" "m"))
(clobber (match_operand:PSI 2 "register_operand" "=&c"))])]
""
"")
(define_expand "reload_outti"
[(parallel [(set (match_operand:TI 0 "reload_memory_operand" "=m")
(match_operand:TI 1 "register_operand" "r"))
(clobber (match_operand:PSI 2 "register_operand" "=&c"))])]
""
"")
;; For compare operations, we simply store the comparison operands and
;; do nothing else. The following branch or scc insn will output whatever
;; is needed.
(define_expand "cmpsi"
[(set (cc0)
(compare (match_operand:SI 0 "gpc_reg_operand" "")
(match_operand:SI 1 "srcb_operand" "")))]
""
"
{
a29k_compare_op0 = operands[0];
a29k_compare_op1 = operands[1];
a29k_compare_fp_p = 0;
DONE;
}")
(define_expand "cmpsf"
[(set (cc0)
(compare (match_operand:SF 0 "gpc_reg_operand" "")
(match_operand:SF 1 "gpc_reg_operand" "")))]
""
"
{
a29k_compare_op0 = operands[0];
a29k_compare_op1 = operands[1];
a29k_compare_fp_p = 1;
DONE;
}")
(define_expand "cmpdf"
[(set (cc0)
(compare (match_operand:DF 0 "gpc_reg_operand" "")
(match_operand:DF 1 "gpc_reg_operand" "")))]
""
"
{
a29k_compare_op0 = operands[0];
a29k_compare_op1 = operands[1];
a29k_compare_fp_p = 1;
DONE;
}")
;; We can generate bit-tests better if we use NE instead of EQ, but we
;; don't have an NE for floating-point. So we have to have two patterns
;; for EQ and two for NE.
(define_expand "beq"
[(set (match_dup 1) (ne:SI (match_dup 2) (match_dup 3)))
(set (pc)
(if_then_else (ge (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
if (GET_MODE_CLASS (GET_MODE (a29k_compare_op0)) == MODE_FLOAT)
{
emit_insn (gen_beq_fp (operands[0]));
DONE;
}
operands[1] = gen_reg_rtx (SImode);
operands[2] = a29k_compare_op0;
operands[3] = a29k_compare_op1;
}")
(define_expand "beq_fp"
[(set (match_dup 1) (eq:SI (match_dup 2) (match_dup 3)))
(set (pc)
(if_then_else (lt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_reg_rtx (SImode);
operands[2] = a29k_compare_op0;
operands[3] = a29k_compare_op1;
}")
(define_expand "bne"
[(set (match_dup 1) (ne:SI (match_dup 2) (match_dup 3)))
(set (pc)
(if_then_else (lt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
if (GET_MODE_CLASS (GET_MODE (a29k_compare_op0)) == MODE_FLOAT)
{
emit_insn (gen_bne_fp (operands[0]));
DONE;
}
operands[1] = gen_reg_rtx (SImode);
operands[2] = a29k_compare_op0;
operands[3] = a29k_compare_op1;
}")
(define_expand "bne_fp"
[(set (match_dup 1) (eq:SI (match_dup 2) (match_dup 3)))
(set (pc)
(if_then_else (ge (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_reg_rtx (SImode);
operands[2] = a29k_compare_op0;
operands[3] = a29k_compare_op1;
}")
;; We don't have a floating-point "lt" insn, so we have to use "gt" in that
;; case with the operands swapped. The operands must both be registers in
;; the floating-point case, so we know that swapping them is OK.
(define_expand "blt"
[(set (match_dup 1) (match_dup 2))
(set (pc)
(if_then_else (lt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_reg_rtx (SImode);
if (a29k_compare_fp_p)
operands[2] = gen_rtx (GT, SImode, a29k_compare_op1, a29k_compare_op0);
else
operands[2] = gen_rtx (LT, SImode, a29k_compare_op0, a29k_compare_op1);
}")
;; Similarly for "le".
