home *** CD-ROM | disk | FTP | other *** search
Text File | 1993-05-05 | 45.7 KB | 1,448 lines |
- #############################################################################
- ##
- #A lattperf.g GAP library J\"urgen Mnich
- ##
- #A @(#)$Id: lattperf.g,v 3.5 1993/01/20 17:29:56 felsch Rel $
- ##
- #Y Copyright 1990-1992, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
- ##
- ## This file contains the catalogue of perfect groups. It is taken from the
- ## Cayley routine 'percat' by Guenter Sandloebes and Volkmar Felsch.
- ## Special thanks to Goetz Pfeiffer, who entered some of the following group
- ## descriptions.
- ##
- #H $Log: lattperf.g,v $
- #H Revision 3.5 1993/01/20 17:29:56 felsch
- #H removed overlong lines
- #H
- #H Revision 3.4 1992/12/04 16:05:34 fceller
- #H completed the catalogue to contain all PERCAT
- #H
- #H Revision 3.3 1992/03/17 12:31:20 jmnich
- #H minor style changes, more bug fixes
- #H
- #H Revision 3.2 1992/02/29 13:25:11 jmnich
- #H general library review, some bug fixes
- #H
- #H Revision 3.1 1992/02/12 15:37:22 martin
- #H initial revision under RCS
- #H
- ##
-
-
- #############################################################################
- ##
- ## Abstract generators used in the catalogue.
- ##
- ## Warning: These objects are global variables which is O.K. for this file.
- ## However if they are used and bounded their previous values would
- ## be lost if the following procedure is removed.
- ##
-
- if IsBound( PerfCat_a ) then Unbind( PerfCat_a ); fi;
- if IsBound( PerfCat_b ) then Unbind( PerfCat_b ); fi;
-
- if IsBound( a ) then
- PerfCat_a := a;
- a := AbstractGenerator( "a" );
- else
- a := AbstractGenerator( "a" );
- fi;
- if IsBound( b ) then
- PerfCat_b := b;
- b := AbstractGenerator( "b" );
- else
- b := AbstractGenerator( "b" );
- fi;
-
-
- #############################################################################
- ##
- ## The catalogue
- ##
- ##
- ## An entry in the catalogue of perfect groups has the following structure:
- ##
- ## rec(
- ## )
- ##
-
- PerfectGroupsCatalogue := [
-
- #########################################################################
- ##
- ## A_5 = PSL( 2, 4 ) = PSL( 2, 5 )
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- isSimple := true,
- size := 60,
- grouptype := [],
- generatortype := [ [ 2, 15, 1, 15, 15, 0 ],
- [ 3, 4, 1, 20, 20, 0 ] ],
- relations := [ a^2, b^3, (a*b)^5 ],
- antirelations := [],
- subgroups := []
- ),
-
- #########################################################################
- ##
- ## SL( 2, 5 )
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 120,
- grouptype := [],
- generatortype := [ [ 4, 30, 1, 30, 30, 0 ],
- [ 3, 2, 2, 20, 20, 0 ] ],
- relations := [ a^4, b^3, (a*b)^5, a^2*b/(b*a^2) ],
- antirelations := [ a^2 ],
- subgroups := []
- ),
-
- #########################################################################
- ##
- ## PSL( 2, 7 ) = PSL( 3, 2 )
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- isSimple := true,
- size := 168,
- grouptype := [],
- generatortype := [ [ 2, 21, 1, 21, 21, 0 ],
- [ 3, 8, 2, 56, 56, 0 ] ],
- relations := [ a^2, b^3, (a*b)^7, (a*b^2*a*b)^4 ],
- antirelations := [],
- subgroups := []
- ),
-
- #########################################################################
- ##
- ## SL( 2, 7 )
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 336,
- grouptype := [],
- generatortype := [ [ 4, 42, 1, 42, 42, 0 ],
- [ 3, 4, 2, 56, 56, 0 ] ],
- relations := [ a^4, b^3, (a*b)^7, (a^2*b)/(b*a^2),
- (a^3*b^2*a*b)^4/a^2 ],
- antirelations := [ a^2 ],
- subgroups := []
- ),
-
- #########################################################################
- ##
- ## A_6 = PSL( 2, 9 )
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- isSimple := true,
- size := 360,
- grouptype := [],
- generatortype := [ [ 3, 40, 1, 40, 80, 0 ],
- [ 4, 9, 2, 90, 90, 0 ] ],
- relations := [ a^3, b^4, (a*b)^5, ((b*a)^4*a*b)^2 ],
- antirelations := [],
- subgroups := [
- rec(
- generators := [ b^2, a*b^3*a*b ],
- isPerfect := true,
- isSimple := true,
- size := 60
- ),
- rec(
