home *** CD-ROM | disk | FTP | other *** search
Text File | 1993-05-05 | 48.8 KB | 1,361 lines |
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- %%
- %A gettable.tex GAP documentation Thomas Breuer
- %%
- %A @(#)$Id: gettable.tex,v 3.14 1993/02/19 10:48:42 gap Exp $
- %%
- %Y Copyright 1990-1992, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
- %%
- %H $Log: gettable.tex,v $
- %H Revision 3.14 1993/02/19 10:48:42 gap
- %H adjustments in line length and spelling
- %H
- %H Revision 3.13 1993/02/15 10:28:24 felsch
- %H examples fixed
- %H
- %H Revision 3.11 1992/10/15 08:47:25 sam
- %H mentioned new file 'ctomaxi4.tbl'
- %H
- %H Revision 3.10 1992/08/07 13:39:13 sam
- %H added pictures for online help
- %H
- %H Revision 3.9 1992/04/07 23:05:55 martin
- %H changed the author line
- %H
- %H Revision 3.8 1992/04/01 12:05:02 sam
- %H little changes concerning contents of 'TBLNAME'
- %H
- %H Revision 3.7 1992/03/27 16:45:21 sam
- %H removed reference 'Character Tables of Weyl Groups'
- %H
- %H Revision 3.6 1992/03/27 14:08:09 sam
- %H removed "'" in index entries
- %H
- %H Revision 3.5 1992/02/13 15:03:18 sam
- %H renamed 'MatrixAutomorphisms' to 'MatAutomorphisms'
- %H
- %H Revision 3.4 1992/01/14 14:13:15 martin
- %H changed two more citations
- %H
- %H Revision 3.3 1992/01/14 14:03:20 sam
- %H adjusted citations
- %H
- %H Revision 3.2 1992/01/09 11:18:04 sam
- %H removed use of 'SetRecField'
- %H
- %H Revision 3.1 1991/12/30 08:08:05 sam
- %H initial revision under RCS
- %H
- %%
- \Chapter{Character Table Libraries}\index{character tables}%
- \index{tables}\index{library tables}\index{generic character tables}
-
- The utility of {\GAP} for character theoretical tasks depends on the
- availability of many known character tables, so there is a lot of tables
- in the {\GAP} group collection.
-
- There are three different libraries of character tables, namely
- *ordinary character tables*, *Brauer tables* and *generic character tables*.
-
- Of course, these libraries are ``open\'\'\ in the sense that they shall be
- extended. So we would be grateful for any further tables of interest sent
- to us for inclusion into our libraries.
-
- This chapter mainly explains properties not of single tables but of the
- libraries and their structure; for the format of character tables, see
- "Character Table Records", "Brauer Table Records" and chapter
- "Generic Character Tables".
-
- The chapter informs about
- \begin{itemize}
- \item the actually available tables (see "Contents of the Table Libraries"),
- \item the sublibraries of {\ATLAS} tables (see "ATLAS Tables") and {\CAS}
- tables (see "CAS Tables"),
- \item the organization of the libraries
- (see "Organization of the Table Libraries"),
- \item and how to extend a library (see "How to Extend a Table Library").
- \end{itemize}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \Section{Contents of the Table Libraries}%
- \index{character tables!libraries of}%
- \index{tables!libraries of}\index{libraries of character tables}
-
- As stated at the beginning of the chapter, there are three libraries of
- character tables\:\ ordinary character tables, Brauer tables, and generic
- character tables.
-
- *Ordinary Character Tables*
-
- Two different aspects are useful to list up the ordinary character tables
- available to {\GAP}:\ the aspect of *source* of the tables and that of
- *connections* between the tables.
-
- As for the source, there are two big sources, the {\ATLAS} (see "ATLAS Tables")
- and the {\CAS} library of character tables.
- Many {\ATLAS} tables are contained in the {\CAS} library, and difficulties may
- arise because the succession of characters or classes in {\CAS} tables and
- {\ATLAS} tables are different, so see "CAS Tables" and "Character Table
- Records" for the relations between the (at least) two forms of the same table.
- A large subset of the {\CAS} tables is the set of tables of Sylow normalizers
- of sporadic simple groups as published in~\cite{Ost86}, so this may be
- viewed as another source.
-
- To avoid confusions about the actual format of a table, authorship and
- so on, the 'text' component of the table contains the information:\\
- 'origin\:\ ATLAS of finite groups'\ \ for {\ATLAS} tables
- (see "ATLAS Tables")\\
- 'origin\:\ Ostermann'\ \ for tables of \cite{Ost86} and\\
- 'origin\:\ CAS library'\ \ for any table of the {\CAS} table library that is
- contained neither in the {\ATLAS} nor in \cite{Ost86}.
-
- If one is interested in the aspect of connections between the tables, i.e.,
- the internal structure of the library of ordinary tables (which corresponds
- to the access to character tables, as described in "CharTable"),
- the contents can be listed up the following way\:
-
- We have
- \begin{itemize}
- \item all {\ATLAS} tables (see "ATLAS Tables"), i.e.\ the tables of the
- simple groups which are contained in the {\ATLAS}, and the tables of
- cyclic and bicyclic extensions of these groups;
- \item most tables of maximal subgroups of sporadic simple groups
- (*not all* for HN, Th, Fi23, Co1, F3+, B, M);
-
- \item some tables of maximal subgroups of other {\ATLAS} tables (*which?*)
- \item most nontrivial Sylow normalizers of sporadic simple groups as printed
- in~\cite{Ost86}, where nontrivial means that the group is not
- contained in $p$\:$(p-1)$;
-
- *not yet possible for all!!*
-
- *which are not contained?*
- ($J_4N2, Co_1N2, Co_1N5$, all of $Fi_{23}, Fi_{24}^{\prime}, B, M, HN$,
- and $Fi_{22}N2$)
-
- \item some tables of element centralizers
- \item some tables of Sylow subgroups
- \item a few other tables, e.g.\ 'W(F4)'\\
- {*namely which?*}
- \end{itemize}
-
- *Brauer Tables*
-
- This library contains the tables of the modular {\ATLAS} which are yet
- known. Some of them still contain unknowns (see "Unknown").
- Since there is ongoing work in computing new tables, this library is
- changed nearly every day.
-
- These Brauer tables contain the information
-
- | origin: modular ATLAS of finite groups|
-
- in their text component.
-
- *Generic Character Tables*
-
- At the moment, generic tables of the following groups are available in {\GAP}
- (see "CharTable")\:
-
- \begin{itemize}
- \item alternating groups
- \item cyclic groups,
- \item dihedral groups,
- \item some linear groups,
- \item quaternionic (dicyclic) groups
- \item symmetric groups,
- \item wreath products of a group with a symmetric group
- (see "CharTableWreathSymmetric"),
- \item Weyl groups of types $B_n$ and $D_n$
- \end{itemize}
-
- *Not all these are really implemented as generic tables!!!*
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \Section{ATLAS Tables}\index{character tables!ATLAS}%
- \index{tables!library}\index{library of character tables}
-
- \def\ttquote{\char13}
- \setlength{\unitlength}{0.1cm}
-
- The {\GAP} group collection contains all character tables that are included in
- the Atlas of finite groups (\cite{CCN85}, from now on called {\ATLAS})
- and the Brauer tables contained in the modular {\ATLAS}
- (\cite{LPW92}).
- Although the Brauer tables form a library of their own, they are
- described here since all conventions for {\ATLAS} tables stated here hold
- for Brauer tables, too.
-
- *Additionally some conventions are necessary about follower characters!*
-
-
- These tables have the information
-
- | origin: ATLAS of finite groups|
-
- resp.
-
- | origin: modular ATLAS of finite groups|
-
- in their 'text' component, further on they are simply called {\ATLAS} tables.
-
- In addition to the information given in Chapters 6--8 of the {\ATLAS} which
- tell how to read the printed tables, there are some rules relating these
- to the corresponding {\GAP} tables.
-
- *Improvements*
-
- Note that for the {\GAP} library not the printed {\ATLAS} is relevant but the
- revised version given by the list of\ \ *Improvements to the ATLAS*\ \ which
- can be got from Cambridge.
