home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Fresh Fish 2
/
FFMCD02.bin
/
useful
/
lib
/
emacs
/
18.59
/
etc
/
aix.dump
< prev
next >
Wrap
Text File
|
1991-01-28
|
11KB
|
219 lines
The following text was written by someone at IBM to describe an older
version of the code for dumping on AIX.
I (rms) couldn't understand the code, and I can't fully understand
this text either. I rewrote the code to use the same basic
principles, as far as I understood them, but more cleanly. This
rewritten code does not always work. In fact, the basic method
seems to be intrinsically flawed.
Since then, someone else implemented a different way of dumping on
the RS/6000, which does seem to work. None of the following
applies to the way Emacs now dumps on the 6000. However, the
current method fails to use shared libraries. Anyone who might be
interested in trying to resurrect the previous method might still
find the following information useful.
It seems that the IBM dumping code was simply set up to detect when
the dumped data cannot be used, and in that case to act approximately
as if CANNOT_DUMP had been defined all along. (This is buried in
paragraph 1.) It seems simpler just to define CANNOT_DUMP, since
Emacs is not set up to decide at run time whether there is dumping or
not, and doing so correctly would be a lot of work.
Note that much of the other information, such as the name and format
of the dumped data file, has been changed.
--rms
A different approach has been taken to implement the
"dump/load" feature of GNU Emacs for AIX 3.1. Traditionally the
unexec function creates a new a.out executable file which contains
preloaded Lisp code. Executing the new a.out file (normally called
xemacs) provides rapid startup since the standard suite of Lisp code
is preloaded as part of the executable file.
AIX 3.1 architecture precludes the use of this technique
because the dynamic loader cannot guarantee a fixed starting location
for the process data section. The loader loads all shared library
data BEFORE process data. When a shared library changes its data
space, the process initial data section address (_data) will change
and all global process variables are automatically relocated to new
addresses. This invalidates the "dumped" Emacs executable which has
data addresses which are not relocatable and now corrupt. Emacs would
fail to execute until rebuilt with the new libraries.
To circumvent the dynamic loader feature of AIX 3.1, the dump process
has been modified as follows:
1) A new executable file is NOT created. Instead, both pure and
impure data are saved by the dump function and automatically
reloaded during process initialization. If any of the saved data
is unavailable or invalid, loadup.el will be automatically loaded.
2) Pure data is defined as a shared memory segment and attached
automatically as read-only data during initialization. This
allows the pure data to be a shared resource amoung all Emacs
processes. The shared memory segment size is PURESIZE bytes.
If the shared memory segment is unavailable or invalid, a new
shared memory segment is created and the impure data save file
is destroyed, forcing loadup.el to be reloaded.
3) The ipc key used to create and access Emacs shared memory is
SHMKEY and can be overridden by the environment symbol EMACSSHMKEY.
Only one ipc key is allowed per system. The environment symbol
is provided in case the default ipc key has already been used.
4) Impure data is written to the ../bin/.emacs.data file by the
dump function. This file contains the process' impure data
at the moment of load completion. During Emacs initialization,
the process' data section is expanded and overwritten
with the .emacs.data file contents.
The following are software notes concerning the GNU Emacs dump function under AIX 3.1:
1) All of the new dump/load code is activated by the #ifdef SHMKEY
conditional.
2) The automatic loading of loadup.el does NOT cause the dump function
to be performed. Therefore once the pure/impure data is discarded,
someone must remake Emacs to create the saved data files. This
should only be necessary when Emacs is first installed or whenever
AIX is upgraded.
3) Emacs will exit with an error if executed in a non-X environment
and the dump function was performed within a X window. Therefore
the dump function should always be performed in a non-X
environment unless the X environment will ALWAYS be available.
4) Emacs only maintains the lower 24 bits of any data address. The
remaining upper 8 bits are reset by the XPNTR macro whenever any
Lisp object is referenced. This poses a serious problem because
pure data is stored in segment 3 (shared memory) and impure data
is stored in segment 2 (data). To reset the upper 8 address bits
correctly, XPNTR must guess as to which type of data is represented
by the lower 24 address bits. The technique chosen is based upon
the fact that pure data offsets in segment 3 range from
0 -> PURESIZE-1, which are relatively small offsets. Impure data
offsets in segment 2 are relatively large (> 0x40000) because they
must follow all shared library data. Therefore XPNTR adds segment
3 to each data offset which is small (below PURESIZE) and adds
segment 2 to all other offsets. This algorithm will remain valid
as long as a) pure data size remains relatively small and b) process
data is loaded after shared library data.
To eliminate this guessing game, Emacs must preserve the 32-bit
address and add additional data object overhead for the object type
and garbage collection mark bit.
5) The data section written to .emacs.data is divided into three
areas as shown below. The file header contains four character
pointers which are used during automatic data loading. The file's
contents will only be used if the first three addresses match
their counterparts in the current process. The fourth address is
the new data segment address required to hold all of the preloaded
data.
.emacs.data file format
+---------------------------------------+ \
| address of _data | \
+---------------------------------------+ \
| address of _end | \
+---------------------------------------+ file header
| address of initial sbrk(0) | /
+---------------------------------------+ /
| address of final sbrk(0) | /
+---------------------------------------+ /
\ \
\ \
all data to be loaded from
_data to _end
\ \
\ \
+---------------------------------------+
\ \
\ \
all data to be loaded from
initial to final sbrk(0)
\ \
+---------------------------------------+
Sections two and three contain the preloaded data which is
resotred at locations _data and initial sbrk(0) respectively.
The reason two separate sections are needed is that process
initialization allocates data (via malloc) prior to main()
being called. Therefore _end is several kbytes lower than
the address returned by an initial sbrk(0). This creates a
hole in th