- generators := [ b^2, (a*b)^2*a ],
- isPerfect := true,
- isSimple := true,
- size := 60
- )
- ]
- ),
-
- #########################################################################
- ##
- ## PSL( 2, 8 )
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- isSimple := true,
- size := 504,
- grouptype := [],
- generatortype := [ [ 7, 72, 3, 72, 216, 0 ],
- [ 2, 7, 1, 63, 63, 0 ] ],
- relations := [ a^7, b^2, (a*b)^3, (a^3*b*a^5*b*a^3*b)^2 ],
- antirelations := [],
- subgroups := []
- ),
-
- #########################################################################
- ##
- ## PSL( 2, 11 )
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- isSimple := true,
- size := 660,
- grouptype := [],
- generatortype := [ [ 11, 60, 2, 60, 120, 0 ],
- [ 2, 11, 1, 55, 55, 0 ] ],
- relations := [ a^11, b^2, (a*b)^3, (a^4*b*a^6*b)^2 ],
- antirelations := [],
- subgroups := [
- rec(
- generators := [ b, a^9*b*a ],
- isPerfect := true,
- isSimple := true,
- size := 60
- ),
- rec(
- generators := [ b, a^8*b*a^2 ],
- isPerfect := true,
- isSimple := true,
- size := 60
- )
- ]
- ),
-
- #########################################################################
- ##
- ## SL( 2, 9 )
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 720,
- grouptype := [],
- generatortype := [ [ 3, 40, 1, 40, 80, 0 ],
- [ 8, 9, 4, 90, 180, 0 ] ],
- relations := [ a^3, b^8, (a*b)^5, (a*b^4)/(b^4*a),
- ((b*a)^4*a*b)^2/b^4 ],
- antirelations := [ b^4 ],
- subgroups := [
- rec(
- generators := [ a*(a*b^6)^2*b*a, b^5*a ],
- isPerfect := true,
- size := 120
- ),
- rec(
- generators := [ a*b*(a*b^6)*a^2, (a*b^6)*b*a*(a*b^6)^2*b ],
- isPerfect := true,
- size := 120
- )
- ]
- ),
-
- #########################################################################
- ##
- ## 960.1
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 960,
- grouptype := [ [ 1, 3, 320 ] ],
- generatortype := [ [ 3, 320, 1, 320, 320, 0 ],
- [ 4, 3, 2, 60, 180, 0 ] ],
- relations := [ a^3, b^4, (b*a)^5, (b^2*a)^3, (b^3*a)^5,
- (b*a*b^3*a*(b*a)^2*a)^2 ],
- antirelations := [ b^2 ],
- subgroups := [
- rec(
- generators := [ b*a^2*b^3*a*b^3*a^2*b^3*a^2, a^2 ],
- isPerfect := true,
- size := 60
- ),
- rec(
- generators := [ b*a^2*b^3*a*b^3*a^2*b^3*a^2, a*b^2*a ],
- isPerfect := true,
- size := 60
- ),
- rec(
- generators := [ b*a^2*b^3*a*b^3*a^2*b^3*a^2,
- a^2*b^3*a^2*b*a ],
- isPerfect := true,
- size := 60
- ),
- rec(
- generators := [ b*a^2*b^3*a*b^3*a^2*b^3*a^2,
- b^3*a*b*a*b^3*a^2 ],
- isPerfect := true,
- size := 60
- )
- ]
- ),
-
- #########################################################################
- ##
- ## 960.2
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 960,
- grouptype := [ [ 1, 3, 80 ] ],
- generatortype := [ [ 4, 120, 1, 120, 120, 60 ],
- [ 3, 8, 2, 80, 80, 0 ] ],
- relations := [ a^4, b^3, (a*b)^5, ((b*a)^2*a*b)^2, (a^3*b)^5 ],
- antirelations := [ a^2 ],
- subgroups := [
- rec(
- generators := [ b*a^2*b^2*a, b^2 ],
- isPerfect := true,
- size := 60
- )
- ]
- ),
-
- #########################################################################
- ##
- ## 1080.1
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 1080,
- grouptype := [],
- generatortype := [ [ 3, 120, 1, 120, 240, 2 ],
- [ 12, 3, 4, 90, 180, 0 ] ],
- relations := [ a^3, b^12, (a*b)^5, a*b^4/(b^4*a),
- ((b*a)^4*a*b)^2/(b^4) ],
- antirelations := [ b^4 ],
- subgroups := [
- rec(
- generators := [ b^6, a^2*b^11*a^2*b*a ],
- isPerfect := true,
- size := 60
- ),
- rec(
- generators := [ b^6, b*a^2*b^11*a^2*b ],
- isPerfect := true,
- size := 60
- )
- ]
- ),
-
- #########################################################################
- ##
- ## PSL( 2, 13 )
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 1092,
- grouptype := [],
- generatortype := [ [ 7, 156, 3, 156, 468, 0 ],
- [ 2, 7, 1, 91, 91, 0 ] ],
- relations := [ a^7, b^2, (a^2*b)^3, (a*b)^6 ],
- antirelations := [],
- subgroups := []
- ),
-
- #########################################################################
- ##
- ## SL( 2, 11 )
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 1320,
- grouptype := [],
- generatortype := [ [ 11, 60, 2, 60, 120, 0 ],
