home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Black Box 4
/
BlackBox.cdr
/
progc
/
ctools10.arj
/
AVL.C
next >
Wrap
C/C++ Source or Header
|
1991-12-31
|
30KB
|
1,051 lines
/****************************************************************************
*
* Copyright (C) 1991 Kendall Bennett.
* All rights reserved.
*
* Filename: $RCSfile: avl.c $
* Version: $Revision: 1.3 $
*
* Language: ANSI C
* Environment: any
*
* Description: Module to implement balanced AVL trees.
*
* $Id: avl.c 1.3 91/12/31 19:40:43 kjb Exp $
*
* Revision History:
* -----------------
*
* $Log: avl.c $
* Revision 1.3 91/12/31 19:40:43 kjb
* Modified include file directories
*
* Revision 1.2 91/09/27 03:10:00 kjb
* Added stuff keep track of the number of nodes in the tree.
*
* Revision 1.1 91/09/27 02:50:49 kjb
* Initial revision
*
****************************************************************************/
#include <stdio.h>
#include <malloc.h>
#include <signal.h>
#include "debug.h"
#include "avl.h"
/*--------------------------- Globals Variables ---------------------------*/
PRIVATE AVL_TREE *Tree; /* Pointer to tree we are working with */
PRIVATE AVL_BUCKET *Node; /* Pointer to node we are working with */
PRIVATE void *Conflicting; /* Conflicting node */
PRIVATE bool Notfound; /* Flags if a node cannot be found */
PRIVATE void (*Visit)(void*,void*);
PRIVATE void (*Prnt)(FILE*,void*);
PRIVATE void *Params,*Lower,*Upper;
PRIVATE FILE* Out;
PRIVATE char Map[MAXLEVEL / 8];
PRIVATE char *Graph_chars[] = { "│","┌──","└──","──┤","──┘","──┐"};
PRIVATE char *Norm_chars[] = { "|","+--","+--","--+","--+","--+"};
PRIVATE char **Cset;
/*----------------------------- Implementation ----------------------------*/
PUBLIC void *avl_newnode(int size)
/****************************************************************************
*
* Function: avl_newnode
* Parameters: size - Amount of memory to allocate for node
* Returns: Pointer to the allocated nodes user space.
*
* Description: Allocates the memory required for a node, adding a small
* header at the start of the node. We return a reference to
* the user space of the node, as if it had be allocated via
* malloc.
*
****************************************************************************/
{
AVL_BUCKET *n;
if ( !(n = (AVL_BUCKET*)malloc(size+sizeof(AVL_BUCKET))) ) {
fprintf(stderr,"Can't get memory for BUCKET\n");
raise(SIGABRT);
return NULL;
}
return AVL_USERSPACE(n); /* Return pointer to user space */
}
/*-------------------------------------------------------------------------*/
PUBLIC void avl_freenode(void *node)
/****************************************************************************
*
* Function: avl_freesym
* Parameters: node - Node to free
*
* Description: Frees a node previously allocated with avl_newsym().
*
****************************************************************************/
{
free(AVL_HEADER(node));
}
/*-------------------------------------------------------------------------*/
PUBLIC AVL_TREE *avl_init(int (*cmp_function)(void*,void*))
/****************************************************************************
*
* Function: avl_init
* Parameters: cmp_function - Function to compare the value of two nodes
* prnt_function - Function to print the value of a node
* Returns: Pointer to the newly created AVL tree.
*
* Description: Makes a new AVL tree with no elements and returns a pointer
* to it.
*
****************************************************************************/
{
AVL_TREE *tree;
if( (tree = (AVL_TREE*)malloc(sizeof(AVL_TREE))) != NULL) {
tree->count = 0;
tree->cmp = cmp_function;
tree->root = NULL;
}
else {
fprintf(stderr,"Insufficient memory for AVL tree\n");
raise(SIGABRT);
return NULL;
}
return tree;
}
/*-------------------------------------------------------------------------*/
PRIVATE void (*_freeNode)(void*);
PRIVATE void free_subtree(AVL_BUCKET *t)
/****************************************************************************
*
* Function: free_subtree
* Parameters: t - Subtree to free
*
* Description: Recursive routine to free the elements of a particular
* subtree.
