home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Black Box 4
/
BlackBox.cdr
/
progc
/
djlsr106.arj
/
RATIONAL.CC
< prev
next >
Wrap
C/C++ Source or Header
|
1992-03-30
|
8KB
|
401 lines
/*
Copyright (C) 1988 Free Software Foundation
written by Doug Lea (dl@rocky.oswego.edu)
This file is part of the GNU C++ Library. This library is free
software; you can redistribute it and/or modify it under the terms of
the GNU Library General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your
option) any later version. This library is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free Software
Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifdef __GNUG__
#pragma implementation "Rational.h"
#endif
#include <Rational.h>
#include <std.h>
#include <math.h>
#include <values.h>
#include <builtin.h>
void Rational::error(const char* msg) const
{
(*lib_error_handler)("Rational", msg);
}
static const Integer _Int_One(1);
void Rational::normalize()
{
int s = sign(den);
if (s == 0)
error("Zero denominator.");
else if (s < 0)
{
den.negate();
num.negate();
}
Integer g = gcd(num, den);
if (ucompare(g, _Int_One) != 0)
{
num /= g;
den /= g;
}
}
void add(const Rational& x, const Rational& y, Rational& r)
{
if (&r != &x && &r != &y)
{
mul(x.num, y.den, r.num);
mul(x.den, y.num, r.den);
add(r.num, r.den, r.num);
mul(x.den, y.den, r.den);
}
else
{
Integer tmp;
mul(x.den, y.num, tmp);
mul(x.num, y.den, r.num);
add(r.num, tmp, r.num);
mul(x.den, y.den, r.den);
}
r.normalize();
}
void sub(const Rational& x, const Rational& y, Rational& r)
{
if (&r != &x && &r != &y)
{
mul(x.num, y.den, r.num);
mul(x.den, y.num, r.den);
sub(r.num, r.den, r.num);
mul(x.den, y.den, r.den);
}
else
{
Integer tmp;
mul(x.den, y.num, tmp);
mul(x.num, y.den, r.num);
sub(r.num, tmp, r.num);
mul(x.den, y.den, r.den);
}
r.normalize();
}
void mul(const Rational& x, const Rational& y, Rational& r)
{
mul(x.num, y.num, r.num);
mul(x.den, y.den, r.den);
r.normalize();
}
void div(const Rational& x, const Rational& y, Rational& r)
{
if (&r != &x && &r != &y)
{
mul(x.num, y.den, r.num);
mul(x.den, y.num, r.den);
}
else
{
Integer tmp;
mul(x.num, y.den, tmp);
mul(y.num, x.den, r.den);
r.num = tmp;
}
r.normalize();
}
void Rational::invert()
{
Integer tmp = num;
num = den;
den = tmp;
int s = sign(den);
if (s == 0)
error("Zero denominator.");
else if (s < 0)
{
den.negate();
num.negate();
}
}
int compare(const Rational& x, const Rational& y)
{
int xsgn = sign(x.num);
int ysgn = sign(y.num);
int d = xsgn - ysgn;
if (d == 0 && xsgn != 0) d = compare(x.num * y.den, x.den * y.num);
return d;
}
Rational::Rational(double x)
{
num = 0;
den = 1;
if (x != 0.0)
{
int neg = x < 0;
if (neg)
x = -x;
const long shift = 15; // a safe shift per step
const double width = 32768.0; // = 2^shift
const int maxiter = 20; // ought not be necessary, but just in case,
// max 300 bits of precision
int expt;
double mantissa = frexp(x, &expt);
long exponent = expt;
double intpart;
int k = 0;
while (mantissa != 0.0 && k++ < maxiter)
{
mantissa *= width;
mantissa = modf(mantissa, &intpart);
num <<= shift;
num += (long)intpart;