- [ 4, 11, 2, 110, 110, 0 ] ],
- relations := [ a^11, b^4, (a*b)^3, a*b^2/(b^2*a),
- (a^4*b*a^6*b)^2/(b^2) ],
- antirelations := [ b^2 ],
- subgroups := [
- rec(
- generators := [ b*a*b*a^9*b*a^2*b*a^10, (b*a^3)^2*a*b^3*a ],
- isPerfect := true,
- size := 120
- ),
- rec(
- generators := [ a*b*a^2, b*a^2*b*a^7*b*a*b^3 ],
- isPerfect := true,
- size := 120
- )
- ]
- ),
-
- #########################################################################
- ##
- ## 2^3 se PSL( 2, 7 ) 1344.1
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 1344,
- grouptype := [ [ 1, 4, 420 ] ],
- generatortype := [ [ 3, 224, 1, 224, 224, 0 ],
- [ 4, 6, 1, 84, 84, 0 ] ],
- relations := [ a^3, b^4, (b*a^2)^7, (b*a^2*b^2*a)^2/(b^2),
- (b^2*a^2*b*a)^2,
- (a*b*a^2*b)^2/(b*a*b*a^2*b*a*b*a^2*b^2) ],
- antirelations := [ b^2 ],
- subgroups := [
- rec(
- generators := [ b^2*a^2*b*a, a^2 ],
- isPerfect := true,
- size := 168
- ),
- rec(
- generators := [ (b*a*b*a^2)^2, a^2 ],
- isPerfect := true,
- size := 168
- )
- ]
- ),
-
- #########################################################################
- ##
- ## 2^3 nse PSL( 2, 7 ) 1344.2
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 1344,
- grouptype := [ [ 1, 4, 84 ] ],
- generatortype := [ [ 3, 224, 1, 224, 224, 0 ],
- [ 2, 6, 1, 84, 84, 7 ] ],
- relations := [ a^3, b^2, (a*b)^7, ((b*a)^2*a)^8,
- a^2*b*(a^2*b*a*b*a*b)^2*a^2*b*a
- /(b*a^2*b*(a^2*b*a*b*a*b)^2*a^2*b*a*b) ],
- antirelations := [ ((b*a)^2*a)^4 ],
- subgroups := []
- ),
-
- #########################################################################
- ##
- ## 1920.1
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 1920,
- grouptype := [ [ 1, 2, 31 ],
- [ 2, 2, 15, 0 ] ],
- generatortype := [ [ 4, 120, 2, 120, 480, 0 ],
- [ 3, 8, 2, 80, 80, 0 ] ],
- relations := [ a^4, b^3, (a^3*b)^5, (a*b)^10,
- ((b*a)^2*a*b)^2/(a*b)^5, a*(a*b)^5/((a*b)^5*a),
- b*(a*b)^5/((a*b)^5*b) ],
- antirelations := [ (a^2*b^2*a*b)^2, a*b*a^2*b^2*a ],
- subgroups := [
- rec(
- generators := [ a*b^2*a^2*b^2*a*b^2, b*a*b^2*a^2*b^2*a*b ],
- isPerfect := true,
- size := 120
- )
- ]
- ),
-
- #########################################################################
- ##
- ## 1920.2
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 1920,
- grouptype := [ [ 1, 2, 31 ],
- [ 2, 2, 15, 2 ],
- [ 3, 4, 60, 0 ] ],
- generatortype := [ [ 4, 120, 1, 120, 480, 0 ],
- [ 3, 8, 2, 320, 320, 0 ] ],
- relations := [ a^4, b^3, (a*b)^5, (a^2*b)^3/(a^3*b)^5,
- (a^3*b)^10, (a*b*a^3*b*a*b*a*b^2)^2/(a^3*b)^5,
- a*(a^3*b)^5/((a^3*b)^5*a),
- b*(a^3*b)^5/((a^3*b)^5*b) ],
- antirelations := [ (a^3*b)^5, a^2*(a^3*b)^5 ],
- subgroups := [
- rec(
- generators := [ (b*a^3*b*a*b*a)^9, (a^3*b*a*b*a*b)^9 ],
- isPerfect := true,
- size := 120
- ),
- rec(
- generators := [ b*a^3*b*a, (a*b*a^3*b)^8*a^3*b ],
- isPerfect := true,
- size := 120
- ),
- rec(
- generators := [ (a^2*b*a*(a^3*b)^9*b)^9,
- b^2*(a^3*b)^2*b*a*b*a^3 ],
- isPerfect := true,
- size := 120
- ),
- rec(
- generators := [ a^2*b*a*(a^3*b)^9*b^2*a^3*b,
- (a^3*b)^9*b^2*a^3*b*a*b*a*(a^3*b)^9 ],
- isPerfect := true,
- size := 120
- )
- ]
- ),
-
- #########################################################################
- ##
- ## 1920.3
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 1920,
- grouptype := [ [ 1, 2, 31 ],
- [ 2, 2, 15, 2 ],
- [ 3, 4, 60, 4 ] ],
- generatortype := [ [ 4, 120, 1, 120, 240, 240 ],
- [ 3, 8, 2, 320, 320, 0 ] ],
- relations := [ a^4, b^3, (a*b)^5, (a^2*b)^3, (b*a^3)^5 ],
- antirelations := [ (b*a*b*a^3*b*a*b^2*a)^2 ],
- subgroups := [
- rec(
- generators := [ b^2*a*b*a^3*b*a*b*a*b^2*a,
- b*a*b*a^3*b*a*b*a*b^2*a*b ],
- isPerfect := true,
- size := 120
- ),
- rec(
- generators := [ (a*b)^2*b*a^3*b^2*a*b^2*a*b*a*b^2,
- a*b^2*a*b*a*b*a^3*b*a^3*b^2 ],
- isPerfect := true,
- size := 120
- ),
- rec(
- generators := [ (a*b*a^3*b)^2*b*a^3*b^2,
- b*b*a^3*b*a^3*b^2*a*b*a^3 ],
- isPerfect := true,
- size := 120
- ),
- rec(
- generators := [ a*b*a*b*a^3*b*a^3*b*b*a^3*b^2,
- a^2*b^2*a*b*a^3*b^2*a*b*a^3 ],
- isPerfect := true,
- size := 120
- )
- ]
- ),
-
- #########################################################################