*
****************************************************************************/
{
if (t) {
free_subtree(t->left);
free_subtree(t->right);
_freeNode(AVL_USERSPACE(t));
}
}
PUBLIC void avl_empty(AVL_TREE *t,void (*freeNode)(void*))
/****************************************************************************
*
* Function: avl_empty
* Parameters: t - Tree to kill
* freeNode - Routine to free each node of the tree
*
* Description: Deletes the entire AVL tree from memory including all the
* nodes of the tree. We call the user supplied routine
* freeNode() to free each node in the tree. This allows the
* user program to perform any extra processing that is
* required to kill each node (for example if they contain
* pointers to other items on the heap). If no extra
* processing is required, just pass the address of
* avl_freenode(), ie:
*
* avl_kill(myTree,avl_freenode);
*
****************************************************************************/
{
_freeNode = freeNode;
free_subtree(t->root);
t->root = NULL;
}
/*-------------------------------------------------------------------------*/
PRIVATE void insert(AVL_BUCKET **pp)
/****************************************************************************
*
* Function: insert
* Parameters: pp - Pointer to pointer to root of subtree to insert into
*
* Description: Internal recursive routine to insert a node into an
* AVL tree. Expects the global variables Tree, and Node
* to be set up. If we encounter a duplicate key, we return
* the address of this key in the global Conflicting;
*
****************************************************************************/
{
AVL_BUCKET *p = *pp;
AVL_BUCKET *p1,*p2;
int relation; /* Relationship between root and Node */
static bool h = 0; /* Set to indicate that subtree has grown */
if (p == NULL) {
/* We have found a valid spot for the node, so insert it and
* let the higher level recursions know that the tree has
* subsequently grown.
*/
p = Node;
p->left = p->right = NULL;
p->bal = BAL;
h = true;
}
else if ((relation = Tree->cmp(AVL_USERSPACE(p),
AVL_USERSPACE(Node))) == 0) {
/* We have a node with a duplicate key that we cannot insert
* into the tree. We return the address of the user space for
* the node in the global Conflicting
*/
Conflicting = AVL_USERSPACE(p);
h = false;
}
else if (relation > 0) {
/* If relation is > 0, then the current node p is greater than
* Node, so we insert the node into the left subtree.
*/
insert(&p->left);
if (h) { /* The left subtree has grown in height */
switch (p->bal) {
case LH:
/* The left subtree has grown taller than it is allowed,
* so we must perform a rebalance of the tree.
*/
p1 = p->left;
if (p1->bal == LH) {
/* Left subtree is LEFTHIGH, so we need to do a
* single right rotation to rebalance the subtree p.
*/
p->left = p1->right;
p1->right = p;
p->bal = BAL;
p = p1;
}
else {
/* Left subtree is RIGHTHIGH, so we need to do a
* double right rotation to rebalance the subtree p.
*/
p2 = p1->right;
p1->right = p2->left;
p2->left = p1;
p->left = p2->right;
p2->right = p;
p->bal = (p2->bal == LH) ? RH : BAL;
p1->bal = (p2->bal == RH) ? LH : BAL;
p = p2;
}
p->bal = BAL; /* Tree is now balanced */
h = 0;
break;
case BAL:
/* The subtree was previously balanced, so now it
* simply becomes LEFTHIGH.
*/
p->bal = LH;
break;
case RH:
/* The subtree was previously RIGHTHIGH, so now it
* has become balanced. In this case the height of this
* particular subtree has not grown, so h is reset to
* false.
