home *** CD-ROM | disk | FTP | other *** search
/ Tools / WinSN5.0Ver.iso / NETSCAP.50 / WIN1998.ZIP / ns / jpeg / jquant1.c < prev    next >
Encoding:
C/C++ Source or Header  |  1998-04-08  |  31.6 KB  |  873 lines

  1. /*
  2.  * jquant1.c
  3.  *
  4.  * Copyright (C) 1991-1995, Thomas G. Lane.
  5.  * This file is part of the Independent JPEG Group's software.
  6.  * For conditions of distribution and use, see the accompanying README file.
  7.  *
  8.  * This file contains 1-pass color quantization (color mapping) routines.
  9.  * These routines provide mapping to a fixed color map using equally spaced
  10.  * color values.  Optional Floyd-Steinberg or ordered dithering is available.
  11.  */
  12.  
  13. #define JPEG_INTERNALS
  14. #include "jinclude.h"
  15. #include "jpeglib.h"
  16.  
  17. #ifdef QUANT_1PASS_SUPPORTED
  18.  
  19.  
  20. /*
  21.  * The main purpose of 1-pass quantization is to provide a fast, if not very
  22.  * high quality, colormapped output capability.  A 2-pass quantizer usually
  23.  * gives better visual quality; however, for quantized grayscale output this
  24.  * quantizer is perfectly adequate.  Dithering is highly recommended with this
  25.  * quantizer, though you can turn it off if you really want to.
  26.  *
  27.  * In 1-pass quantization the colormap must be chosen in advance of seeing the
  28.  * image.  We use a map consisting of all combinations of Ncolors[i] color
  29.  * values for the i'th component.  The Ncolors[] values are chosen so that
  30.  * their product, the total number of colors, is no more than that requested.
  31.  * (In most cases, the product will be somewhat less.)
  32.  *
  33.  * Since the colormap is orthogonal, the representative value for each color
  34.  * component can be determined without considering the other components;
  35.  * then these indexes can be combined into a colormap index by a standard
  36.  * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
  37.  * can be precalculated and stored in the lookup table colorindex[].
  38.  * colorindex[i][j] maps pixel value j in component i to the nearest
  39.  * representative value (grid plane) for that component; this index is
  40.  * multiplied by the array stride for component i, so that the
  41.  * index of the colormap entry closest to a given pixel value is just
  42.  *    sum( colorindex[component-number][pixel-component-value] )
  43.  * Aside from being fast, this scheme allows for variable spacing between
  44.  * representative values with no additional lookup cost.
  45.  *
  46.  * If gamma correction has been applied in color conversion, it might be wise
  47.  * to adjust the color grid spacing so that the representative colors are
  48.  * equidistant in linear space.  At this writing, gamma correction is not
  49.  * implemented by jdcolor, so nothing is done here.
  50.  */
  51.  
  52.  
  53. /* Declarations for ordered dithering.
  54.  *
  55.  * We use a standard 16x16 ordered dither array.  The basic concept of ordered
  56.  * dithering is described in many references, for instance Dale Schumacher's
  57.  * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
  58.  * In place of Schumacher's comparisons against a "threshold" value, we add a
  59.  * "dither" value to the input pixel and then round the result to the nearest
  60.  * output value.  The dither value is equivalent to (0.5 - threshold) times
  61.  * the distance between output values.  For ordered dithering, we assume that
  62.  * the output colors are equally spaced; if not, results will probably be
  63.  * worse, since the dither may be too much or too little at a given point.
  64.  *
  65.  * The normal calculation would be to form pixel value + dither, range-limit
  66.  * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
  67.  * We can skip the separate range-limiting step by extending the colorindex
  68.  * table in both directions.
  69.  */
  70.  
  71. #define ODITHER_SIZE  16    /* dimension of dither matrix */
  72. /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
  73. #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)    /* # cells in matrix */
  74. #define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */
  75.  
  76. typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
  77. typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
  78.  
  79. static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
  80.   /* Bayer's order-4 dither array.  Generated by the code given in
  81.    * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
  82.    * The values in this array must range from 0 to ODITHER_CELLS-1.