- ##
- ## 1920.4
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 1920,
- grouptype := [ [ 1, 2, 151 ] ],
- generatortype := [ [ 4, 120, 1, 120, 240, 120 ],
- [ 3, 8, 2, 320, 320, 0 ] ],
- relations := [ a^4, b^3, (a*b)^10, (a^2*b)^3, (a^3*b)^5,
- ((a*b)^2*a^3*b*a*b*b)^2 ],
- antirelations := [ (a*b)^5 ],
- subgroups := [
- rec(
- generators := [ (a*b)^2*a^3*b*a*b*b, b*a*a*b ],
- isSimple := true,
- isPerfect := true,
- size := 60
- ),
- rec(
- generators := [ (a*b)^2*a^3*b*a*b*b, (b*a*b)^4*a*b ],
- isSimple := true,
- isPerfect := true,
- size := 60
- ),
- rec(
- generators := [ a^2*b*a^3*b*b*a^3*b*b*a*b^2*a, b^2 ],
- isSimple := true,
- isPerfect := true,
- size := 60
- ),
- rec(
- generators := [ a^2*b*a^3*b*b*a^3*b*b*a*b^2*a,
- a^2*b^2*a^3*b^2*a*b*a^2 ],
- isSimple := true,
- isPerfect := true,
- size := 60
- )
- ]
- ),
-
- #########################################################################
- ##
- ## 1920.5
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 1920,
- grouptype := [ [ 1, 2, 31 ],
- [ 2, 2, 15, 1] ],
- generatortype := [ [ 4, 120, 2, 120, 480, 0 ],
- [ 3, 16, 2, 320, 320, 0 ] ],
- relations := [ a^4, b^3, (a*b)^5, (b^2*a^2*b*a)^2*a^2 ],
- antirelations := [ (a^2*b)^2*b ],
- subgroups := [ ]
- ),
-
- #########################################################################
- ##
- ## 1920.6
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 1920,
- grouptype := [ [ 1, 2, 11 ] ],
- generatortype := [ [ 8, 120, 1, 240, 240, 0 ],
- [ 3, 4, 2, 80, 80, 0 ] ],
- relations := [ a^8, b^3, (a*b)^5/a^4, (a^3*b)^5/a^4,
- ((b*a)^2*a*b)^2/a^4, Comm(b,a^4) ],
- antirelations := [ a^4 ],
- subgroups := [
- rec(
- generators := [ a*b*a^7*b*a^2*b, b*a*b*a^7*b*a^2 ],
- isPerfect := true,
- size := 120
- )
- ]
- ),
-
- #########################################################################
- ##
- ## 1920.7
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 1920,
- grouptype := [ [ 1, 2, 131 ] ],
- generatortype := [ [ 8, 240, 1, 240, 240, 0 ],
- [ 3, 4, 2, 80, 80, 0 ] ],
- relations := [ a^8, b^3, (a*b)^5, ((b*a)^2*a*b)^2,
- (a^3*b)^5/a^4, b*a^4/(a^4*b) ],
- antirelations := [ a^4 ],
- subgroups := [
- rec(
- generators := [ (b*a)^2*a*b, a^2*b^2*a^6 ],
- isSimple := true,
- isPerfect := true,
- size := 60
- )
- ]
- ),
-
- #########################################################################
- ##
- ## 2160
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 2160,
- grouptype := [ ],
- generatortype := [ [ 3, 120, 1, 120, 240, 2 ],
- [ 24, 3, 8, 90, 360, 0 ] ],
- relations := [ a^3, b^24, (a*b)^5, a*b^4/(b^4*a),
- ((b*a)^4*a*b)^2/b^4 ],
- antirelations := [ b^8, (a*b*a*b^23)^3 ],
- subgroups := [
- rec(
- generators := [ a*b*b*a^2*b*b*a^2*b^23*a,
- b^2*a*b*a^2*b^23*a*b ],
- isPerfect := true,
- size := 120
- ),
- rec(
- generators := [ b^23*a*b*a^2*b^2*a*b*a, a*b*a^2*b^69*a ],
- isPerfect := true,
- size := 120
- )
- ]
- ),
-
- #########################################################################
- ##
- ## SL( 2, 13 ) 2184
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 2184,
- grouptype := [ ],
- generatortype := [ [ 7, 156, 3, 156, 468, 0 ],
- [ 4, 7, 2, 182, 182, 0 ] ],
- relations := [ a^7, b^4, (a^2*b)^3, a*b^2/(b^2*a),
- (a*b)^6/b^2 ],
- antirelations := [ b^2 ],
- subgroups := [ ]
- ),
-
- #########################################################################
- ##
- ## PSL( 2, 17 ) 2448
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- isSimple := true,
- size := 2448,
- grouptype := [ ],
- generatortype := [ [ 9, 272, 3, 272, 816, 0 ],
- [ 2, 9, 1, 153, 153, 0 ] ],
- relations := [ a^9, b^2, (a^2*b)^3, (a*b)^4 ],
- antirelations := [ ],
- subgroups := [ ]
- ),
-
- #########################################################################
- ##
- ## A_7
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 2520,
- grouptype := [],
- generatortype := [ [ 4, 630, 1, 630, 630, 0 ],
- [ 2, 4, 1, 105, 105, 0 ] ],
- relations := [ a^4, b^2, (b*a)^7, (b*a^3*b*a)^5, (b*a^2)^6,
- ((b*a)^2*a)^4, ((b*a)^2*a*b*a^3)^3 ],
- antirelations := [],
- subgroups := [
- rec(