*/
p->bal = BAL;
h = false;
}
}
}
else {
/* Relation was < 0, indicating that the current node p is smaller
* than Node, so we insert the new node into the right subtree.
*/
insert(&p->right);
if (h) { /* The right subtree has grown in height */
switch (p->bal) {
case LH:
/* The subtree was previously LEFTHIGH, so now it
* has become balanced. In this case the height of this
* particular subtree has not grown, so h is reset to
* false.
*/
p->bal = BAL;
h = false;
break;
case BAL:
/* The subtree was previously balanced, so now it
* simply becomes RIGHTHIGH.
*/
p->bal = RH;
break;
case RH:
/* The right subtree has grown taller than it is allowed,
* so we must perform a rebalance of the tree.
*/
p1 = p->right;
if (p1->bal == RH) {
/* Right subtree is RIGHTHIGH, so we need to do a
* single left rotation to rebalance the subtree p.
*/
p->right = p1->left;
p1->left = p;
p->bal = BAL;
p = p1;
}
else {
/* Right subtree is LEFTHIGH, so we need to do a
* double left rotation to rebalance the subtree p.
*/
p2 = p1->left;
p1->left = p2->right;
p2->right = p1;
p->right = p2->left;
p2->left = p;
p->bal = (p2->bal == RH) ? LH : BAL;
p1->bal = (p2->bal == LH) ? RH : BAL;
p = p2;
}
p->bal = BAL; /* Tree is now balanced */
h = 0;
}
}
}
/* Reset the root of this subtree to the new root p, since it may have
* changed during a rotate of the tree.
*/
*pp = p;
}
PUBLIC void *avl_insert(AVL_TREE *tree,void *node)
/****************************************************************************
*
* Function: avl_insert
* Parameters: tree - Tree to insert the node into
* node - New node to insert into the tree
* Returns: NULL on success, or a pointer to the conflicting node.
*
* Description: Inserts a new node into an AVL tree. Duplicate keys are
* currently not supported.
*
****************************************************************************/
{
Tree = tree;
Node = AVL_HEADER(node);
Conflicting = NULL;
insert(&tree->root);
if (!Conflicting) tree->count++;
return Conflicting;
}
/*-------------------------------------------------------------------------*/
PRIVATE bool balance_left(AVL_BUCKET **pp)
/****************************************************************************
*
* Function: balance_left
* Parameters: pp - Point to root of subtree to balance
* Returns: True if the entire subtree shrank, false if not
*
* Description: Routine to rebalance the subtree pointed to by pp when its
* left subtree has just shrunk. We adjust the balance factors
* and rebalance the subtree adjusting pp to point to the
* new root of the subtree.
*
****************************************************************************/
{
AVL_BUCKET *p,*p1,*p2;
short b1,b2;
bool subtree_shrank = true;
p = *pp;
switch (p->bal) {
case LH:
/* The subtree was previously left high. Since the left subtree
* just shrank, this tree is now balanced while the overall
* height has been reduced.
*/
p->bal = BAL;
break;
case BAL:
/* The subtree was previously balanced, so we simply make
* it right high, and signal that it did not shrink.
*/
p->bal = RH;
subtree_shrank = false;
break;
case RH:
/* The subtree was previously right high. In this case we must do
* either a single or double left rotation. If the right
* subtree was balanced or right high, we only need a single
* left rotation. We do a double left rotate if the right subtree
* was left high.
*/
p1 = p->right;
b1 = p1->bal;
if (b1 >= BAL) {
p->right = p1->left; /* Single left rotatation */
p1->left = p;
if (b1 == RH)
p->bal = p1->bal = BAL;
else {
p->bal = RH;
p1->bal = LH;
subtree_shrank = false;
}
p = p1; /* Right subtree is new root */
}
else {
p2 = p1->left; /* Double left rotation */
b2 = p2->bal;
p1->left = p2->right;
p2->right = p1;
p->right = p2->left;
p2->left = p;
p->bal = (b2 == RH) ? LH : BAL;
p1->bal = (b2 == LH) ? RH : BAL;
p2->bal = BAL;
p = p2;
}
}
*pp = p;
return subtree_shrank;
}
PRIVATE bool balance_right(AVL_BUCKET **pp)
/****************************************************************************
*
* Function: balance_right
* Parameters: pp - Point to root of subtree to balance
* Returns: True if the entire subtree shrank, false if not
*
* Description: Routine to rebalance the subtree pointed to by pp when its
* right subtree has just shrunk. We adjust the balance factors
* and rebalance the subtree adjusting pp to point to the
* new root of the subtree.
*
****************************************************************************/
{
AVL_BUCKET *p,*p1,*p2;
short b1, b2;
bool subtree_shrank = true;
p = *pp;
switch (p->bal) {
case RH:
/* The subtree was previously right high. Since the right subtree
* just shrank, this tree is now balanced while the overall
* height has been reduced.
*/
p->bal = BAL;
break;
case BAL:
/* The subtree was previously balanced, so we simply make
* it right high, and signal that it did not shrink.
*/
p->bal = LH;
subtree_shrank = false;
break;
case LH:
/* The subtree was previously left high. In this case we must do
* either a single or double right rotation. If the left
* subtree was balanced or left high, we only need a single
* right rotation. We do a double right rotate if the left
* subtree was right high.
*/
p1 = p->left;
b1 = p1->bal;
if (b1 <= BAL) {
p->left = p1->right; /* Single right rotation */
p1->right = p;
if (b1 == LH)
p->bal = p1->bal = BAL;
else {
p->bal = LH;
p1->bal = RH;
subtree_shrank = true;
}
p = p1;
}
else {
p2 = p1->right; /* Double right rotation */
b2 = p2->bal;
p1->right = p2->left;
p2->left = p1;
p->left = p2->right;
p2->right = p;
p->bal = (b2 == LH) ? LH : BAL;
p1->bal = (b2 == RH) ? RH : BAL;
p2->bal = BAL;
p = p2;
}
}
*pp = p;
return subtree_shrank;
}
PRIVATE bool descend(AVL_BUCKET **rootp,AVL_BUCKET **pp)
/****************************************************************************
*
* Function: descend
* Parameters: rootp - Pointer to pointer to tree to descend
* pp - Pointer to pointer to node to replace
* Returns: True if the subtree just shrank, false if not.
*
* Description: Routine to descend to the rightmost node of the left
* subtree. When we get there, we move it up into the position
* occupied by pp (retaining pp's balance factor) and delete
* this node. On the way back we rebalance the tree if
* necessary.
*
****************************************************************************/
{
AVL_BUCKET *p = *rootp;
bool has_shrunk,was_left = 0;
if (p->right) {
/* Continue to descend the right subtree, until we can go no
* further. On the way back up the recursion, if the tree has
* shrunk, we rebalance it.
*/
if (rootp == &(*pp)->left)
was_left = true;
has_shrunk = descend(&p->right,pp);
if (was_left)
rootp = &(*pp)->left;
return has_shrunk ? balance_right(rootp) : 0;
}
else {
*rootp = p->left; /* Kill the old link to p */
p->bal = (*pp)->bal; /* Retain the old balance factor */
p->left = (*pp)->left; /* and links */
p->right = (*pp)->right;
Node = *pp; /* Free the node */
*pp = p; /* Replace with p */
return true; /* Subtree has shrunk - rebalance */
}
}
PRIVATE bool delete(AVL_BUCKET **pp)
/****************************************************************************
*
* Function: delete
* Parameters: pp - Pointer to pointer to root of subtree to delete from
* Returns: True if the subtree shrunk in size, false if not.
*
* Description: Internal recursive routine to delete a node from an
* AVL tree. Expects the global variables Tree, and Node
* to be set up. If the node is not found, we set the global
* Notfound to true.