exponent -= shift;
}
if (exponent > 0)
num <<= exponent;
else if (exponent < 0)
den <<= -exponent;
if (neg)
num.negate();
}
normalize();
}
Integer trunc(const Rational& x)
{
return x.num / x.den ;
}
Rational pow(const Rational& x, const Integer& y)
{
long yy = long(y);
return pow(x, yy);
}
#if defined(__GNUG__) && !defined(NO_NRV)
Rational operator - (const Rational& x) return r(x)
{
r.negate();
}
Rational abs(const Rational& x) return r(x)
{
if (sign(r.num) < 0) r.negate();
}
Rational sqr(const Rational& x) return r
{
mul(x.num, x.num, r.num);
mul(x.den, x.den, r.den);
r.normalize();
}
Integer floor(const Rational& x) return q
{
Integer r;
divide(x.num, x.den, q, r);
if (sign(x.num) < 0 && sign(r) != 0) q--;
}
Integer ceil(const Rational& x) return q
{
Integer r;
divide(x.num, x.den, q, r);
if (sign(x.num) >= 0 && sign(r) != 0) q++;
}
Integer round(const Rational& x) return q
{
Integer r;
divide(x.num, x.den, q, r);
r <<= 1;
if (ucompare(r, x.den) >= 0)
{
if (sign(x.num) >= 0)
q++;
else
q--;
}
}
// power: no need to normalize since num & den already relatively prime
Rational pow(const Rational& x, long y) return r
{
if (y >= 0)
{
pow(x.num, y, r.num);
pow(x.den, y, r.den);
}
else
{
y = -y;
pow(x.num, y, r.den);
pow(x.den, y, r.num);
if (sign(r.den) < 0)
{
r.num.negate();
r.den.negate();
}
}
}
#else
Rational operator - (const Rational& x)
{
Rational r(x); r.negate(); return r;
}
Rational abs(const Rational& x)
{
Rational r(x);
if (sign(r.num) < 0) r.negate();
return r;
}
Rational sqr(const Rational& x)
{
Rational r;
mul(x.num, x.num, r.num);
mul(x.den, x.den, r.den);
r.normalize();
return r;
}
Integer floor(const Rational& x)
{
Integer q;
Integer r;
divide(x.num, x.den, q, r);
if (sign(x.num) < 0 && sign(r) != 0) q--;
return q;
}
Integer ceil(const Rational& x)
{
Integer q;
Integer r;
divide(x.num, x.den, q, r);
if (sign(x.num) >= 0 && sign(r) != 0) q++;
return q;
}
Integer round(const Rational& x)
{
Integer q;
Integer r;
divide(x.num, x.den, q, r);
r <<= 1;
if (ucompare(r, x.den) >= 0)
{
if (sign(x.num) >= 0)
q++;
else
q--;
}
return q;
}
Rational pow(const Rational& x, long y)
{
Rational r;
if (y >= 0)
{
pow(x.num, y, r.num);
pow(x.den, y, r.den);
}
else
{
y = -y;
pow(x.num, y, r.den);
pow(x.den, y, r.num);
if (sign(r.den) < 0)
{
r.num.negate();
r.den.negate();
}
}
return r;
}
#endif
ostream& operator << (ostream& s, const Rational& y)
{
if (y.denominator() == 1)
s << y.numerator();
else
{
s << y.numerator();
s << "/";
s << y.denominator();
}
return s;
}
istream& operator >> (istream& s, Rational& y)
{
#ifdef _OLD_STREAMS
if (!s.good())
{
return s;
}
#else
if (!s.ipfx(0))
{
s.set(ios::failbit); // Redundant if using GNU iostreams.
return s;
}
#endif
Integer n = 0;
Integer d = 1;
if (s >> n)
{
char ch = 0;
s.get(ch);
if (ch == '/')
{
s >> d;
}
else
{
s.putback(ch);
}
}
y = Rational(n, d);
return s;
}
int Rational::OK() const
{
int v = num.OK() && den.OK(); // have valid num and denom
v &= sign(den) > 0; // denominator positive;
v &= ucompare(gcd(num, den), _Int_One) == 0; // relatively prime
if (!v) error("invariant failure");
return v;
}