- generators := [ a^2, (b*a^3)^2*b*a*b*a^3*b*a ],
- isPerfect := true,
- size := 60
- ),
- rec(
- generators := [ a^2, b*a^3*b*a*b*a^3*b*a^3*b ],
- isPerfect := true,
- size := 60
- ),
- rec(
- generators := [ a^2, (a*b*a^3*b)^2*a^2*b*a ],
- isPerfect := true,
- size := 168
- ),
- rec(
- generators := [ a^2, (b*a*b*a^3*b*a^3)^3*a ],
- isPerfect := true,
- size := 168
- ),
- rec(
- generators := [ (b*a^3*b*a)^2*b*a^3,
- a*(b*a^3)^3*(b*a)^2*b*a^3 ],
- isPerfect := true,
- size := 360
- )
- ]
- ),
-
- #########################################################################
- ##
- ## 2 nse 1344.1 2688.1
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 2688,
- grouptype := [ [ 1, 2, 15 ],
- [ 4, 2, 8, 1 ] ],
- generatortype := [ [ 4, 168, 1, 168, 168, 168 ],
- [ 3, 8, 2, 224, 224, 0 ] ],
- relations := [ a^4, b^3, (a*b^2*a*a*b)^2/a^2,
- (a*a*b^2*a*b)^2/(a*b^2)^7,
- (b*a*b^2*a)^2/(a*b*a*b^2*a*b*a*b^2*a*a),
- (a*b^2)^14, a*(a*b^2)^7/((a*b^2)^7*a),
- b*(a*b^2)^7/((a*b^2)^7*b) ],
- antirelations := [ (a*b^2)^7, a^2*(a*b^2)^7 ],
- subgroups := [
- rec(
- generators := [ b*(a*b^2*a)*b*(a*b^2*a)^5*b*a*b^2*a*b,
- ((b*a*b^2*a)^2*a*b^2*a^3*b^2*a)^7 ],
- isPerfect := true,
- size := 336
- ),
- rec(
- generators := [ ((b*a)^2*a^2*b)^7, b*a*b^2*a^3 ],
- isPerfect := true,
- size := 336
- )
- ]
- ),
-
- #########################################################################
- ##
- ## 2 nse 1344.2 2688.2
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 2688,
- grouptype := [ [ 1, 2, 15 ],
- [ 4, 2, 8, 7 ] ],
- generatortype := [ [ 4, 168, 1, 168, 168, 168 ],
- [ 3, 8, 2, 224, 224, 0 ] ],
- relations := [ a^4, b^3, (b*a)^7/a^2, ((a*b)^2*b)^8,
- b*a^2/(a^2*b), b^2*a*(b^2*a*b*a*b*a)^2*b^2*a*b/
- (a*b^2*a*(b^2*a*b*a*b*a)^2*b^2*a*b*a) ],
- antirelations := [ a^2, (b*a*b^2*a)^4*a^2 ],
- subgroups := [ ]
- ),
-
- #########################################################################
- ##
- ## 2^4 se PSL( 2, 7 ) 2688.3
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 2688,
- grouptype := [ [ 1, 2, 99 ] ],
- generatortype := [ [ 3, 224, 1, 224, 224, 0 ],
- [ 4, 6, 2, 168, 168, 84 ] ],
- relations := [ a^3, b^4, (b*a^2)^7, (b*b*a^2*b*a)^2,
- (a*b*a^2*b)^2/
- (b*a*b*a^2*b*a*b*a^2*b*b*(b*a^2*b*b*a)^2*b^2),
- ((b*a^2*b*b*a)^2*b^2)^2, a*(b*a^2*b*b*a)^2*b^2/
- ((b*a^2*b*b*a)^2*b^2*a), b*(b*a^2*b*b*a)^2*b^2/
- ((b*a^2*b*b*a)^2*b^2*b) ],
- antirelations := [ (b*a^2*b*b*a)^2*b^2 ],
- subgroups := [
- rec(
- generators := [ b*b*a^2*b*a, a*b^3*a*b*a^2*b*a*b*a^2*b*a*b ],
- isSimple := true,
- isPerfect := true,
- size := 168
- ),
- rec(
- generators := [ a*a*b*a^2*b^3*a^2, a*b*a^2*b^3 ],
- isPerfect := true,
- size := 336
- )
- ]
- ),
-
- ########################################################################
- ##
- ## ASL(2,5) 3000
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 3000,
- grouptype := [],
- generatortype := [ [ 5, 120, 4, 120, 480, 144 ],
- [ 3, 25, 2, 500, 500, 0 ] ],
- relations := [ a^5, b^3, (a*b^2)^4,
- (a^2*b^2)^2*a*b/(a*b^2*a*b*a*b^2*a^2) ],
- antirelations := [ (a*b^2)^2*b ],
- subgroups := [
- rec(
- generators := [ (a*b^2)^3, a*(a*b^2)^3*b*a*b*(a*b^2)^3*b*a ],
- isPerfect := true,
- size := 120
- )
- ]
- ),
-
- #########################################################################
- ##
- ## PSL( 2, 19 ) 3420
- ##
- rec(
- generators := [ a, b ],
- isSimple := true,
- isPerfect := true,
- size := 3420,
- grouptype := [ ],
- generatortype := [ [ 9, 380, 3, 380, 1140, 0 ],
- [ 2, 9, 1, 171, 171, 0 ] ],
- relations := [ a^9, b^2, (a*b)^5, (a^8*b*a*b)^2 ],
- antirelations := [ ],
- subgroups := [
- rec(
- generators := [ b, (b*a^3)^3*a^4 ],
- isSimple := true,
- isPerfect := true,
- size := 60
- ),
- rec(
- generators := [ b, (a^3*b*a)^2*a^6*b ],
- isSimple := true,
- isPerfect := true,
- size := 60
- )
- ]
- ),
-
- #########################################################################
- ##
- ## A5xA5 3600
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 3600,
- grouptype := [],
- generatortype := [ [ 6, 300, 1, 300, 600, 0 ],
- [ 6, 12, 1, 300, 600, 0 ] ],
- relations := [ a^6, b^6, Comm(a^2,b^2), (b*a)^5,