-
- Also some tables are regarded as {\ATLAS} tables which are not printed in
- the {\ATLAS} but available in {\ATLAS} format from Cambridge; at the moment,
- these are the tables related to $L_2(49)$, $L_2(81)$, $L_6(2)$,
- $O_8^-(3)$, $O_8^+(3)$ and $S_{10}(2)$.
-
- *Powermaps*
-
- In a few cases (namely the tables of $3.McL$, $3_2.U_4(3)$ and its covers,
- $3_2.U_4(3).2_3$ and its covers) the powermaps are not uniquely determined
- by the given information but determined up to matrix automorphisms
- (see "MatAutomorphisms") of the characters; then the first possible
- map according to lexicographical ordering was chosen, and the automorphisms
- are listed in the 'text' component of the concerned table.
-
- *Projective Characters*
-
- For any nontrivial multiplier of a simple group or of an automorphic extension
- of a simple group, there is a component 'projectives' in the table of $G$
- that is a list of records with the names of the covering group (e.g.
- '\"12\_1.U4(3)\"') and the list of those faithful characters which are printed
- in the \ATLAS (so--called {\it proxy characters}).
-
- *Projections*
-
- {\ATLAS} tables contain the component 'projections'\:\
- For any covering group of $G$ for which the character table is available in
- {\ATLAS} format a record is stored there containing components 'name'
- (the name of the cover table) and 'map' (the projection map);
- the projection maps any class of $G$ to that preimage in the cover for that
- the column is printed in the \ATLAS;
- it is called $g_0$ in Chapter 7, Section 14 there.
-
- (In a sense, a projection map is an inverse of the factor
- fusion from the cover table to the actual table (see "ProjectionMap").)
-
- *Tables of Isoclinic Groups*
-
- As described in Chapter 6, Section 7 and Chapter 7, Section 18 of the \ATLAS,
- there exist two different groups of structure $2.G.2$ for a simple group $G$
- which are isoclinic. The {\ATLAS} table in the library is that which is
- printed in the \ATLAS, the isoclinic variant can be got using
- "CharTableIsoclinic" 'CharTableIsoclinic'.
-
- *Succession of characters and classes*
-
- (Throughout this paragraph, $G$ always means the involved simple group.)
- \begin{enumerate}
- \item For $G$ itself, the succession of classes and characters in the
- {\GAP} table is as printed in the \ATLAS.
- \item For an automorphic extension $G.a$, there are three types of
- characters\:
- \begin{itemize}
- \item If a character $\chi$ of $G$ extends to $G.a$, the different extensions
- $\chi^0,\chi^1,\ldots,\chi^{a-1}$ are consecutive
- (see {\ATLAS}, Chapter 7, Section 16).
- \item If some characters of $G$ fuse to give a single character of $G.a$,
- the position of that character is the position of the first involved
- character of $G$.
- \item If both extension and fusion occurs, the result characters are
- consecutive, and each replaces the first involved character.
- \end{itemize}
- \item Similarly, there are different types of classes for an automorphic
- extension $G.a$\:
- \begin{itemize}
- \item If some classes collapse, the result class replaces the first involved
- class.
- \item For $a > 2$, any proxy class and its followers are consecutive;
- if there are more than one followers for a proxy class (the only case that
- occurs is for $a = 5$), the succession
- of followers is the natural one of corresponding galois automorphisms
- (see {\ATLAS}, Chapter 7, Section 19).
- \end{itemize}
- The classes of $G.a_1$ always precede the outer classes of $G.a_2$ for
- $a_1, a_2$ dividing $a$ and $a_1 \< a_2$. This succession is like in
- the \ATLAS, with the only exception $U_3(8).6$.
- \item For a central extension $M.G$, there are different types of characters\:
- \begin{itemize}
- \item Every character can be regarded as a faithful character
- of the factor group $m.G$, where $m$ divides $M$.
- Characters faithful for the same factor group are consecutive like in the
- \ATLAS, the succession of these sets of characters is given by the
- order of precedence $1, 2, 4, 3, 6, 12$ for the different values of $m$.
- \item If $m > 2$, a faithful character of $m.G$ that is printed in the {\ATLAS}
- (a so-called \mbox{\em proxy}) represents one or more
- \mbox{\em followers}, this means galois conjugates of the proxy;
- in any {\GAP} table, the proxy precedes its followers;
- the case $m = 12$ is the only one that occurs with more than one follower
- for a proxy, then the three followers are ordered according to the
- corresponding galois automorphisms 5, 7, 11 (in that succession).
- \end{itemize}
- \item For the classes of a central extension we have\:
- \begin{itemize}
- \item The preimages of a $G$-class in $M.G$ are subsequent, the succession is
- the same as that of the lifting order rows in the \ATLAS.
- \item The primitive roots of unity chosen to represent the generating central
- element (class 2) are 'E(3)', 'E(4)', 'E(6)\^5' ('= E(2) \* E(3)') and
- 'E(12)\^7' ('= E(3) \* E(4)') for $m = 3, 4, 6$ and $12$, respectively.
- \end{itemize}
- \item For tables of bicyclic extensions $m.G.a$, both the rules for automorphic
- and central extensions hold; additionally we have\:
- \begin{itemize}
- \item Whenever classes of the subgroup $m.G$ collapse or characters fuse, the
- result class resp. character replaces the first involved class resp.
- character.
- \item Extensions of a character are subsequent, and the extensions of a proxy
- character precede the extensions of its followers.
- \item Preimages of a class are subsequent, and the preimages of a proxy class
- precede the preimages of its followers.
- \end{itemize}
- \end{enumerate}
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \Section{Examples of the ATLAS format for GAP tables}
- \index{character tables!CAS}\index{tables!library}
- \index{library of character tables}
-
- We give three little examples for the conventions stated in "ATLAS Tables",
- listing up the {\ATLAS} format and the table displayed by \GAP.
-
- First, let $G$ be the trivial group.