(define_expand "ble"
[(set (match_dup 1) (match_dup 2))
(set (pc)
(if_then_else (lt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_reg_rtx (SImode);
if (a29k_compare_fp_p)
operands[2] = gen_rtx (GE, SImode, a29k_compare_op1, a29k_compare_op0);
else
operands[2] = gen_rtx (LE, SImode, a29k_compare_op0, a29k_compare_op1);
}")
(define_expand "bltu"
[(set (match_dup 1) (ltu:SI (match_dup 2) (match_dup 3)))
(set (pc)
(if_then_else (lt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_reg_rtx (SImode);
operands[2] = a29k_compare_op0;
operands[3] = a29k_compare_op1;
}")
(define_expand "bleu"
[(set (match_dup 1) (leu:SI (match_dup 2) (match_dup 3)))
(set (pc)
(if_then_else (lt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_reg_rtx (SImode);
operands[2] = a29k_compare_op0;
operands[3] = a29k_compare_op1;
}")
(define_expand "bgt"
[(set (match_dup 1) (gt:SI (match_dup 2) (match_dup 3)))
(set (pc)
(if_then_else (lt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_reg_rtx (SImode);
operands[2] = a29k_compare_op0;
operands[3] = a29k_compare_op1;
}")
(define_expand "bge"
[(set (match_dup 1) (ge:SI (match_dup 2) (match_dup 3)))
(set (pc)
(if_then_else (lt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_reg_rtx (SImode);
operands[2] = a29k_compare_op0;
operands[3] = a29k_compare_op1;
}")
(define_expand "bgtu"
[(set (match_dup 1) (gtu:SI (match_dup 2) (match_dup 3)))
(set (pc)
(if_then_else (lt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_reg_rtx (SImode);
operands[2] = a29k_compare_op0;
operands[3] = a29k_compare_op1;
}")
(define_expand "bgeu"
[(set (match_dup 1) (geu:SI (match_dup 2) (match_dup 3)))
(set (pc)
(if_then_else (lt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_reg_rtx (SImode);
operands[2] = a29k_compare_op0;
operands[3] = a29k_compare_op1;
}")
(define_expand "seq"
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(eq:SI (match_dup 1) (match_dup 2)))]
""
"
{
operands[1] = a29k_compare_op0;
operands[2] = a29k_compare_op1;
}")
;; This is the most complicated case, because we don't have a floating-point
;; "ne" insn. If integer, handle normally. If floating-point, write the
;; compare and then write an insn to reverse the test.
(define_expand "sne_fp"
[(set (match_dup 3)
(eq:SI (match_operand 1 "gpc_reg_operand" "")
(match_operand 2 "gpc_reg_operand" "")))
(set (match_operand:SI 0 "gpc_reg_operand" "")
(ge:SI (match_dup 3) (const_int 0)))]
""
"
{ operands[3] = gen_reg_rtx (SImode);
}");
(define_expand "sne"
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(ne:SI (match_dup 1) (match_dup 2)))]
""
"
{
operands[1] = a29k_compare_op0;
operands[2] = a29k_compare_op1;
if (a29k_compare_fp_p)
{
emit_insn (gen_sne_fp (operands[0], operands[1], operands[2]));
DONE;
}
}")
;; We don't have a floating-point "lt" insn, so use "gt" and swap the
;; operands, the same as we do "blt".