- b^3*a^5*b^2*a^4*b*a^3, (b*a^5)^5,
- (b*a)^3*a^2/(b^3*(b*a^5)^3) ],
- antirelations := [ a^2, a^3 ],
- subgroups := [
- rec(
- generators := [ a^3, b^4 ],
- isPerfect := true,
- isSimple := true,
- size := 60
- ),
- rec(
- generators := [ b^3, a^4 ],
- isPerfect := true,
- isSimple := true,
- size := 60
- ),
- rec(
- generators := [ a*b*a^2*b^2, a^2*b^2 ],
- isPerfect := true,
- isSimple := true,
- size := 60
- ),
- rec(
- generators := [ a*b*a^2*b^2, a^2*b*a*(b*a^5)^3*a^5 ],
- isPerfect := true,
- isSimple := true,
- size := 60
- )
- ]
- ),
-
- #########################################################################
- ##
- ## 3840.1
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 3840,
- grouptype := [ [ 1, 2, 63 ],
- [ 3, 4, 60, 0 ] ],
- generatortype := [ [ 3, 320, 1, 320, 320, 0 ],
- [ 4, 3, 2, 120, 960, 0 ] ],
- relations := [ a^3, b^4, (b*a)^5, (a*b^3)^5/(b^2*a)^3,
- (b^2*a)^6, Comm(a,(b^2*a)^3), Comm(b,(b^2*a)^3) ],
- antirelations := [ (b^2*a)^3, (a*b*a*b^3*a*b*a^2*b)^2,
- (a*b*a*b^3*a*b*a^2*b)^2/(b^2*a)^3 ],
- subgroups := [
- rec(
- generators := [ b^2*a^2*b*a*b, a*b^2*a^2*b^3*a*b^3*a^2 ],
- isPerfect := true,
- size := 120
- ),
- rec(
- generators := [ b^3*a^2*b^3*a*b^2,
- (a*b)^2*(a^2*b*a^2*b^3)^2*a ],
- isPerfect := true,
- size := 120
- ),
- rec(
- generators := [ a^2*b*a^2*b^3*a*b*a*b^3*a*b*a,
- b*a^2*b^3*a*b*a*b^3*a*b ],
- isPerfect := true,
- size := 120
- ),
- rec(
- generators := [ b*a*b*a^2*b^3*(a^2*b)^2,
- a^2*b^3*a*b*a*b^3*a*b*a ],
- isPerfect := true,
- size := 120
- )
- ]
- ),
-
- #########################################################################
- ##
- ## 3840.2
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 3840,
- grouptype := [ [ 1, 2, 303 ] ],
- generatortype := [ [ 3, 320, 1, 320, 320, 0 ],
- [ 4, 3, 2, 120, 720, 0 ] ],
- relations := [ a^3, b^4, (b*a)^10, (b*b*a)^6,
- a*(b*b*a)^3/((b*b*a)^3*a),
- b*(b*b*a)^3/((b*b*a)^3*b), (b^3*a)^5,
- ((b*a)^2*b^2*(b*a)^2*a)^2 ],
- antirelations := [ (b*a)^5, (b*b*a)^3, (b*b*a)^3/(b*a)^5 ],
- subgroups := [
- rec(
- generators := [ (b*a)^2*b^2*(b*a)^2*a, (a*b*a)^4*b*a ],
- isPerfect := true,
- size := 60
- ),
- rec(
- generators := [ (b^2*a^2*b)^2*b^2*a*b*a, (a*b*a)^4*b*a ],
- isPerfect := true,
- size := 60
- ),
- rec(
- generators := [ (a^2*b)^2*b*a*b^3*a*b, a^2 ],
- isPerfect := true,
- size := 60
- ),
- rec(
- generators := [ (a*b)^2*a*(a*b)^2*b^2, a^2 ],
- isPerfect := true,
- size := 60
- )
- ]
- ),
-
- #########################################################################
- ##
- ## 3840.3
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 3840,
- grouptype := [ [ 1, 2, 63 ],
- [ 3, 4, 60, 4 ] ],
- generatortype := [ [ 4, 120, 2, 120, 720, 240 ],
- [ 3, 8, 2, 320, 320, 0 ] ],
- relations := [ a^4, b^3, (a*b)^5, (a^2*b)^3, (b*a^3)^10,
- Comm(a,(b*a^3)^5), Comm(b,(b*a^3)^5) ],
- antirelations := [ (b*a^3)^5, (a*b*a*b*a^3*b*a*b^2)^2,
- (a*b*a*b*a^3*b*a*b^2)^2/(b*a^3)^5 ],
- subgroups := [
- rec(
- generators := [ a^3*b^2*a*b^2*a^3*b^2*a*b*a^3*b^2*a^3*b^2,
- a*b^2*a*b*a^3*b*a*b*a ],
- isPerfect := true,
- size := 120
- ),
- rec(
- generators := [ b*a*b*a*b^2*a^3*b*a*b*a^3*b*a,
- a*b*a*b*a^3*b*a*b*a*b^2*a ],
- isPerfect := true,
- size := 120
- ),
- rec(
- generators := [ a^3*b*a*b*a^3*b*a*b^2*a^3,
- b*a^3*b*a*b*a^3*b*a*b^2*a^3*b^2 ],
- isPerfect := true,
- size := 120
- ),
- rec(
- generators := [ a^2*(b*a^3)^3*b^2,
- b*a*b*a^3*b*(b*a^3*b^2*a*b)^2 ],
- isPerfect := true,
- size := 120
- )
- ]
- ),
-
- #########################################################################
- ##
- ## 3840.4
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 3840,
- grouptype := [ [ 1, 2, 31 ] ],
- generatortype := [ [ 3, 320, 1, 320, 320, 0 ],
- [ 8, 6, 4, 120, 960, 0 ] ],
- relations := [ a^3, b^8, (b*a)^5, (a^2*b^2*a*b)^2*b^2,
- b^4*a/(a*b^4) ],
- antirelations := [ b^4 ],
- subgroups := []
- ),
-
- #########################################################################
- ##
- ## 3840.5
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 3840,
- grouptype := [ [ 1, 2, 23 ] ],
- generatortype := [ [ 8, 240, 2, 240, 480, 0 ],
- [ 3, 4, 2, 80, 80, 0 ] ],
- relations := [ a^8, b^3, (a*b)^10, a*(a*b)^5/((a*b)^5*a),
- b*(a*b)^5/((a*b)^5*b), b*a^4/(a^4*b),
- (a^3*b)^5/a^4, ((b*a)^2*a*b)^2/(a*b)^5 ],
- antirelations := [ (a*b)^5, a^4, (a*b)^5/a^4 ],
- subgroups := [
- rec(
- generators := [ (b*a*b)^4*(a*b)^5, b*a^7*b*a*b*a^7*b^2 ],
- isPerfect := true,
- size := 120
- )
- ]
- ),
-
- #########################################################################
- ##
- ## 3840.6
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 3840,
- grouptype := [ [ 1, 2, 151 ],
- [ 3, 4, 60, 4 ] ],
- generatortype := [ [ 3, 320, 1, 320, 320, 0 ],
- [ 8, 3, 4, 240, 480, 0 ] ],
- relations := [ a^3, b^8, b^4/(b*a)^10, Comm(a,(b*a)^10),
- (b*b*a)^3, (b^3*a)^5, ((b*a)^2*b^3*a*b*a^2)^2 ],
- antirelations := [ (b*a)^10 ],
- subgroups := [
- rec(
- generators := [ (b*a)^2*b^3*a*b*a^2, b^2*a ],
- isSimple := true,
- isPerfect := true,
- size := 60
- ),
- rec(
- generators := [ (b*a)^2*b^3*a*b*a^2,
- b^2*a^2*(b*a)^2*b^2*(b*a)^10 ],
- isSimple := true,
- isPerfect := true,
- size := 60
- ),
- rec(
- generators := [ (b*a)^4*a*b^3, (a*b)^2*b*(b*a)^10 ],
- isPerfect := true,
- size := 120
- ),
- rec(
- generators := [ (b*a)^17*a*(b*a)^10, b^2*a^2*b*a^2*b^2*a ],
- isPerfect := true,
- size := 120
- )
- ]
- ),
-
- #########################################################################
- ##
- ## 3840.7
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 3840,
- grouptype := [ [ 1, 2, 151 ],
- [ 3, 4, 60, 0 ] ],
- generatortype := [ [ 3, 320, 1, 320, 320, 0 ],
- [ 8, 3, 4, 240, 480, 0 ] ],
- relations := [ a^3, b^8, Comm(a,(b*a)^10), b^4/(b*a)^10,
- (b^2*a)^3/(b*a)^10, (b^3*a)^5,
- ((b*a)^2*b^3*a*b*a^2)^2/(b*a)^10 ],
- antirelations := [ (b*a)^10 ],
- subgroups := [
- rec(
- generators := [ (b*a)^2*((b*a)^10*b^3*a*a)^2*b,
- b^4*a*((b*a)^10*b^3*a*a)^2 ],
- isSimple := true,
- isPerfect := true,
- size := 60
- ),
- rec(
- generators := [ (b*a)^2*((b*a)^10*b^3*a*a)^2*b,
- a*b*a^2*(b*a)^10*b^3*a*a ],
- isSimple := true,
- isPerfect := true,
- size := 60
- ),
- rec(
- generators := [ a^2*b*a^2*(b*a)^10*b^3*a^2*b*a*b^2,
- a*b*a^2*((b*a)^10*b^3*a*a)^2 ],
- isPerfect := true,
- size := 120
- ),
- rec(
- generators := [ a^2*b*b*a^2*((b*a)^10*b^3*a*a)^3,
- a^2*b*b*a^2*(b*a)^10*b^3*a^4 ],
- isPerfect := true,
- size := 120
- )
- ]
- ),
-
- #########################################################################
- ##
- ## PSL( 2, 16 ) 4080
- ##
- rec(
- generators := [ a, b ],
- isSimple := true,
- isPerfect := true,
- size := 4080,
- grouptype := [ ],
- generatortype := [ [ 15, 272, 4, 272, 1088, 0 ],
- [ 3, 15, 2, 272, 272, 0 ] ],
- relations := [ a^15, b^3, (a^7*b)^2, (a^11*(a*b)^2)^2,
- (a^7*(a*b)^9)^2 ],
- antirelations := [ ],
- subgroups := [
- rec(
- generators := [ a^5*b*a^2*(a*b)^16*b, (a^4*b*a^2*b)^2 ],
- isSimple := true,
- isPerfect := true,
- size := 60
- )
- ]
- ),
-
- #########################################################################
- ##
- ## 3^4 se A_5 4860
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 4860,
- grouptype := [ [ 1, 3, 620 ] ],
- generatortype := [ [ 6, 270, 2, 270, 810, 270 ],
- [ 3, 18, 2, 180, 540, 80 ] ],
- relations := [ a^6, b^3, (a*b)^5, (a*b^2)^5, b*a^2*b*b*a^2/
- ((a^2*b)^2*b), a^2*b*a*a^4*b*a*b^2*a^4*b*a/
- (b*a*b) ],
- antirelations := [ a^2 ],
- subgroups := [
- rec(
- generators := [ a^3, b^2 ],
- isSimple := true,
- isPerfect := true,
- size := 60
- ),
- rec(
- generators := [ a^3, (b*a)^3*a^2*b ],
- isSimple := true,
- isPerfect := true,
- size := 60
- )
- ]
- ),
-
- #########################################################################
- ##
- ## 3^4 nse A_5 4860
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 4860,
- grouptype := [ [ 1, 3, 80 ] ],
- generatortype := [ [ 9, 180, 6, 180, 1620, 0 ],
- [ 2, 27, 1, 135, 135, 0 ] ],
- relations := [ a^9, b^2, (a*b)^5, (a*a*b)^5, (a^2*a*b)^2/
- (b*a^3)^2, (a^4*b*(a*b)^2*a*a*b)^2/a^6 ],
- antirelations := [ a^3 ],
- subgroups := [ ]
- ),
-
- #########################################################################
- ##
- ## SL( 2, 17 ) 4896