  83.    */
  84.   {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
  85.   { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
  86.   {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
  87.   { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
  88.   {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
  89.   { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
  90.   {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
  91.   { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
  92.   {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
  93.   { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
  94.   {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
  95.   { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
  96.   {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
  97.   { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
  98.   {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
  99.   { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
  100. };
  101.  
  102.  
  103. /* Declarations for Floyd-Steinberg dithering.
  104.  *
  105.  * Errors are accumulated into the array fserrors[], at a resolution of
  106.  * 1/16th of a pixel count.  The error at a given pixel is propagated
  107.  * to its not-yet-processed neighbors using the standard F-S fractions,
  108.  *        ...    (here)    7/16
  109.  *        3/16    5/16    1/16
  110.  * We work left-to-right on even rows, right-to-left on odd rows.
  111.  *
  112.  * We can get away with a single array (holding one row's worth of errors)
  113.  * by using it to store the current row's errors at pixel columns not yet
  114.  * processed, but the next row's errors at columns already processed.  We
  115.  * need only a few extra variables to hold the errors immediately around the
  116.  * current column.  (If we are lucky, those variables are in registers, but
  117.  * even if not, they're probably cheaper to access than array elements are.)
  118.  *
  119.  * The fserrors[] array is indexed [component#][position].
  120.  * We provide (#columns + 2) entries per component; the extra entry at each
  121.  * end saves us from special-casing the first and last pixels.
  122.  *
  123.  * Note: on a wide image, we might not have enough room in a PC's near data
  124.  * segment to hold the error array; so it is allocated with alloc_large.
  125.  */
  126.  
  127. #if BITS_IN_JSAMPLE == 8
  128. typedef INT16 FSERROR;        /* 16 bits should be enough */
  129. typedef int LOCFSERROR;        /* use 'int' for calculation temps */
  130. #else
  131. typedef INT32 FSERROR;        /* may need more than 16 bits */
  132. typedef INT32 LOCFSERROR;    /* be sure calculation temps are big enough */
  133. #endif
  134.  
  135. typedef FSERROR FAR *FSERRPTR;    /* pointer to error array (in FAR storage!) */
  136.  
  137.  
  138. /* Private subobject */
  139.  
  140. #define MAX_Q_COMPS 4        /* max components I can handle */
  141.  
  142. typedef struct {
  143.   struct jpeg_color_quantizer pub; /* public fields */
  144.  
  145.   /* Initially allocated colormap is saved here */
  146.   JSAMPARRAY sv_colormap;    /* The color map as a 2-D pixel array */
  147.   int sv_actual;        /* number of entries in use */
  148.  
  149.   JSAMPARRAY colorindex;    /* Precomputed mapping for speed */
  150.   /* colorindex[i][j] = index of color closest to pixel value j in component i,
  151.    * premultiplied as described above.  Since colormap indexes must fit into
  152.    * JSAMPLEs, the entries of this array will too.
  153.    */
  154.   boolean is_padded;        /* is the colorindex padded for odither? */
  155.  
  156.   int Ncolors[MAX_Q_COMPS];    /* # of values alloced to each component */
  157.  
  158.   /* Variables for ordered dithering */
  159.   int row_index;        /* cur row's vertical index in dither matrix */
  160.   ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
  161.  
  162.   /* Variables for Floyd-Steinberg dithering */
  163.   FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
  164.   boolean on_odd_row;        /* flag to remember which row we are on */
  165. } my_cquantizer;
  166.  
  167. typedef my_cquantizer * my_cquantize_ptr;
  168.  
  169.  
  170. /*
  171.  * Policy-making subroutines for create_colormap and create_colorindex.
  172.  * These routines determine the colormap to be used.  The rest of the module
  173.  * only assumes that the colormap is orthogonal.
  174.  *
  175.  *  * select_ncolors decides how to divvy up the available colors
  176.  *    among the components.
  177.  *  * output_value defines the set of representative values for a component.
  178.  *  * largest_input_value defines the mapping from input values to
  179.  *    representative values for a component.
  180.  * Note that the latter two routines may impose different policies for
  181.  * different components, though this is not currently done.
  182.  */
  183.  
  184.  