(define_expand "slt"
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(match_dup 1))]
""
"
{
if (a29k_compare_fp_p)
operands[1] = gen_rtx (GT, SImode, a29k_compare_op1, a29k_compare_op0);
else
operands[1] = gen_rtx (LT, SImode, a29k_compare_op0, a29k_compare_op1);
}")
;; Similarly for "le"
(define_expand "sle"
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(match_dup 1))]
""
"
{
if (a29k_compare_fp_p)
operands[1] = gen_rtx (GE, SImode, a29k_compare_op1, a29k_compare_op0);
else
operands[1] = gen_rtx (LE, SImode, a29k_compare_op0, a29k_compare_op1);
}")
(define_expand "sltu"
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(ltu:SI (match_dup 1) (match_dup 2)))]
""
"
{
operands[1] = a29k_compare_op0;
operands[2] = a29k_compare_op1;
}")
(define_expand "sleu"
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(leu:SI (match_dup 1) (match_dup 2)))]
""
"
{
operands[1] = a29k_compare_op0;
operands[2] = a29k_compare_op1;
}")
(define_expand "sgt"
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(gt:SI (match_dup 1) (match_dup 2)))]
""
"
{
operands[1] = a29k_compare_op0;
operands[2] = a29k_compare_op1;
}")
(define_expand "sge"
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(ge:SI (match_dup 1) (match_dup 2)))]
""
"
{
operands[1] = a29k_compare_op0;
operands[2] = a29k_compare_op1;
}")
(define_expand "sgtu"
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(gtu:SI (match_dup 1) (match_dup 2)))]
""
"
{
operands[1] = a29k_compare_op0;
operands[2] = a29k_compare_op1;
}")
(define_expand "sgeu"
[(set (match_operand:SI 0 "gpc_reg_operand" "")
(geu:SI (match_dup 1) (match_dup 2)))]
""
"
{
operands[1] = a29k_compare_op0;
operands[2] = a29k_compare_op1;
}")
;; Now define the actual jump insns.
(define_insn ""
[(set (pc)
(if_then_else (match_operator 0 "branch_operator"
[(match_operand:SI 1 "gpc_reg_operand" "r")
(const_int 0)])
(label_ref (match_operand 2 "" ""))
(pc)))]
""
"jmp%b0 %1,%l2%#"
[(set_attr "type" "branch")])
(define_insn ""
[(set (pc)
(if_then_else (match_operator 0 "branch_operator"
[(match_operand:SI 1 "gpc_reg_operand" "r")
(const_int 0)])
(return)
(pc)))]
"null_epilogue ()"
"jmp%b0i %1,lr0%#"
[(set_attr "type" "branch")])
(define_insn ""
[(set (pc)
(if_then_else (match_operator 0 "branch_operator"
[(match_operand:SI 1 "gpc_reg_operand" "r")
(const_int 0)])
(pc)
(label_ref (match_operand 2 "" ""))))]
""
"jmp%B0 %1,%l2%#"
[(set_attr "type" "branch")])
(define_insn ""
[(set (pc)
(if_then_else (match_operator 0 "branch_operator"
[(match_operand:SI 1 "gpc_reg_operand" "r")
(const_int 0)])
(pc)
(return)))]
"null_epilogue ()"
"jmp%B0i %1,lr0%#"
[(set_attr "type" "branch")])
(define_insn "jump"
[(set (pc)
(label_ref (match_operand 0 "" "")))]
""
"jmp %e0%E0"
[(set_attr "type" "branch")])
(define_insn "return"
[(return)]
"null_epilogue ()"
"jmpi lr0%#"
[(set_attr "type" "branch")])
(define_insn "indirect_jump"
[(set (pc)
(match_operand:SI 0 "gpc_reg_operand" "r"))]
""
"jmpi %0%#"
[(set_attr "type" "branch")])
(define_insn "tablejump"
[(set (pc)
(match_operand:SI 0 "gpc_reg_operand" "r"))
(use (label_ref (match_operand 1 "" "")))]
""
"jmpi %0%#"
[(set_attr "type" "branch")])
;; JMPFDEC
(define_insn ""
[(set (pc)
(if_then_else (ge (match_operand:SI 0 "gpc_reg_operand" "r")
(const_int 0))
(label_ref (match_operand 1 "" ""))
(pc)))
(set (match_dup 0)
(plus:SI (match_dup 0)
(const_int -1)))]
""
"jmpfdec %0,%l1%#"
[(set_attr "type" "branch")])
;;- Local variables:
;;- mode:emacs-lisp
;;- comment-start: ";;- "
;;- eval: (set-syntax-table (copy-sequence (syntax-table)))
;;- eval: (modify-syntax-entry ?[ "(]")
;;- eval: (modify-syntax-entry ?] ")[")
;;- eval: (modify-syntax-entry ?{ "(}")
;;- eval: (modify-syntax-entry ?} "){")
;;- End: