home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Black Box 4
/
BlackBox.cdr
/
progbas
/
realfun.arj
/
COMPTOP.TXT
< prev
next >
Wrap
Text File
|
1991-07-20
|
12KB
|
205 lines
RealFun: Real & Complex Math Libraries for QuickBASIC
COMPTOP.TXT
All the functions and subprograms included in the compfun library, organized
by topic:
Minimum & Maximum (real only)
Usage Inputs Outputs Notes
z = amin(x, y) x, y; sp z, sp min of x, y
z# = dmin(x#, y#) x#, y#; dp z#, dp min of x#, y#
z = amax(x, y) x, y; sp z, sp max of x, y
z# = dmax(x#, y#) x#, y#; dp z#, dp max of x#, y#
Cosine
Usage Inputs Outputs Notes
y = COS(x) x, sp y, sp x in radians
y# = COS(X#) x#, dp y#, dp x# in radians
y = cosd(x) x, sp y, sp x in degrees
y# = dcosd(x#) x#, dp y#, dp x# in degrees
call ccos(x, y, u, v) x, y; sp u, v; sp complex
call cdcos(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
Sine
Usage Inputs Outputs Notes
y = SIN(x) x, sp y, sp x in radians
y# = SIN(X#) x#, dp y#, dp x# in radians
y = sind(x) x, sp y, sp x in degrees
y# = dsind(x#) x#, dp y#, dp x# in degrees
call csin(x, y, u, v) x, y; sp u, v; sp complex
call cdsin(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
Tangent
Usage Inputs Outputs Notes
y = TAN(x) x, sp y, sp x in radians
y# = TAN(X#) x#, dp y#, dp x# in radians
y = tand(x) x, sp y, sp x in degrees
y# = dtand(x#) x#, dp y#, dp x# in degrees
call ctan(x, y, u, v) x, y; sp u, v; sp complex
call cdtan(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
Inverse Cosine
Usage Inputs Outputs Notes
y = acos(x) x, sp y, sp y in radians
y = acosd(x) x, sp y, sp y in degrees
y# = dacos(x#) x#, dp y#, dp y# in radians
y# = dacosd(x#) x#, dp y#, dp y# in degrees
call cacos(x, y, u, v) x, y; sp u, v; sp complex
call cdacos(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
Inverse Sine
Usage Inputs Outputs Notes
y = asin(x) x, sp y, sp y in radians
y = asind(x) x, sp y, sp y in degrees
y# = dasin(x#) x#, dp y#, dp y# in radians
y# = dasind(x#) x#, dp y#, dp y# in degrees
call casin(x, y, u, v) x, y; sp u, v; sp complex
call cdasin(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
Inverse Tangent
Usage Inputs Outputs Notes
y = ATN(x) x, sp y, sp y in radians
y = atnd(x) x, sp y, sp y in degrees
z = atan(y, x) x, y; sp z, sp z in radians
use to determine proper quadrant of z
z = atand(y, x) x, y; sp z, sp z in degrees
use to determine proper quadrant of z
y# = ATN(X#) x#, dp y#, dp y# in radians
y# = datnd(x#) x#, dp y#, dp y# in degrees
z# = datan#(y#, x#) x#, y#; dp z#, dp z in radians
use to determine proper quadrant of z#
z# = datand#(y#, x#) x#, y#; dp z#, dp z in degrees
use to determine proper quadrant of z#
call catan(x, y, u, v) x, y; sp u, v; sp complex
call cdatan(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
Hyperbolic Cosine
Usage Inputs Outputs Notes
y = cosh(x) x, sp y, sp real
y# = dcosh(x#) x#, dp y#, dp real
call ccosh(x, y, u, v) x, y; sp u, v; sp complex
call cdcosh(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
Hyperbolic Sine
Usage Inputs Outputs Notes
y = sinh(x) x, sp y, sp real
y# = dsinh(x#) x#, dp y#, dp real
call csinh(x, y, u, v) x, y; sp u, v; sp complex
call cdsinh(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
Hyperbolic Tangent
Usage Inputs Outputs Notes
y = tanh(x) x, sp y, sp real
y# = dtanh(x#) x#, dp y#, dp real
call ctanh(x, y, u, v) x, y; sp u, v; sp complex
call cdtanh(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
Inverse Hyperbolic Cosine