  185. LOCAL int
  186. select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
  187. /* Determine allocation of desired colors to components, */
  188. /* and fill in Ncolors[] array to indicate choice. */
  189. /* Return value is total number of colors (product of Ncolors[] values). */
  190. {
  191.   int nc = cinfo->out_color_components; /* number of color components */
  192.   int max_colors = cinfo->desired_number_of_colors;
  193.   int total_colors, iroot, i, j;
  194.   boolean changed;
  195.   long temp;
  196.   static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
  197.  
  198.   /* We can allocate at least the nc'th root of max_colors per component. */
  199.   /* Compute floor(nc'th root of max_colors). */
  200.   iroot = 1;
  201.   do {
  202.     iroot++;
  203.     temp = iroot;        /* set temp = iroot ** nc */
  204.     for (i = 1; i < nc; i++)
  205.       temp *= iroot;
  206.   } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
  207.   iroot--;            /* now iroot = floor(root) */
  208.  
  209.   /* Must have at least 2 color values per component */
  210.   if (iroot < 2)
  211.     ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
  212.  
  213.   /* Initialize to iroot color values for each component */
  214.   total_colors = 1;
  215.   for (i = 0; i < nc; i++) {
  216.     Ncolors[i] = iroot;
  217.     total_colors *= iroot;
  218.   }
  219.   /* We may be able to increment the count for one or more components without
  220.    * exceeding max_colors, though we know not all can be incremented.
  221.    * Sometimes, the first component can be incremented more than once!
  222.    * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
  223.    * In RGB colorspace, try to increment G first, then R, then B.
  224.    */
  225.   do {
  226.     changed = FALSE;
  227.     for (i = 0; i < nc; i++) {
  228.       j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
  229.       /* calculate new total_colors if Ncolors[j] is incremented */
  230.       temp = total_colors / Ncolors[j];
  231.       temp *= Ncolors[j]+1;    /* done in long arith to avoid oflo */
  232.       if (temp > (long) max_colors)
  233.     break;            /* won't fit, done with this pass */
  234.       Ncolors[j]++;        /* OK, apply the increment */
  235.       total_colors = (int) temp;
  236.       changed = TRUE;
  237.     }
  238.   } while (changed);
  239.  
  240.   return total_colors;
  241. }
  242.  
  243.  
  244. LOCAL int
  245. output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
  246. /* Return j'th output value, where j will range from 0 to maxj */
  247. /* The output values must fall in 0..MAXJSAMPLE in increasing order */
  248. {
  249.   /* We always provide values 0 and MAXJSAMPLE for each component;
  250.    * any additional values are equally spaced between these limits.
  251.    * (Forcing the upper and lower values to the limits ensures that
  252.    * dithering can't produce a color outside the selected gamut.)
  253.    */
  254.   return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
  255. }
  256.  
  257.  
  258. LOCAL int
  259. largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
  260. /* Return largest input value that should map to j'th output value */
  261. /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
  262. {
  263.   /* Breakpoints are halfway between values returned by output_value */
  264. #if defined(_WINDOWS) && !defined(_WIN32)
  265.     int iRetval;
  266.     INT32 lTemp;
  267.  
  268.     iRetval = 0;
  269.     lTemp = 2*j + 1;
  270.     lTemp *= MAXJSAMPLE;
  271.     lTemp += maxj;
  272.     lTemp /= 2;
  273.     lTemp /= maxj;
  274.  
  275.     iRetval = (int)lTemp;
  276.  
  277.     return(iRetval);
  278. #else
  279.   return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
  280. #endif
  281. }
  282.  
  283.  
  284. /*
  285.  * Create the colormap.
  286.  */
  287.  
  288. LOCAL void
  289. create_colormap (j_decompress_ptr cinfo)
  290. {
  291.   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  292.   JSAMPARRAY colormap;        /* Created colormap */
  293.   int total_colors;        /* Number of distinct output colors */
  294.   int i,j,k, nci, blksize, blkdist, ptr, val;
  295.  
  296.   /* Select number of colors for each component */
  297.   total_colors = select_ncolors(cinfo, cquantize->Ncolors);
  298.  
  299.   /* Report selected color counts */
  300.   if (cinfo->out_color_components == 3)
  301.     TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
  302.          total_colors, cquantize->Ncolors[0],
  303.          cquantize->Ncolors[1], cquantize->Ncolors[2]);
  304.   else
  305.     TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
  306.  
  307.   /* Allocate and fill in the colormap. */
  308.   /* The colors are ordered in the map in standard row-major order, */
  309.   /* i.e. rightmost (highest-indexed) color changes most rapidly. */
  310.  
  311.   colormap = (*cinfo->mem->alloc_sarray)
  312.     ((j_common_ptr) cinfo, JPOOL_IMAGE,
  313.      (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
  314.  
  315.   /* blksize is number of adjacent repeated entries for a component */
  316.   /* blkdist is distance between groups of identical entries for a component */
  317.   blkdist = total_colors;
  318.  
  319.   for (i = 0; i < cinfo->out_color_components; i++) {
  320.     /* fill in colormap entries for i'th color component */
  321.     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
  322.     blksize = blkdist / nci;
  323.     for (j = 0; j < nci; j++) {
  324.       /* Compute j'th output value (out of nci) for component */
  325.       val = output_value(cinfo, i, j, nci-1);
  326.       /* Fill in all colormap entries that have this value of this component */
  327.       for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
  328.     /* fill in blksize entries beginning at ptr */
  329.     for (k = 0; k < blksize; k++)
  330.       colormap[i][ptr+k] = (JSAMPLE) val;
  331.       }
  332.     }
  333.     blkdist = blksize;        /* blksize of this color is blkdist of next */
  334.   }
  335.  
  336.   /* Save the colormap in private storage,
  337.    * where it will survive color quantization mode changes.
  338.    */
  339.   cquantize->sv_colormap = colormap;
  340.   cquantize->sv_actual = total_colors;
  341. }
  342.  
  343.  
  344. /*
  345.  * Create the color index table.
  346.  */
  347.  
  348. LOCAL void
  349. create_colorindex (j_decompress_ptr cinfo)
  350. {
  351.   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  352.   JSAMPROW indexptr;
  353.   int i,j,k, nci, blksize, val, pad;
  354.  
  355.   /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
  356.    * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
  357.    * This is not necessary in the other dithering modes.  However, we
  358.    * flag whether it was done in case user changes dithering mode.
  359.    */
  360.   if (cinfo->dither_mode == JDITHER_ORDERED) {
  361.     pad = MAXJSAMPLE*2;
  362.     cquantize->is_padded = TRUE;
  363.   } else {
  364.     pad = 0;
  365.     cquantize->is_padded = FALSE;
  366.   }
  367.  
  368.   cquantize->colorindex = (*cinfo->mem->alloc_sarray)
  369.     ((j_common_ptr) cinfo, JPOOL_IMAGE,
  370.      (JDIMENSION) (MAXJSAMPLE+1 + pad),
  371.      (JDIMENSION) cinfo->out_color_components);
  372.  
  373.   /* blksize is number of adjacent repeated entries for a component */
  374.   blksize = cquantize->sv_actual;
  375.  
  376.   for (i = 0; i < cinfo->out_color_components; i++) {
  377.     /* fill in colorindex entries for i'th color component */
  378.     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
  379.     blksize = blksize / nci;
  380.  
  381.     /* adjust colorindex pointers to provide padding at negative indexes. */
  382.     if (pad)
  383.       cquantize->colorindex[i] += MAXJSAMPLE;
  384.  
  385.     /* in loop, val = index of current output value, */
  386.     /* and k = largest j that maps to current val */
  387.     indexptr = cquantize->colorindex[i];
  388.     val = 0;
  389.     k = largest_input_value(cinfo, i, 0, nci-1);
  390.     for (j = 0; j <= MAXJSAMPLE; j++) {
  391.       while (j > k)        /* advance val if past boundary */
  392.     k = largest_input_value(cinfo, i, ++val, nci-1);
  393.       /* premultiply so that no multiplication needed in main processing */
  394.       indexptr[j] = (JSAMPLE) (val * blksize);
  395.     }
  396.     /* Pad at both ends if necessary */
  397.     if (pad)
  398.       for (j = 1; j <= MAXJSAMPLE; j++) {
  399.     indexptr[-j] = indexptr[0];
  400.     indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
  401.       }
  402.   }
  403. }
  404.  
  405.  
  406. /*
  407.  * Create an ordered-dither array for a component having ncolors
  408.  * distinct output values.
  409.  */
  410.  