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- size := 4896,
- grouptype := [ ],
- generatortype := [ [ 9, 272, 3, 272, 816, 0 ],
- [ 4, 9, 2, 306, 306, 0 ] ],
- relations := [ a^9, b^4, (a^2*b)^3, Comm(a,b^2), (a*b)^4/b^2 ],
- antirelations := [ b^2 ],
- subgroups := [ ]
- ),
-
- #########################################################################
- ##
- ## PSL( 3, 3 ) 5616
- ##
- rec(
- generators := [ a, b ],
- isSimple := true,
- isPerfect := true,
- size := 5616,
- grouptype := [ ],
- generatortype := [ [ 6, 936, 1, 936, 936, 0 ],
- [ 3, 6, 2, 624, 624, 104 ] ],
- relations := [ a^6, b^3, (a*b)^4, (a^2*b)^4, (a^3*b)^3,
- Comm((b*a^2*b)^2,a^2) ],
- antirelations := [ ],
- subgroups := [ ]
- ),
-
- #########################################################################
- ##
- ## M_11 7920
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- isSimple := true,
- size := 7920,
- grouptype := [],
- generatortype := [ [ 11, 720, 2, 720, 1440, 0 ],
- [ 4, 11, 2, 990, 990, 0 ] ],
- relations := [ a^11, b^4, (a*b)^3,
- (b^2*a^5*b^2*a^4*b^2*a^5)^5,
- (a*(b^2*a^5*b^2*a^4*b^2*a^5))
- /((b^2*a^5*b^2*a^4*b^2*a^5)*a^4),
- ((b^2*a^5*b^2*a^4*b^2*a^5)*b)
- /(b*(b^2*a^5*b^2*a^4*b^2*a^5)^2) ],
- antirelations := [],
- subgroups := [
- rec(
- generators := [ b^2, a^5*b^2*a^3 ],
- isPerfect := true,
- isSimple := true,
- size := 60
- ),
- rec(
- generators := [ b^2, a^2*(b^2*a^5*b^2*a^4*b^2*a^5)*b^2*a*
- (b^2*a^5*b^2*a^4*b^2*a^5)*a^2 ],
- isPerfect := true,
- isSimple := true,
- size := 60
- ),
- rec(
- generators := [ (b^2*a^5*b^2*a^4*b^2*a^5)^2,
- b*a^2*(b^2*a^5*b^2*a^4*b^2*a^5)^2*b*a*
- (b^2*a^5*b^2*a^4*b^2*a^5)*a ],
- isPerfect := true,
- isSimple := true,
- size := 360
- ),
- rec(
- generators := [ a, b^2 ],
- isPerfect := true,
- isSimple := true,
- size := 660
- )
- ]
- ),
-
- #########################################################################
- ##
- ## A_8
- ##
- rec(
- generators := [ a, b ],
- isPerfect := true,
- isSimple := true,
- size := 20160,
- grouptype := [],
- generatortype := [ [ 6, 3360, 1, 3360, 3360, 1680 ],
- [ 3, 6, 2, 112, 112, 0 ] ],
- relations := [ a^6, b^3, (a*b)^7, (b^2*(a^5)*b*a)^2,
- (b*(a^5)^2*b*a^2)^2, (b^2*(a^3)*b*(a^3))^2 ],
- antirelations := [],
- subgroups := [
- rec(
- generators := [ b*a^2*b*(a^3)*b*a,
- (a^3)*a^2*b*(a^3)*b*(a^3)*b^2*a*b ],
- isPerfect := true,
- isSimple := true,
- size := 60
- ),
- rec(
- generators := [ (b^2*a^2*b*a)^2*b,
- a*b*a^2*b^2*a^2*b*a^2*b*a*b^2 ],
- isPerfect := true,
- isSimple := true,
- size := 60
- ),
- rec(
- generators := [ b*(a^3)*b*(a^3)*b*a*b*a*b*a^2,
- b*(a^3)*a^2*b*a*b*(a^3)*b^2*a*b ],
- isPerfect := true,
- isSimple := true,
- size := 168
- ),
- rec(
- generators := [ (a^3)*a^2*b*a*b*(a^3)*b*a*b*a*b,
- a*b*a^2*b^2*a*b*a*b*a^2*b ],
- isPerfect := true,
- isSimple := true,
- size := 168
- ),
- rec(
- generators := [ b^2*(a^3)*b*a*b*a*b*a^2,
- a^2*b*a*b*(a^3)*b*a^2*b*a ],
- isPerfect := true,
- isSimple := true,
- size := 168
- ),
- rec(
- generators := [ a*b*a*b^2*a*b*a^2*b*a^2*b^2*a*b,
- (a^2*b)^3*(a^3)*b*(a^3) ],
- isPerfect := true,
- isSimple := true,
- size := 360
- ),
- rec(
- generators := [ b*a*b^2*a*b*a*b*a^2*b,
- b*(a^3)*a^2*b*a*b*a*b^2*a^2 ],
- isPerfect := true,
- size := 1344
- ),
- rec(
- generators := [ b*(a^3)*a*b*a*b*(a^3)*b*a^2,
- (a*b)^3*a^2*b^2*a*b*(a^3)*a*b,
- b*a*b*a*b^2*a*b*a^2*b^2 ],
- isPerfect := true,
- size := 1344
- ),
- rec(
- generators := [ a*b*a*b*(a^3)*a^2*b, b ],
- isPerfect := true,
- isSimple := true,
- size := 2520
- )
- ]
- )
- ];
-
-
- #############################################################################
- ##
- ## ReBind the old values of a and b
- ##
-
- if IsBound( PerfCat_a ) then a := PerfCat_a; else Unbind( a ); fi;
- if IsBound( PerfCat_b ) then b := PerfCat_b; else Unbind( b ); fi;
-
-
- #############################################################################
- ##
- #E Emacs . . . . . . . . . . . . . . . . . . . . . . . local emacs variables
- ##
- ## Local Variables:
- ## mode: outline
- ## outline-regexp: "#F\\|#V\\|#E"
- ## fill-column: 73
- ## fill-prefix: "## "
- ## eval: (hide-body)
- ## End:
- ##
-