- The cyclic group $C_6$ of order 6 can be viewed in several ways\:
-
- \begin{enumerate}
- \item As a downward extension of the factor group $C_2$ which contains $G$ as
- a subgroup; equivalently, as an upward extension of the subgroup $C_3$ which
- has a factor group $G$\:
-
- %ignore
- \begin{picture}(110,55)
- \put(-2,23){
- \begin{picture}(29,29)
- \put(0,29){\line(1,0){14}}
- \put(0,15){\line(1,0){14}}
- \put(0,14){\line(1,0){14}}
- \put(0,0){\line(1,0){14}}
- \put(15,29){\line(1,0){14}}
- \put(15,15){\line(1,0){14}}
- \put(15,14){\line(1,0){14}}
- \put(15,0){\line(1,0){14}}
- \put(0,15){\line(0,1){14}}
- \put(0,0){\line(0,1){14}}
- \put(14,15){\line(0,1){14}}
- \put(15,15){\line(0,1){14}}
- \put(29,15){\line(0,1){14}}
- \put(14,0){\line(0,1){14}}
- \put(15,0){\line(0,1){14}}
- \put(29,0){\line(0,1){14}}
- \put(7,7){\makebox(0,0){3.G}}
- \put(22,7){\makebox(0,0){3.G.2}}
- \put(7,22){\makebox(0,0){G}}
- \put(22,22){\makebox(0,0){G.2}}
- \end{picture}}
- \put(37,52){\makebox(0,0)[tl]{
- \small\tt
- \begin{minipage}{2in}
- \baselineskip0.9ex
- \parskip0.2ex
-
- \ \ \ \ ;\ \ \ @\ \ \ ;\ \ \ ;\ \ \ @\ \par
- \ \par
- \ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ \ \ 1\ \par
- \ \ p\ power\ \ \ \ \ \ \ \ \ \ \ A\ \par
- \ \ p\ttquote\ part\ \ \ \ \ \ \ \ \ \ \ A\ \par
- \ \ ind\ \ 1A\ fus\ ind\ \ 2A\ \par
- \ \par
- $\chi_1$\ \ +\ \ \ 1\ \ \ \:\ \ ++\ \ \ 1\ \par
- \ \par
- \ \ ind\ \ \ 1\ fus\ ind\ \ \ 2\ \par
- \ \ \ \ \ \ \ \ 3\ \ \ \ \ \ \ \ \ \ \ 6\ \par
- \ \ \ \ \ \ \ \ 3\ \ \ \ \ \ \ \ \ \ \ 6\ \par
- \ \par
- $\chi_2$\ o2\ \ \ 1\ \ \ \:\ oo2\ \ \ 1\
- \end{minipage}}}
-
- \put(83,52){\makebox(0,0)[tl]{
- \small\tt
- \begin{minipage}{2in}
- \baselineskip2.7ex
- \parskip0ex
-
- \ \ \ 2\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
- \ \ \ 3\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
- \par
- \ \ \ \ \ \ 1a\ \ 3a\ \ 3b\ \ 2a\ \ 6a\ \ 6b \par
- \ \ 2P\ \ 1a\ \ 3b\ \ 3a\ \ 1a\ \ 3b\ \ 3a \par
- \ \ 3P\ \ 1a\ \ 1a\ \ 1a\ \ 2a\ \ 2a\ \ 2a \par
- \par
- X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
- X.2\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ -1\ \ -1\ \ -1 \par
- X.3\ \ \ \ 1\ \ \ A\ \ /A\ \ \ 1\ \ \ A\ \ /A \par
- X.4\ \ \ \ 1\ \ \ A\ \ /A\ \ -1\ \ -A\ -/A \par
- X.5\ \ \ \ 1\ \ /A\ \ \ A\ \ \ 1\ \ /A\ \ \ A \par
- X.6\ \ \ \ 1\ \ /A\ \ \ A\ \ -1\ -/A\ \ -A \par
- \par
- A\ =\ E(3) \par
- \ \ =\ (-1+ER(-3))/2\ =\ b3 \par
-
- \end{minipage}}}
- \end{picture}
- %end
- %display
- % ------- ------- ; @ ; ; @ 2 1 1 1 1 1 1
- %| | | | 1 1 3 1 1 1 1 1 1
- %| G | | G.2 | p power A
- %| | | | p' part A 1a 3a 3b 2a 6a 6b
- % ------- ------- ind 1A fus ind 2A 2P 1a 3b 3a 1a 3b 3a
- % ------- ------- 3P 1a 1a 1a 2a 2a 2a
- %| | | | X1 + 1 : ++ 1
- %| 3.G | | 3.G.2 | X.1 1 1 1 1 1 1
- %| | | | ind 1 fus ind 2 X.2 1 1 1 -1 -1 -1
- % ------- ------- 3 6 X.3 1 A /A 1 A /A
- % 3 6 X.4 1 A /A -1 -A -/A
- % X.5 1 /A A 1 /A A
- % X2 o2 1 : oo2 1 X.6 1 /A A -1 -/A -A
- %
- % A = E(3)
- % = (-1+ER(-3))/2 = b3
- %end
-
- 'X.1', 'X.2' extend $\chi_1$. 'X.3', 'X.4' extend the proxy character
- $\chi_2$. 'X.5', 'X.6' extend its follower.
- '1a', '3a', '3b' are preimages of '1A', and '2a', '6a', '6b' are preimages
- of '2A'.
-
- \item As a downward extension of the factor group $C_3$ which contains $G$ as
- a subgroup; equivalently, as an upward extension of the subgroup $C_2$ which
- has a factor group $G$\:
-
- %ignore
- \begin{picture}(110,55)
- \put(-2,23){
- \begin{picture}(29,29)
- \put(0,29){\line(1,0){14}}
- \put(0,15){\line(1,0){14}}
- \put(0,14){\line(1,0){14}}
- \put(0,0){\line(1,0){14}}
- \put(15,29){\line(1,0){14}}
- \put(15,15){\line(1,0){14}}
- \put(15,14){\line(1,0){14}}
- \put(15,0){\line(1,0){14}}
- \put(0,15){\line(0,1){14}}
- \put(0,0){\line(0,1){14}}
- \put(14,15){\line(0,1){14}}
- \put(15,15){\line(0,1){14}}
- \put(29,15){\line(0,1){14}}
- \put(14,0){\line(0,1){14}}
- \put(15,0){\line(0,1){14}}
- \put(29,0){\line(0,1){14}}
- \put(7,7){\makebox(0,0){2.G}}
- \put(22,7){\makebox(0,0){2.G.3}}
- \put(7,22){\makebox(0,0){G}}
- \put(22,22){\makebox(0,0){G.3}}
- \end{picture}}
- \put(37,52){\makebox(0,0)[tl]{
- \small\tt
- \begin{minipage}{2in}
- \baselineskip0.9ex
- \parskip0.2ex
-
- \ \ \ \ ;\ \ \ @\ \ \ ;\ \ \ ;\ \ \ @ \par
- \ \par
- \ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ \ \ 1 \par
- \ \ p\ power\ \ \ \ \ \ \ \ \ \ \ A \par
- \ \ p\ttquote\ part\ \ \ \ \ \ \ \ \ \ \ A \par
- \ \ ind\ \ 1A\ fus\ ind\ \ 3A \par
- \ \par
- $\chi_1$\ \ +\ \ \ 1\ \ \ \:\ +oo\ \ \ 1 \par
- \ \par
- \ \ ind\ \ \ 1\ fus\ ind\ \ \ 3 \par
- \ \ \ \ \ \ \ \ 2\ \ \ \ \ \ \ \ \ \ \ 6 \par
- \ \par
- $\chi_2$\ \ +\ \ \ 1\ \ \ \:\ +oo\ \ \ 1 \par
- \end{minipage}}}
-
- \put(83,52){\makebox(0,0)[tl]{
- \small\tt
- \begin{minipage}{2in}
- \baselineskip2.7ex
- \parskip0ex
-
- \ \ \ 2\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
- \ \ \ 3\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
- \par
- \ \ \ \ \ \ 1a\ \ 2a\ \ 3a\ \ 6a\ \ 3b\ \ 6b \par
- \ \ 2P\ \ 1a\ \ 1a\ \ 3b\ \ 3b\ \ 3a\ \ 3a \par
- \ \ 3P\ \ 1a\ \ 2a\ \ 1a\ \ 2a\ \ 1a\ \ 2a \par
- \par
- X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
- X.2\ \ \ \ 1\ \ \ 1\ \ \ A\ \ \ A\ \ /A\ \ /A \par
- X.3\ \ \ \ 1\ \ \ 1\ \ /A\ \ /A\ \ \ A\ \ \ A \par
- X.4\ \ \ \ 1\ \ -1\ \ \ 1\ \ -1\ \ \ 1\ \ -1 \par
- X.5\ \ \ \ 1\ \ -1\ \ \ A\ \ -A\ \ /A\ -/A \par
- X.6\ \ \ \ 1\ \ -1\ \ /A\ -/A\ \ \ A\ \ -A \par
- \par
- A\ =\ E(3) \par
- \ \ =\ (-1+ER(-3))/2\ =\ b3 \par
- \end{minipage}}}
- \end{picture}
- %end
- %display
- % ------- ------- ; @ ; ; @ 2 1 1 1 1 1 1
- %| | | | 1 1 3 1 1 1 1 1 1
- %| G | | G.3 | p power A
- %| | | | p' part A 1a 2a 3a 6a 3b 6b
- % ------- ------- ind 1A fus ind 3A 2P 1a 1a 3b 3b 3a 3a
- % ------- ------- 3P 1a 2a 1a 2a 1a 2a
- %| | | | X1 + 1 : +oo 1
- %| 2.G | | 2.G.3 | X.1 1 1 1 1 1 1
- %| | | | ind 1 fus ind 3 X.2 1 1 A A /A /A
- % ------- ------- 2 6 X.3 1 1 /A /A A A
- % X.4 1 -1 1 -1 1 -1
- % X2 + 1 : +oo 1 X.5 1 -1 A -A /A -/A
- % X.6 1 -1 /A -/A A -A
- %
- % A = E(3)
- % = (-1+ER(-3))/2 = b3
- %end
-
- 'X.1'-'X.3' extend $\chi_1$, 'X.4'-'X.6' extend $\chi_2$.
- '1a', '2a' are preimages of '1A'. '3a', '6a' are preimages of
- the proxy class '3A', and '3b', '6b' are preimages of its follower class.