Usage Inputs Outputs Notes
y = acosh(x) x, sp y, sp real
y# = dacosh(x#) x#, dp y#, dp real
call cacosh(x, y, u, v) x, y; sp u, v; sp complex
call cdacosh(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
Inverse Hyperbolic Sine
Usage Inputs Outputs Notes
y = asinh(x) x, sp y, sp real
y# = dasinh(x#) x#, dp y#, dp real
call casinh(x, y, u, v) x, y; sp u, v; sp complex
call cdasinh(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
Inverse Hyperbolic Tangent
Usage Inputs Outputs Notes
y = atanh(x) x, sp y, sp real
y# = datanh(x#) x#, dp y#, dp real
call catanh(x, y, u, v) x, y; sp u, v; sp complex
call cdatanh(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
Modulo
Usage Inputs Outputs Notes
y = x MOD k% x, sp; k% int y, sp uses integer
base only
y = amod(x, k) x, k; sp y, sp uses any base
y# = x# MOD k% x, dp; k% int y, dp uses integer
base only
y# = dmod(x#, k#) x#, k#; dp y#, dp uses any base
call cmod(x, y, xk, yk, u, v) x, y, xk, u, v; sp complex base
yk; sp
call cdmod(x#, y#, xk#, yk#, x#, y#, xk#, u#, v#; dp complex base
u#, v#) yk#; dp
call nearint(x, y, u%, v%) x, y; sp u%, v%; int nearest integer
(u%, v%)
call dnearint(x#, y#, u&, v&) x#, y#; dp u&, v&; long nearest integer
(u&, v&)
Exponentiation & Logarithms
Usage Inputs Outputs Notes
y = EXP(x) x, sp y, sp real
y# = EXP(x#) x#, dp y#, dp real
call cexp(x, y, u, v) x, y; sp u, v; sp complex
call cdexp(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
y = LOG(x) x, sp y, sp real
y# = LOG(x#) x#, dp y#, dp real
call clog(x, y, u, v) x, y; sp u, v; sp complex
call cdlog(x#, y#, u#, v#) x#, y#; dp u#, v#; dp complex
Multiply & Divide (complex only)
Usage Inputs Outputs Notes
call cmult(x1, y1, x2, y2, x1, y1, x2, u, v; dp (x1, y1) *
u, v) y2; sp (x2, y2)
call cdmult(x1#, y1#, x2#, x1#, y1#, x2#, u#, v#; dp (x1#, y1#) *
y2#, u#, v#) y2#; sp (x2#, y2#)
call cdiv(x1, y1, x2, y2, x1, y1, x2, u, v; dp (x1, y1) /
u, v) y2; sp (x2, y2)
call cddiv(x1#, y1#, x2#, x1#, y1#, x2#, u#, v#; dp (x1#, y1#) /
y2#, u#, v#) y2#; sp (x2#, y2#)
Powers (complex only)
Usage Inputs Outputs Notes
call rpower(x, y, p, u, v) x, y, p; sp u, v; sp (x, y) to real
power p
call cpower(x, y, px, py, x, y, px, u, v; sp complex power
u, v) py; sp (px, py)
call drpower(x#, y#, p#, x#, y#, p#; dp u#, v#; dp real power p#
u#, v#)
call cdpower(x#, y#, px#, x#, y#, px#, u#, v#; dp complex power
py#, u#, v#) py#; dp (px#, py#)
Coordinate Conversion (complex only)
Usage Inputs Outputs Notes
cabs(x, y, r) x, y; sp r; sp magnitude
cdabs(x#, y#, r#) x#, y#; dp r#; dp magnitude
cpolar(x, y, r, t) x, y; sp r, t; sp rect to polar,
t in radians
cpolard(x, y, r, t) x, y; sp r, t; sp rect to polar,
t in degrees
cdpolar(x#, y#, r#, t#) x#, y#; dp r#, t#; dp rect to polar,
t in radians
cdpolard(x#, y#, r#, t#) x#, y#; dp r#, t#; dp rect to polar,
t in degrees
ccart(r, t, x, y) r, t; sp x, y; sp polar to rect,
t in radians
ccartd(r, t, x, y) r, t; sp x, y; sp polar to rect,
t in degrees
cdcart(r#, t#,x#, y#) r#, t#; dp x#, y#; dp polar to rect,
t in radians
cdcartd(r#, t#, x#, y#) r#, t#; dp x#, y#; dp polar to rect,
t in degrees
Notes:
- Functions listed in UPPER CASE are intrinsic to Quick BASIC, and are
included here for completeness.
- The abbreviation sp means single-precision, dp means double-precision.
- Complex numbers are expressed as (x, y) in rectangular coordinates, where
x = real part and y = imaginary part. In polar form, r is the
magnitude or radius, t = the angle (degrees or radians).