*
****************************************************************************/
{
AVL_BUCKET *p = *pp;
int relation;
if (p == NULL) {
/* We could not locate the node in the tree, so set Notfound to
* true.
*/
Notfound = true;
return false;
}
else if ((relation = Tree->cmp(AVL_USERSPACE(p),
AVL_USERSPACE(Node))) == 0) {
/* We have found the node, so delete it from the tree.
*/
if (p->right == NULL) {
/* There is only a single left node in the tree, so move this
* node up to where p used to be, and then delete p.
*/
*pp = p->left;
Node = p;
return true;
}
else if (p->left == NULL) {
/* There is only a single right node in the tree, so move this
* node up to where p used to be, and then delete p.
*/
*pp = p->right;
Node = p;
return true;
}
else if (descend(&p->left,pp))
return balance_left(pp);
}
else if (relation > 0) {
/* If relation is > 0, then the current node p is greater than
* Node, so we delete node from the left subtree. If the left
* subtree has shrunk in size, we rebalance the tree and return
* the result of this rebalance (tree shrunk, or stayed the same
* size).
*/
if (delete(&p->left))
return balance_left(pp);
}
else {
/* If relation is < 0, then the current node p is less than
* Node, so we delete node from the right subtree. If the right
* subtree has shrunk in size, we rebalance the tree and return
* the result of this rebalance (tree shrunk, or stayed the same
* size).
*/
if (delete(&p->right))
return balance_right(pp);
}
return false;
}
PUBLIC void *avl_delete(AVL_TREE *tree,void *node)
/****************************************************************************
*
* Function: avl_delete
* Parameters: tree - Tree to delete node from
* node - Node to delete from tree
* Returns: Pointer to the node if successful, NULL of failure
*
* Description: Deletes a node from an AVL tree. The node is removed from
* the tree, but it's memory is not released. You must call
* avl_freenode() to free the nodes memory.
*
****************************************************************************/
{
Tree = tree;
Node = AVL_HEADER(node);
Notfound = false;
delete(&tree->root);
if (!Notfound) tree->count--;
return Notfound ? NULL : AVL_USERSPACE(Node);
}
/*-------------------------------------------------------------------------*/
PRIVATE void pre_order(AVL_BUCKET *p)
{
if (p) {
Visit(Params,AVL_USERSPACE(p));
pre_order(p->left);
pre_order(p->right);
}
}
PRIVATE void in_order(AVL_BUCKET *p)
{
if (p) {
in_order(p->left);
Visit(Params,AVL_USERSPACE(p));
in_order(p->right);
}
}
PRIVATE void post_order(AVL_BUCKET *p)
{
if (p) {
post_order(p->left);
post_order(p->right);
Visit(Params,AVL_USERSPACE(p));
}
}
PUBLIC void avl_traverse(AVL_TREE *tree,int order,void (*visit)(void*,void*),
void *params)
/****************************************************************************
*
* Function: avl_preorder
* Parameters: tree - Tree to traverse
*
* Description: Traverses the AVL tree in a pre-order fashion, visiting
* the node first, then the left and then the right subtree.
*
* The function visit() must accept two parameters. The second
* is a pointer to the node to visit, while the first is the
* params argument passed to avl_traverse.
*
****************************************************************************/
{
Visit = visit;
Params = params;
switch (order) {
case PREORDER:
pre_order(tree->root);
break;
case INORDER:
in_order(tree->root);
break;
case POSTORDER:
post_order(tree->root);
}
}
/*-------------------------------------------------------------------------*/
/* Macro to test if the depth bit for level c is set */
#define testbit(level) (Map[level >> 3] & (1 << (level & 0x07)))
#ifdef DEBUG
#define PAD() fprintf(Out," ");
#define PBAL(r) fprintf(Out,"(%c)", r->bal == BAL ? 'B' : r->bal==LH ? 'L' : 'R');
#else
#define PAD()
#define PBAL(r)
#endif
PRIVATE void setbit(int level,bool set_it)
/****************************************************************************
*
* Function: setbit
* Parameters: depth - Depth of bit to set
* set_it - True to set bit, false to reset it
*
* Description: Sets or resets the depth bit for a level. If this bit is
* set, we we draw a vertical line at that depth level.
*
****************************************************************************/
{
if (set_it)
Map[level >> 3] |= 1 << (level & 0x07);
else
Map[level >> 3] &= ~(1 << (level & 0x07));
}
PRIVATE void print_tree(AVL_BUCKET *root,int left_subtree)
/****************************************************************************
*
* Function: print_tree
* Parameters: root - Root of subtree to display
* left_subtree - True if this is a left subtree
*
* Description: Dumps the contents of subtree 'root' to the file Out.
*
****************************************************************************/
{
static int depth = -1; /* Current depth within subtree */
int i;
if (root) {
depth++;
if(root->right)
print_tree(root->right,false);
else
setbit(depth+1,true);
for(i = 1; i <= depth; i++) {
Prnt(Out,NULL);
PAD();
if (i == depth)
fprintf(Out," %s", left_subtree ? Cset[2] : Cset[1]);
else if(testbit(i))
fprintf(Out," %s ", Cset[0]);
else
fprintf(Out," ");
}
Prnt(Out,AVL_USERSPACE(root));
PBAL(root);
fprintf(Out,"%s\n",root->left ? (root->right ? Cset[3] : Cset[5]) :
(root->right ? Cset[4] : ""));
setbit(depth,left_subtree ? false : true);
if(root->left)
print_tree(root->left,true);
else
setbit(depth+1,false);
depth--;
}
}
PUBLIC void avl_print(FILE *out,AVL_TREE *tree,void (*prnt)(FILE*,void*),
bool graph_chars)
/****************************************************************************
*
* Function: avl_print
* Parameters: out - Stream to print to
* tree - Tree to print out
* prnt - Routine to print each node
* graph_chars - True if we print with graphics characters
*
* Description: Dumps the contents of the AVL tree to the specified file.
* If graph_chars is true, the structure of the tree is
* printed using IBM graphics characters, otherwise it is
* printed using standard ASCII characters. If show_balance
* is true, the balance factors are displayed.
*
* The routine prnt() takes a pointer to a file to print the
* node to, and a pointer to the node to print. It must print
* every node in a field of the same width, and when passed
* a null pointer for the node it should print a blank field
* the same width as the nodes. This provides correct
* formatting for the printed tree.
*
* The tree can have a maximum height of 64 levels. If the
* tree is taller than this, the result is undefined. A
* balanced AVL tree with 64 levels would have in the order
* of 1e19 nodes!
*
****************************************************************************/
{
Tree = tree;
Out = out;
Prnt = prnt;
Cset = graph_chars ? Graph_chars : Norm_chars;
print_tree(tree->root,false);
}
/*-------------------------------------------------------------------------*/
PUBLIC void *avl_findsym(AVL_TREE *tree,void *node)
/****************************************************************************
*
* Function: avl_findsym
* Parameters: tree - Tree to search for the symbol
* node - Node containing key to search for
* Returns: Pointer to the node if found, NULL if not.
*
* Description: Searches the AVL tree for the specified node and returns
* it if it is found.
*
****************************************************************************/
{
AVL_BUCKET *p;
int relation;
p = tree->root;
while (p) {
if ((relation = tree->cmp(node,AVL_USERSPACE(p))) == 0)
return AVL_USERSPACE(p);
else if (relation > 0)
p = p->right;
else
p = p->left;
}
return NULL;
}
/*-------------------------------------------------------------------------*/
PRIVATE void range_search(AVL_BUCKET *root)
/****************************************************************************
*
* Function: range_search
* Parameters: root - Root of subtree to range search
*
* Description: Recursive routine to range search a subtree.
*
****************************************************************************/
{
if (root) {
if (Tree->cmp(AVL_USERSPACE(root),Lower) < 0) {
/* If the root node is smaller than the lower bound, then recurse
* down the right subtree.
*/
range_search(root->right);
}
else if (Tree->cmp(AVL_USERSPACE(root),Upper) > 0) {
/* If the root node is larger than the lower bound, then recurse
* down the left subtree.
*/
range_search(root->left);
}
else {
/* We are within the range so recurse down the left subtree,
* visit the node and then recurse down the right subtree.
*/
range_search(root->left);
Visit(Params,AVL_USERSPACE(root));
range_search(root->right);
}
}
}
PUBLIC void avl_range(AVL_TREE *tree,void *lower,void *upper,
void (*visit)(void*,void*),void *params)
/****************************************************************************
*
* Function: avl_range
* Parameters: tree - Tree to range search
* lower - Lower bound of range search (inclusive)
* upper - Upper bound of range search (inclusive)
* visit - Function to visit each node in range
* params - Parameters for the visit routine.
*
* Description: Calls visit for every node in the range [lower,upper]
* for the AVL tree 'tree'. Visit must accept two parameters.
* The first is the params argument passed to this function,
* while the second is a pointer to the node to visit.
*
****************************************************************************/
{
Tree = tree;
Visit = visit;
Params = params;
Lower = lower;
Upper = upper;
range_search(tree->root);
}
/*-------------------------------------------------------------------------*/
int delmin(AVL_BUCKET **pp)
/****************************************************************************
*
* Function: delmin
* Parameters: root - Root of subtree to delete from
* Returns: True if the subtree shrank.
*
* Description: Recursive routine to delete the smallest node from an
* AVL tree.
*
****************************************************************************/
{
AVL_BUCKET *p = *pp;
if (p->left)
return delmin(&p->left) ? balance_left(pp) : 0;
else {
*pp = p->right; /* Delete the node */
Node = p;
return true; /* Subtree just shrank */
}
}
PUBLIC void *avl_delmin(AVL_TREE *tree)
/****************************************************************************
*
* Function: avl_delmin
* Parameters: tree - Tree to delete node from
* Returns: Pointer to the node found, or NULL on error.
*
* Description: Deletes (removes) the smallest node from an AVL tree. The
* tree is rebalanced if need be. Note that the node is not
* freed. You will need to call avl_freenode() to do this.
*
****************************************************************************/
{
Node = NULL;
delmin(&tree->root);
if (Node) tree->count--;
return Node ? AVL_USERSPACE(Node) : NULL;
}
/*-------------------------------------------------------------------------*/
int delmax(AVL_BUCKET **pp)
/****************************************************************************
*
* Function: delmax
* Parameters: root - Root of subtree to delete from
* Returns: True if the subtree shrank.
*
* Description: Recursive routine to delete the largest node from an
* AVL tree.
*
****************************************************************************/
{
AVL_BUCKET *p = *pp;
if (p->right)
return delmax(&p->right) ? balance_right(pp) : 0;
else {
*pp = p->left; /* Delete the node */
Node = p;
return true; /* Subtree just shrank */
}
}
PUBLIC void *avl_delmax(AVL_TREE *tree)
/****************************************************************************
*
* Function: avl_delmax
* Parameters: tree - Tree to delete node from
* Returns: Pointer to the node found, or NULL on error.
*
* Description: Deletes (removes) the largest node from an AVL tree. The
* tree is rebalanced if need be. Note that the node is not
* freed. You will need to call avl_freenode() to do this.
*
****************************************************************************/
{
Node = NULL;
delmax(&tree->root);
if (Node) tree->count--;
return Node ? AVL_USERSPACE(Node) : NULL;
}
/*-------------------------------------------------------------------------*/