-
- \item As a downward extension of the factor groups $C_3$ and $C_2$ which have
- $G$ as a factor group\:
-
- %ignore
- \begin{picture}(110,70)
- \put(-2,8){
- \begin{picture}(14,59)
- \put(0,59){\line(1,0){14}}
- \put(0,45){\line(1,0){14}}
- \put(0,44){\line(1,0){14}}
- \put(0,30){\line(1,0){14}}
- \put(0,29){\line(1,0){14}}
- \put(0,15){\line(1,0){14}}
- \put(0,14){\line(1,0){14}}
- \put(0,0){\line(1,0){14}}
- \put(0,45){\line(0,1){14}}
- \put(0,30){\line(0,1){14}}
- \put(0,15){\line(0,1){14}}
- \put(0,0){\line(0,1){14}}
- \put(14,45){\line(0,1){14}}
- \put(14,30){\line(0,1){14}}
- \put(14,15){\line(0,1){14}}
- \put(14,0){\line(0,1){14}}
- \put(7,7){\makebox(0,0){6.G}}
- \put(7,22){\makebox(0,0){3.G}}
- \put(7,37){\makebox(0,0){2.G}}
- \put(7,52){\makebox(0,0){G}}
- \end{picture}}
- \put(37,67){\makebox(0,0)[tl]{
- \small\tt
- \begin{minipage}{2in}
- \baselineskip0.9ex
- \parskip0.2ex
-
- \ \ \ \ ;\ \ \ @ \par
- \ \ \par
- \ \ \ \ \ \ \ \ 1 \par
- \ \ p\ power \par
- \ \ p\ttquote\ part \par
- \ \ ind\ \ 1A \par
- \ \ \par
- $\chi_1$\ \ +\ \ \ 1 \par
- \ \ \par
- \ \ ind\ \ \ 1 \par
- \ \ \ \ \ \ \ \ 2 \par
- \ \ \par
- $\chi_2$\ \ +\ \ \ 1 \par
- \ \ \par
- \ \ ind\ \ \ 1 \par
- \ \ \ \ \ \ \ \ 3 \par
- \ \ \ \ \ \ \ \ 3 \par
- \ \ \par
- $\chi_3$\ o2\ \ \ 1 \par
- \ \ \par
- \ \ ind\ \ \ 1 \par
- \ \ \ \ \ \ \ \ 6 \par
- \ \ \ \ \ \ \ \ 3 \par
- \ \ \ \ \ \ \ \ 2 \par
- \ \ \ \ \ \ \ \ 3 \par
- \ \ \ \ \ \ \ \ 6 \par
- \ \ \par
- $\chi_4$\ o2\ \ \ 1 \par
- \end{minipage}}}
-
- \put(83,67){\makebox(0,0)[tl]{
- \small\tt
- \begin{minipage}{2in}
- \baselineskip2.7ex
- \parskip0ex
-
- \ \ \ 2\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
- \ \ \ 3\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
- \par
- \ \ \ \ \ \ 1a\ \ 6a\ \ 3a\ \ 2a\ \ 3b\ \ 6b \par
- \ \ 2P\ \ 1a\ \ 3a\ \ 3b\ \ 1a\ \ 3a\ \ 3b \par
- \ \ 3P\ \ 1a\ \ 2a\ \ 1a\ \ 2a\ \ 1a\ \ 2a \par
- \par
- X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
- X.2\ \ \ \ 1\ \ -1\ \ \ 1\ \ -1\ \ \ 1\ \ -1 \par
- X.3\ \ \ \ 1\ \ \ A\ \ /A\ \ \ 1\ \ \ A\ \ /A \par
- X.4\ \ \ \ 1\ \ /A\ \ \ A\ \ \ 1\ \ /A\ \ \ A \par
- X.5\ \ \ \ 1\ \ -A\ \ /A\ \ -1\ \ \ A\ -/A \par
- X.6\ \ \ \ 1\ -/A\ \ \ A\ \ -1\ \ /A\ \ -A \par
- \par
- A\ =\ E(3) \par
- \ \ =\ (-1+ER(-3))/2\ =\ b3 \par
- \end{minipage}}}
- \end{picture}
- %end
- %display
- % ------- ; @ 2 1 1 1 1 1 1
- %| | 1 3 1 1 1 1 1 1
- %| G | p power
- %| | p' part 1a 6a 3a 2a 3b 6b
- % ------- ind 1A 2P 1a 3a 3b 1a 3a 3b
- % ------- 3P 1a 2a 1a 2a 1a 2a
- %| | X1 + 1
- %| 2.G | X.1 1 1 1 1 1 1
- %| | ind 1 X.2 1 -1 1 -1 1 -1
- % ------- 2 X.3 1 A /A 1 A /A
- % ------- X.4 1 /A A 1 /A A
- %| | X2 + 1 X.5 1 -A /A -1 A -/A
- %| 3.G | X.6 1 -/A A -1 /A -A
- %| | ind 1
- % ------- 3 A = E(3)
- % ------- 3 = (-1+ER(-3))/2 = b3
- %| |
- %| 6.G | X3 o2 1
- %| |
- % ------- ind 1
- % 6
- % 3
- % 2
- % 3
- % 6
- %
- % X4 o2 1
- %end
-
- 'X.1', 'X.2' correspond to $\chi_1, \chi_2$, respectively; 'X.3', 'X.5'
- correspond to the proxies $\chi_3, \chi_4$, and 'X.4', 'X.6' to their followers.
- The factor fusion onto $3.G$ is '[ 1, 2, 3, 1, 2, 3 ]', that onto $G.2$ is
- '[ 1, 2, 1, 2, 1, 2 ]'.
-
- \item As an upward extension of the subgroups $C_3$ or $C_2$ which both contain
- a subgroup $G$\:
-
- %ignore
- \begin{picture}(110,55)
- \put(-2,38){
- \begin{picture}(59,14)
- \put(0,0){\line(1,0){14}}
- \put(0,0){\line(0,1){14}}
- \put(0,14){\line(1,0){14}}
- \put(14,0){\line(0,1){14}}
- \put(7,7){\makebox(0,0){G}}
- \put(15,0){\line(1,0){14}}
- \put(15,0){\line(0,1){14}}
- \put(15,14){\line(1,0){14}}
- \put(29,0){\line(0,1){14}}
- \put(22,7){\makebox(0,0){G.2}}
- \put(30,0){\line(1,0){14}}
- \put(30,0){\line(0,1){14}}
- \put(30,14){\line(1,0){14}}
- \put(44,0){\line(0,1){14}}
- \put(37,7){\makebox(0,0){G.3}}
- \put(45,0){\line(1,0){14}}
- \put(45,0){\line(0,1){14}}
- \put(45,14){\line(1,0){14}}
- \put(59,0){\line(0,1){14}}
- \put(52,7){\makebox(0,0){G.6}}
- \end{picture}}
- \put(-2,30){\makebox(0,0)[tl]{
- \small\tt
- \begin{minipage}{4in}
- \baselineskip0.9ex
- \parskip0.2ex
-
- \ \ \ \ ;\ \ \ @\ \ \ ;\ \ \ ;\ \ \ @\ \ \ ;\ \ \ ;\ \ \ @\ \ \ ;\ \ \ \ \ ;\ \ \ @\ \par
- \ \par
- \ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ \ \ \ \ 1\ \par
- \ \ p\ power\ \ \ \ \ \ \ \ \ \ \ A\ \ \ \ \ \ \ \ \ \ \ A\ \ \ \ \ \ \ \ \ \ \ \ AA\ \par
- \ \ p\ttquote\ part\ \ \ \ \ \ \ \ \ \ \ A\ \ \ \ \ \ \ \ \ \ \ A\ \ \ \ \ \ \ \ \ \ \ \ AA\ \par
- \ \ ind\ \ 1A\ fus\ ind\ \ 2A\ fus\ ind\ \ 3A\ fus\ \ \ ind\ \ 6A\ \par
- \ \par
- $\chi_1$\ \ +\ \ \ 1\ \ \ \:\ \ ++\ \ \ 1\ \ \ \:\ +oo\ \ \ 1\ \ \ \:+oo+oo\ \ \ 1\ \par
- \end{minipage}}}
-
- \put(83,52){\makebox(0,0)[tl]{
- \small\tt
- \begin{minipage}{2in}
- \baselineskip2.7ex
- \parskip0ex
-
- \ \ \ 2\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
- \ \ \ 3\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
- \par
- \ \ \ \ \ \ 1a\ \ 2a\ \ 3a\ \ 3b\ \ 6a\ \ 6b \par
- \ \ 2P\ \ 1a\ \ 1a\ \ 3b\ \ 3a\ \ 3b\ \ 3a \par
- \ \ 3P\ \ 1a\ \ 2a\ \ 1a\ \ 1a\ \ 2a\ \ 2a \par
- \par
- X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
- X.2\ \ \ \ 1\ \ -1\ \ \ A\ \ /A\ \ -A\ -/A \par
- X.3\ \ \ \ 1\ \ \ 1\ \ /A\ \ \ A\ \ /A\ \ \ A \par
- X.4\ \ \ \ 1\ \ -1\ \ \ 1\ \ \ 1\ \ -1\ \ -1 \par
- X.5\ \ \ \ 1\ \ \ 1\ \ \ A\ \ /A\ \ \ A\ \ /A \par
- X.6\ \ \ \ 1\ \ -1\ \ /A\ \ \ A\ -/A\ \ -A \par
- \par
- A\ =\ E(3) \par
- \ \ =\ (-1+ER(-3))/2\ =\ b3 \par
- \end{minipage}}}
- \end{picture}
- %end
- %display
- % ------- ------- ------- -------
- %| | | || | | |
- %| G | | G.2 || G.3 | | G.6 |
- %| | | || | | |
- % ------- ------- ------- -------
- %
- % ; @ ; ; @ ; ; @ ; ; @
- %
- % 1 1 1 1
- % p power A A AA
- % p' part A A AA
- % ind 1A fus ind 2A fus ind 3A fus ind 6A
- %
- %X1 + 1 : ++ 1 : +oo 1 :+oo+oo 1
- %
- %
- % 2 1 1 1 1 1 1
- % 3 1 1 1 1 1 1
- %
- % 1a 2a 3a 3b 6a 6b
- % 2P 1a 1a 3b 3a 3b 3a
- % 3P 1a 2a 1a 1a 2a 2a
- % X.1 1 1 1 1 1 1
- % X.2 1 -1 A /A -A -/A
- % X.3 1 1 /A A /A A
- % X.4 1 -1 1 1 -1 -1
- % X.5 1 1 A /A A /A
- % X.6 1 -1 /A A -/A -A
- %
- % A = E(3)
- % = (-1+ER(-3))/2 = b3
- %end
-
- '1a', '2a' correspond to $1A, 2A$, respectively; '3a', '6a'
- correspond to the proxies $3A, 6A$, and '3b', '6b' to their followers.
-
- \end{enumerate}
-
- The second example explains the fusion case; again, $G$ is the trivial group.
-
- %ignore
- \begin{picture}(110,95)
- \put(0,33){
- \begin{picture}(29,59)
- \put(0,59){\line(1,0){14}}
- \put(0,45){\line(1,0){14}}
- \put(0,44){\line(1,0){14}}
- \put(0,30){\line(1,0){14}}
- \put(0,29){\line(1,0){14}}
- \put(0,15){\line(1,0){14}}
- \put(0,14){\line(1,0){14}}
- \put(0,0){\line(1,0){14}}
- \put(0,45){\line(0,1){14}}
- \put(0,30){\line(0,1){14}}
- \put(0,15){\line(0,1){14}}
- \put(0,0){\line(0,1){14}}
- \put(14,45){\line(0,1){14}}
- \put(14,30){\line(0,1){14}}
- \put(14,15){\line(0,1){14}}
- \put(14,0){\line(0,1){14}}
- \put(15,59){\line(1,0){14}}
- \put(15,45){\line(1,0){14}}
- \put(15,44){\line(1,0){14}}
- \put(15,30){\line(1,0){14}}
- \put(15,29){\line(1,0){14}}
- \put(15,14){\line(1,0){14}}
- \put(15,45){\line(0,1){14}}
- \put(15,30){\line(0,1){14}}
- \put(15,15){\line(0,1){14}}
- \put(15,0){\line(0,1){14}}
- \put(29,45){\line(0,1){14}}
- \put(29,30){\line(0,1){14}}
- \put(7,7){\makebox(0,0){6.G}}
- \put(7,22){\makebox(0,0){3.G}}
- \put(7,37){\makebox(0,0){2.G}}
- \put(7,52){\makebox(0,0){G}}
- \put(22,7){\makebox(0,0){6.G.2}}
- \put(22,22){\makebox(0,0){3.G.2}}
- \put(22,37){\makebox(0,0){2.G.2}}
- \put(22,52){\makebox(0,0){G.2}}
- \end{picture}}
- \put(39,92){\makebox(0,0)[tl]{
- \small\tt
- \begin{minipage}{2in}
- \baselineskip0.9ex
- \parskip0.2ex
-
- \ \ \ \ ;\ \ \ @\ \ \ ;\ \ \ ;\ \ @\ \par
- \ \ \ \par
- \ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ \ 1\ \par
- \ \ p\ power\ \ \ \ \ \ \ \ \ \ A\ \par
- \ \ p\ttquote\ part\ \ \ \ \ \ \ \ \ \ A\ \par
- \ \ ind\ \ 1A\ fus\ ind\ 2A\ \par
- \ \ \ \par
- $\chi_1$\ \ +\ \ \ 1\ \ \ \:\ \ ++\ \ 1\ \par
- \ \ \ \par
- \ \ ind\ \ \ 1\ fus\ ind\ \ 2\ \par
- \ \ \ \ \ \ \ \ 2\ \ \ \ \ \ \ \ \ \ 2\ \par
- \ \ \ \par
- $\chi_2$\ \ +\ \ \ 1\ \ \ \:\ \ ++\ \ 1\ \par
- \ \ \ \par
- \ \ ind\ \ \ 1\ fus\ ind\ \ 2\ \par
- \ \ \ \ \ \ \ \ 3\ \par
- \ \ \ \ \ \ \ \ 3\ \par
- \ \ \ \par
- $\chi_3$\ o2\ \ \ 1\ \ \ \*\ \ \ +\ \par
- \ \ \ \par
- \ \ ind\ \ \ 1\ fus\ ind\ \ 2\ \par
- \ \ \ \ \ \ \ \ 6\ \ \ \ \ \ \ \ \ \ 2\par
- \ \ \ \ \ \ \ \ 3\ \par
- \ \ \ \ \ \ \ \ 2\ \par
- \ \ \ \ \ \ \ \ 3\ \par
- \ \ \ \ \ \ \ \ 6\ \par
- \ \ \ \par
- $\chi_4$\ o2\ \ \ 1\ \ \ \*\ \ \ +\ \par
- \end{minipage}}}
-
- \put(85,92){\makebox(0,0)[tl]{
- \small\tt
- \begin{minipage}{2in}
- \baselineskip2.7ex
- \parskip0ex
-
- $3.G.2$ \par
- \par
- \ \ \ 2\ \ \ 1\ \ \ .\ \ \ 1 \par
- \ \ \ 3\ \ \ 1\ \ \ 1\ \ \ . \par
- \par
- \ \ \ \ \ \ 1a\ \ 3a\ \ 2a \par
- \ \ 2P\ \ 1a\ \ 3a\ \ 1a \par
- \ \ 3P\ \ 1a\ \ 1a\ \ 2a \par
- \par
- X.1\ \ \ \ 1\ \ \ 1\ \ \ 1 \par
- X.2\ \ \ \ 1\ \ \ 1\ \ -1 \par
- X.3\ \ \ \ 2\ \ -1\ \ \ . \par
- \par
- \
- \par
- $6.G.2$ \par
- \par
- \ \ \ 2\ \ \ 2\ \ \ 1\ \ \ 1\ \ \ 2\ \ \ 2\ \ \ 2 \par
- \ \ \ 3\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ .\ \ \ . \par
- \par
- \ \ \ \ \ \ 1a\ \ 6a\ \ 3a\ \ 2a\ \ 2b\ \ 2c \par
- \ \ 2P\ \ 1a\ \ 3a\ \ 3a\ \ 1a\ \ 1a\ \ 1a \par
- \ \ 3P\ \ 1a\ \ 2a\ \ 1a\ \ 2a\ \ 2b\ \ 2c \par
- \par
- Y.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
- Y.2\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ -1\ \ -1 \par
- Y.3\ \ \ \ 1\ \ -1\ \ \ 1\ \ -1\ \ \ 1\ \ -1 \par
- Y.4\ \ \ \ 1\ \ -1\ \ \ 1\ \ -1\ \ -1\ \ \ 1 \par
- Y.5\ \ \ \ 2\ \ -1\ \ -1\ \ \ 2\ \ \ .\ \ \ . \par
- Y.6\ \ \ \ 2\ \ \ 1\ \ -1\ \ -2\ \ \ .\ \ \ . \par
-
- \end{minipage}}}
- \end{picture}
- %end
- %display
- % ------- ------- ; @ ; ; @ 3.G.2
- %| | | | 1 1
- %| G | | G.2 | p power A 2 1 . 1
- %| | | | p' part A 3 1 1 .
- % ------- ------- ind 1A fus ind 2A
- % ------- ------- 1a 3a 2a
- %| | | | X1 + 1 : ++ 1 2P 1a 3a 1a
- %| 2.G | | 2.G.2 | 3P 1a 1a 2a
- %| | | | ind 1 fus ind 2
- % ------- ------- 2 2 X.1 1 1 1
- % ------- ------- X.2 1 1 -1
- %| | | X2 + 1 : ++ 1 X.3 2 -1 .
- %| 3.G | | 3.G.2
- %| | | ind 1 fus ind 2
- % ------- 3 6.G.2
- % ------- ------- 3
- %| | | 2 2 1 1 2 2 2
- %| 6.G | | 6.G.2 X3 o2 1 * + 3 1 1 1 1 . .
- %| | |
- % ------- ind 1 fus ind 2 1a 6a 3a 2a 2b 2c
- % 6 2 2P 1a 3a 3a 1a 1a 1a
- % 3 3P 1a 2a 1a 2a 2b 2c
- % 2
- % 3 Y.1 1 1 1 1 1 1
- % 6 Y.2 1 1 1 1 -1 -1
- % Y.3 1 -1 1 -1 1 -1
- % X4 o2 1 * + Y.4 1 -1 1 -1 -1 1
- % Y.5 2 -1 -1 2 . .
- % Y.6 2 1 -1 -2 . .
- %end
-
- The tables of $G, 2.G, 3.G, 6.G$ and $G.2$ are known from the first example,
- that of $2.G.2 \cong V_4$ will be given in the next one.
- So here we only print the {\GAP} tables of $3.G.2 \cong D_6$ and
- $6.G.2 \cong D_{12}$\:
-
- In $3.G.2$, 'X.1', 'X.2' extend $\chi_1$; $\chi_3$ and its follower fuse to
- give 'X.3', and two of the preimages of '1A' collapse.
-
- In $6.G.2$, 'Y.1'-'Y.4' are extensions of $\chi_1, \chi_2$, so these characters
- are the inflated characters from $2.G.2$ (with respect to the factor fusion
- '[ 1, 2, 1, 2, 3, 4 ]'). 'Y.5' is inflated from $3.G.2$ (with respect to the
- factor fusion '[ 1, 2, 2, 1, 3, 3 ]'), and 'Y.6' is the result of the fusion
- of $\chi_4$ and its follower.
-
-
- For the last example, let $G$ be the group $2^2$.
- Consider the following tables\:
-
- %ignore
- \begin{picture}(110,125)
- \put(0,93){
- \begin{picture}(29,29)
- \put(0,29){\line(1,0){14}}
- \put(0,15){\line(1,0){14}}
- \put(0,14){\line(1,0){14}}
- \put(0,0){\line(1,0){14}}
- \put(15,29){\line(1,0){14}}
- \put(15,15){\line(1,0){14}}
- \put(15,14){\line(1,0){14}}
- \put(15,0){\line(1,0){14}}
- \put(0,15){\line(0,1){14}}
- \put(0,0){\line(0,1){14}}
- \put(14,15){\line(0,1){14}}
- \put(15,15){\line(0,1){14}}
- \put(29,15){\line(0,1){14}}
- \put(14,0){\line(0,1){14}}
- \put(15,0){\line(0,1){14}}
- \put(29,0){\line(0,1){14}}
- \put(7,7){\makebox(0,0){2.G}}
- \put(22,7){\makebox(0,0){2.G.3}}
- \put(7,22){\makebox(0,0){G}}
- \put(22,22){\makebox(0,0){G.3}}
- \end{picture}}
-
- \put(81,91){\line(0,1){8}} % fusion sign in picture
- \put(39,122){\makebox(0,0)[tl]{
- \small\tt
- \begin{minipage}{3in}
- \baselineskip0.9ex
- \parskip0.2ex
-
- \ \ \ \ ;\ \ \ @\ \ \ @\ \ \ @\ \ \ @\ \ \ ;\ \ \ ;\ \ \ @\ \par
- \ \par
- \ \ \ \ \ \ \ \ 4\ \ \ 4\ \ \ 4\ \ \ 4\ \ \ \ \ \ \ \ \ \ \ 1\ \par
- \ \ p\ power\ \ \ A\ \ \ A\ \ \ A\ \ \ \ \ \ \ \ \ \ \ A\ \par
- \ \ p\ttquote\ part\ \ \ A\ \ \ A\ \ \ A\ \ \ \ \ \ \ \ \ \ \ A\ \par
- \ \ ind\ \ 1A\ \ 2A\ \ 2B\ \ 2C\ fus\ ind\ \ 3A\ \par
- \ \par
- $\chi_1$\ \ +\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ \:\ +oo\ \ \ 1\ \par
- \ \par
- $\chi_2$\ \ +\ \ \ 1\ \ \ 1\ \ -1\ \ -1\ \ \ .\ \ \ +\ \ \ 0\ \par
- \ \par
- $\chi_3$\ \ +\ \ \ 1\ \ -1\ \ \ 1\ \ -1\ \ \ .\ \par
- \ \par
- $\chi_4$\ \ +\ \ \ 1\ \ -1\ \ -1\ \ \ 1\ \ \ .\ \par
- \ \par
- \ \ ind\ \ \ 1\ \ \ 4\ \ \ 4\ \ \ 4\ fus\ ind\ \ \ 3\ \par
- \ \ \ \ \ \ \ \ 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 6\ \par
- \ \par
- $\chi_5$\ \ -\ \ \ 2\ \ \ 0\ \ \ 0\ \ \ 0\ \ \ \:\ -oo\ \ \ 1\ \par
- \end{minipage}}}
-
- \put(102,122){\makebox(0,0)[tl]{
- \small\tt
- \begin{minipage}{3in}
- \baselineskip2.7ex
- \parskip0ex
- $G.3$\par
- \par
- \ \ \ 2\ \ \ 2\ \ \ 2\ \ \ .\ \ \ . \par
- \ \ \ 3\ \ \ 1\ \ \ .\ \ \ 1\ \ \ 1 \par
- \par
- \ \ \ \ \ \ 1a\ \ 2a\ \ 3a\ \ 3b \par
- \ \ 2P\ \ 1a\ \ 1a\ \ 3b\ \ 3a \par
- \ \ 3P\ \ 1a\ \ 2a\ \ 1a\ \ 1a \par
- \par
- X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1 \par
- X.2\ \ \ \ 1\ \ \ 1\ \ \ A\ \ /A \par
- X.3\ \ \ \ 1\ \ \ 1\ \ /A\ \ \ A \par
- X.4\ \ \ \ 3\ \ -1\ \ \ .\ \ \ . \par
- \par
- A\ =\ E(3) \par
- \ \ =\ (-1+ER(-3))/2\ =\ b3 \par
- \end{minipage}}}
-
- \put(0,71){\makebox(0,0)[tl]{
- \small\tt
- \begin{minipage}{3in}
- \baselineskip2.7ex
- \parskip0ex
- $2.G$\par
- \par
- \ \ \ 2\ \ \ 3\ \ \ 3\ \ \ 2\ \ \ 2\ \ \ 2\par
- \par
- \ \ \ \ \ \ 1a\ \ 2a\ \ 4a\ \ 4b\ \ 4c\par
- \ \ 2P\ \ 1a\ \ 1a\ \ 2a\ \ 1a\ \ 1a\par
- \ \ 3P\ \ 1a\ \ 2a\ \ 4a\ \ 4b\ \ 4c\par
- \par
- X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\par
- X.2\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ -1\ \ -1\par
- X.3\ \ \ \ 1\ \ \ 1\ \ -1\ \ \ 1\ \ -1\par
- X.4\ \ \ \ 1\ \ \ 1\ \ -1\ \ -1\ \ \ 1\par
- X.5\ \ \ \ 2\ \ -2\ \ \ .\ \ \ .\ \ \ .\par
- \end{minipage}}}
-
- \put(50,71){\makebox(0,0)[tl]{
- \small\tt
- \begin{minipage}{3in}
- \baselineskip2.7ex
- \parskip0ex
- $2.G.3$\par
- \par
- \ \ \ 2\ \ \ 3\ \ \ 3\ \ \ 2\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\par
- \ \ \ 3\ \ \ 1\ \ \ 1\ \ \ .\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\par
- \par
- \ \ \ \ \ \ 1a\ \ 2a\ \ 4a\ \ 3a\ \ 6a\ \ 3b\ \ 6b\par
- \ \ 2P\ \ 1a\ \ 1a\ \ 2a\ \ 3b\ \ 3b\ \ 3a\ \ 3a\par
- \ \ 3P\ \ 1a\ \ 2a\ \ 4a\ \ 1a\ \ 2a\ \ 1a\ \ 2a\par
- \par
- X.1\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\par
- X.2\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ \ A\ \ \ A\ \ /A\ \ /A\par
- X.3\ \ \ \ 1\ \ \ 1\ \ \ 1\ \ /A\ \ /A\ \ \ A\ \ \ A\par
- X.4\ \ \ \ 3\ \ \ 3\ \ -1\ \ \ .\ \ \ .\ \ \ .\ \ \ .\par
- X.5\ \ \ \ 2\ \ -2\ \ \ .\ \ \ 1\ \ \ 1\ \ \ 1\ \ \ 1\par
- X.6\ \ \ \ 2\ \ -2\ \ \ .\ \ \ A\ \ -A\ \ /A\ -/A\par
- X.7\ \ \ \ 2\ \ -2\ \ \ .\ \ /A\ -/A\ \ \ A\ \ -A\par
- \par
- A\ =\ E(3) \par
- \ \ =\ (-1+ER(-3))/2\ =\ b3 \par
- \end{minipage}}}
- \end{picture}
- %end
- %display
- % ------- ------- ; @ @ @ @ ; ; @
- %| | | | 4 4 4 4 1
- %| G | | G.3 | p power A A A A
- %| | | | p' part A A A A
- % ------- ------- ind 1A 2A 2B 2C fus ind 3A
- % ------- -------
- %| | | | X1 + 1 1 1 1 : +oo 1
- %| 2.G | | 2.G.3 | X2 + 1 1 -1 -1 . + 0
- %| | | | X3 + 1 -1 1 -1 .
- % ------- ------- X4 + 1 -1 -1 1 .
- %
- % ind 1 4 4 4 fus ind 3
- % 2 6
- %
- % X5 - 2 0 0 0 : -oo 1
- %
- % G.3
- %
- % 2 2 2 . .
- % 3 1 . 1 1
- %
- % 1a 2a 3a 3b
- % 2P 1a 1a 3b 3a
- % 3P 1a 2a 1a 1a
- %
- % X.1 1 1 1 1
- % X.2 1 1 A /A
- % X.3 1 1 /A A
- % X.4 3 -1 . .
- %
- % A = E(3)
- % = (-1+ER(-3))/2 = b3
- %
- % 2.G 2.G.3
- %
- % 2 3 3 2 2 2 2 3 3 2 1 1 1 1
- % 3 1 1 . 1 1 1 1
- % 1a 2a 4a 4b 4c
- % 2P 1a 1a 2a 1a 1a 1a 2a 4a 3a 6a 3b 6b
- % 3P 1a 2a 4a 4b 4c 2P 1a 1a 2a 3b 3b 3a 3a
- % 3P 1a 2a 4a 1a 2a 1a 2a
- % X.1 1 1 1 1 1
- % X.2 1 1 1 -1 -1 X.1 1 1 1 1 1 1 1
- % X.3 1 1 -1 1 -1 X.2 1 1 1 A A /A /A
- % X.4 1 1 -1 -1 1 X.3 1 1 1 /A /A A A
- % X.5 2 -2 . . . X.4 3 3 -1 . . . .
- % X.5 2 -2 . 1 1 1 1
- % X.6 2 -2 . A -A /A -/A
- % X.7 2 -2 . /A -/A A -A
- %
- % A = E(3)
- % = (-1+ER(-3))/2 = b3
- %end
-
- In the table of $G.3 \cong A_4$, the characters $\chi_2, \chi_3$ and $\chi_4$
- fuse, and the classes '2A', '2B' and '2C' collapse.
- To get the table of $2.G \cong Q_8$ one just has to split the class '2A' and
- adjust the representative orders.
- Finally, the table of $2.G.3 \cong SL_2(3)$ is given; the subgroup fusion
- corresponding to the injection $2.G \hookrightarrow 2.G.3$ is
- '[ 1, 2, 3, 3, 3 ]', and the factor fusion corresponding to the epimorphism
- $2.G.3 \rightarrow G.3$ is '[ 1, 1, 2, 3, 3, 4, 4 ]'.
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \Section{CAS Tables}\index{character tables!CAS}%
- \index{tables!library}\index{library of character tables}
-
- All tables of the {\CAS} table library are available in \GAP, too.
- This sublibrary has been completely revised, i.e., errors have been corrected
- and powermaps have been completed.
-
- Any {\CAS} table is accessible by each of its {\CAS} names, that is, the table
- name or the filename (see "CharTable")\:
-
- | gap> t:= CharTable( "m10" );; t.name;
- "A6.2_3"|
-
- One does, however, not always get the original {\CAS} table\:\
- In many cases (mostly {\ATLAS} tables, see "ATLAS Tables") not only the name
- but also the succession of classes and characters has changed;
- the records in the component 'CAS' of the table (see "Character Table Records")
- contain the permutations which must be applied to classes and characters
- to get the original {\CAS} table\:
-
- | gap> t.CAS;
- [ rec(
- name := "m10",
- permchars := (3,5)(4,8,7,6),
- permclasses := (),
- text :=
- "names: m10\norder: 2^4.3^2.5 = 720\nnumber of classes:\
- 8\nsource: cambridge atlas\ncomments: point stabilizer of mathieu\
- -group m11\ntest: orth, min, sym[3] \n\
- " ) ]|
-
- The subgroup fusions were computed anew; their record component 'text' tells if
- the fusion is equal to that in the {\CAS} library --of course modulo the
- permutation of classes.
-
- *Note* that the fusions are neither tested to be consistent for any two
- subgroups of a group and their intersection, nor tested to be consistent
- with respect to composition of maps.
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \Section{Organization of the Table Libraries}
-
- The *primary file* is 'TBLNAME/ctprimar.tbl'. It contains the evaluation
- function 'CharTable' (see "CharTable") and some utilities.
-
- The global variable 'LIBLIST' which contains the information about all
- tables of the libraries is in the file 'TBLNAME/ctlist.tbl'; 'LIBLIST' is a
- record with components 'ORDINARY' and 'GENERIC', both lists;
- their entries are records with components 'firstname' (the value of
- the 'name' component of the table), 'filename' (the name of the file that
- contains the table, with respect to 'TBLNAME', for ordinary tables also
- 'othernames' (a list of admissible other names) and possibly 'CASnames'
- (the list of names that table had in {\CAS}).
-
- 'LIBLIST' can be computed from the 'libinfo' components of the tables
- using 'MakeLIBLIST' which reads all tables and returns 'LIBLIST'.
-
- Also the *secondary files* are all stored in the directory 'TBLNAME';
- they are 'ctlist.tbl' and
-
- | ctbalter.tbl ctbatres.tbl ctbconja.tbl ctbfisc1.tbl ctbfisc2.tbl
- ctbline1.tbl ctbline3.tbl ctbline4.tbl ctbline5.tbl ctbmathi.tbl
- ctbmonst.tbl ctborth1.tbl ctborth2.tbl ctborth3.tbl ctbspora.tbl
- ctbsympl.tbl ctbtwist.tbl ctbunit1.tbl ctbunit2.tbl ctbunit3.tbl
- ctbunit4.tbl ctgeneri.tbl ctoalter.tbl ctoatres.tbl ctoconja.tbl
- ctofisc1.tbl ctofisc2.tbl ctoline1.tbl ctoline2.tbl ctoline3.tbl
- ctoline4.tbl ctoline5.tbl ctomathi.tbl ctomaxi1.tbl ctomaxi2.tbl
- ctomaxi3.tbl ctomaxi4.tbl ctomisc1.tbl ctomisc2.tbl ctomisc3.tbl
- ctomisc4.tbl ctomisc5.tbl ctomisc6.tbl ctomonst.tbl ctonews.tbl
- ctoorth1.tbl ctoorth2.tbl ctoorth3.tbl ctoorth4.tbl ctoorth5.tbl
- ctospora.tbl ctosylno.tbl ctosympl.tbl ctotwist.tbl ctounit1.tbl
- ctounit2.tbl ctounit3.tbl ctounit4.tbl|
-
- The names begin with 'ct' for ``character table\'\', followed by 'o' for
- ``ordinary\'\', 'b' for ``Brauer\'\'\ or 'g' for ``generic\'\', then an
- up to 5 letter description of the contents, e.g., 'alter' for the
- alternating groups, and the extension '.tbl'.
-
- The file 'ctb<descr>.tbl' contains (at most) the Brauer tables corresponding
- to the ordinary tables in 'cto<descr>.tbl'.
-
- The *format of library tables* is always like this\:
-
- | LIBTABLE.|<filename>|.(|<tblname>|):=rec(
- ...
- # here the record components are stored
- ... );|
-
- Here <filename> is the name of the file containing the table, relative to
- 'TBLNAME', e.g.\ 'ctoalter', and <tblname> is the value of the 'name'
- component of the table, e.g.\ '\"A5\"'.
-
- For the contents of the table record, there are three different ways how
- tables are stored\:
-
- *Full tables* (like that of $A_5$) are stored similar to the internal
- format (see "Character Table Records"). Lists of characters, however,
- will be abbreviated in the following way\:
-
- For each subset of characters which differ just by multiplication
- with a linear character or by Galois conjugacy, only one is given by
- its values, the others are replaced by '[TENSOR,[<i>,<j>]]' (which
- means that the character is the tensor product of the <i>-th and the
- <j>-th character) or '[GALOIS,[<i>,<j>]]' (which means that the
- character is the <j>-th Galois conjugate of the <i>-th character.
-
- *Brauer tables* (like that of $A_5$ mod $2$) are stored relative to the
- corresponding ordinary table; instead of irreducible characters the files
- contain decomposition matrices or Brauer trees for the blocks of nonzero
- defect (see "Brauer Table Records"), and components which can be got by
- restriction to $p$--regular classes are not stored at all.
-
- *Construction tables* (like that of $O_8^-(3)M7$) have a component
- 'construction' that is a function of one variable. This function
- is called by 'CharTable'
- (see "CharTable") when the table is constructed, i.e.\ *not* when
- the file containing the table is read.
-
- The aim of this rather complicated way to store a character table is
- that big tables with a simple structure (e.g. direct products) can be
- stored in a very compact way.
-
- Another special case where construction tables are useful is that of
- projective tables\:
-
- In their component 'irreducibles' they do not contain irreducible
- characters but a list with information about the factor groups\:\
- Any entry is a list of length 2 that contains at position 1 the name of
- the table of the factor group, at the second position a list of
- integers representing the Galois automorphisms to get follower
- characters. E.g., for $12.M_{22}$, the value of 'irreducibles' is
-
- | [["M22",[]],["2.M22",[]],
- ["3.M22",[-1,-13,-13,-1,23,23,-1,-1,-1,-1,-1]],
- ["4.M22",[-1,-1,15,15,23,23,-1,-1]],,
- ["6.M22",[-13,-13,-1,23,23,-1,-7,-7,-1,-1]],,,,,,
- ["12.M22",[[17,-17,-1],[17,-17,-1],[-55,-377,-433],[-55,-377,-433],
- [89,991,1079],[89,991,1079],[-7,7,-1]]]]|
-
- Using this and the 'projectives' component of the table of the smallest
- nontrivial factor group, "CharTable" 'CharTable' constructs the
- irreducible characters. The table head, however, need not be
- constructed.
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \Section{How to Extend a Table Library}\index{library tables!add}%
- \index{tables!add to a library}\index{NotifyCharTable}%
- \index{PrintToLib}
-
- If you have some ordinary character tables which are not (or not yet) in a
- {\GAP} table library, but which you want to treat as library tables,
- e.g., assign them to variables using "CharTable" 'CharTable',
- you can include these tables. For that, two things must be done\:
-
- First you must notify each table, i.e., tell {\GAP} on which file it can
- be found, and which names are admissible; this can be done using
-
- 'NotifyCharTable( <firstname>, <filename>, <othernames> )',
-
- with strings <firstname> (the 'name' component of the table) and
- <filename> (the name of the file containing the table, relative to
- 'TBLNAME', and without extension '.tbl'), and a list <othernames>
- of strings which are other admissible names of the table (see "CharTable").
-
- 'NotifyCharTable' will add a record with these information to
- 'LIBLIST.ORDINARY'. A warning is printed for each table <libtbl> that
- was already accessible by some of the names, and delete these names in
- the 'LIBLIST.ORDINARY' component of <libtbl>. Of course this affects
- only the value of 'LIBLIST' in the current session, not that on the file.
-
- *Note* that an error is raised if you want to notify a table with
- <firstname> or name in <othernames> which is already the 'name'
- component of a library table.
-
- | gap> NotifyCharTable( "Private", "../tables/mytables", [ "My" ] );
- # tells {\GAP} that the table with names '\"Private\"' and '\"My\"'
- # is stored on file 'mytables.tbl' in the given directory
- gap> list:= List( LIBLIST.ORDINARY, x ->x.firstname );;
- gap> LIBLIST.ORDINARY[ Position( list, "Private" ) ];
- rec(
- firstname := "Private",
- filename := "../tables/mytables",
- othernames := [ "My" ] )|
-
- The second condition is that each file must contain tables in library
- format as described in "Organization of the Table Libraries"; in the
- example, the contents of the file may be this\:
-
- | LIBTABLE.'../tables/mytables'.Private:=
- rec(name:="Private",centralizers:=[1,1],irreducibles:=[[1,1],[1,-1]])
- );|
-
- Now the private table is a library table\:
-
- | gap> CharTable( "My" );
- rec(
- name := "Private", centralizers:= [ 1, 1 ],
- irreducibles := [ [ 1, 1 ], [ 1, -1 ] ] )|
-
- To append the table <tbl> in library format to the file with name <file>,
- use
-
- 'PrintToLib( <file>, <tbl> )'.
-
- *Note* that here <file> is the absolute name of the file, not the name
- relative to 'TBLNAME'. Thus the filename in the row with the assignment
- to 'LIBTABLE' must be adjusted to make the file a library file.
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \Section{FirstNameCharTable}
-
- 'FirstNameCharTable( <name> )'
-
- returns the value of the 'name' component of the character table with
- admissible name <name>, if exists; otherwise 'false' is returned.
-
- For each admissible name, also the lowercase string is admissible.
-
- | gap> FirstNameCharTable( "m22mod3" ); FirstNameCharTable( "s5" );
- "M22mod3"
- "A5.2"
- gap> FirstNameCharTable( "J5" );
- false|
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \Section{FileNameCharTable}
-
- 'FileNameCharTable( <firstname> )'
-
- returns the value of the 'filename' component of the information record
- in 'LIBLIST' for the table with name component <firstname>, if exists;
- otherwise 'false' is returned.
-
- | gap> FileNameCharTable( "m22mod3" ); FileNameCharTable( "M22mod3" );
- false
- "ctbmathi"|
-
-