  411. LOCAL ODITHER_MATRIX_PTR
  412. make_odither_array (j_decompress_ptr cinfo, int ncolors)
  413. {
  414.   ODITHER_MATRIX_PTR odither;
  415.   int j,k;
  416.   INT32 num,den;
  417.  
  418.   odither = (ODITHER_MATRIX_PTR)
  419.     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  420.                 SIZEOF(ODITHER_MATRIX));
  421.   /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
  422.    * Hence the dither value for the matrix cell with fill order f
  423.    * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
  424.    * On 16-bit-int machine, be careful to avoid overflow.
  425.    */
  426.   den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
  427.   for (j = 0; j < ODITHER_SIZE; j++) {
  428.     for (k = 0; k < ODITHER_SIZE; k++) {
  429.       num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
  430.         * MAXJSAMPLE;
  431.       /* Ensure round towards zero despite C's lack of consistency
  432.        * about rounding negative values in integer division...
  433.        */
  434.       odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
  435.     }
  436.   }
  437.   return odither;
  438. }
  439.  
  440.  
  441. /*
  442.  * Create the ordered-dither tables.
  443.  * Components having the same number of representative colors may 
  444.  * share a dither table.
  445.  */
  446.  
  447. LOCAL void
  448. create_odither_tables (j_decompress_ptr cinfo)
  449. {
  450.   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  451.   ODITHER_MATRIX_PTR odither;
  452.   int i, j, nci;
  453.  
  454.   for (i = 0; i < cinfo->out_color_components; i++) {
  455.     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
  456.     odither = NULL;        /* search for matching prior component */
  457.     for (j = 0; j < i; j++) {
  458.       if (nci == cquantize->Ncolors[j]) {
  459.     odither = cquantize->odither[j];
  460.     break;
  461.       }
  462.     }
  463.     if (odither == NULL)    /* need a new table? */
  464.       odither = make_odither_array(cinfo, nci);
  465.     cquantize->odither[i] = odither;
  466.   }
  467. }
  468.  
  469.  
  470. /*
  471.  * Map some rows of pixels to the output colormapped representation.
  472.  */
  473.  
  474. METHODDEF void
  475. color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
  476.         JSAMPARRAY output_buf, int num_rows)
  477. /* General case, no dithering */
  478. {
  479.   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  480.   JSAMPARRAY colorindex = cquantize->colorindex;
  481.   register int pixcode, ci;
  482.   register JSAMPROW ptrin, ptrout;
  483.   int row;
  484.   JDIMENSION col;
  485.   JDIMENSION width = cinfo->output_width;
  486.   register int nc = cinfo->out_color_components;
  487.  
  488.   for (row = 0; row < num_rows; row++) {
  489.     ptrin = input_buf[row];
  490.     ptrout = output_buf[row];
  491.     for (col = width; col > 0; col--) {
  492.       pixcode = 0;
  493.       for (ci = 0; ci < nc; ci++) {
  494.     pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
  495.       }
  496.       *ptrout++ = (JSAMPLE) pixcode;
  497.     }
  498.   }
  499. }
  500.  
  501.  
  502. METHODDEF void
  503. color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
  504.          JSAMPARRAY output_buf, int num_rows)
  505. /* Fast path for out_color_components==3, no dithering */
  506. {
  507.   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  508.   register int pixcode;
  509.   register JSAMPROW ptrin, ptrout;
  510.   JSAMPROW colorindex0 = cquantize->colorindex[0];
  511.   JSAMPROW colorindex1 = cquantize->colorindex[1];
  512.   JSAMPROW colorindex2 = cquantize->colorindex[2];
  513.   int row;
  514.   JDIMENSION col;
  515.   JDIMENSION width = cinfo->output_width;
  516.  
  517.   for (row = 0; row < num_rows; row++) {
  518.     ptrin = input_buf[row];
  519.     ptrout = output_buf[row];
  520.     for (col = width; col > 0; col--) {
  521.       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
  522.       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
  523.       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
  524.       *ptrout++ = (JSAMPLE) pixcode;
  525.     }
  526.   }
  527. }
  528.  
  529.  
  530. METHODDEF void
  531. quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
  532.              JSAMPARRAY output_buf, int num_rows)
  533. /* General case, with ordered dithering */
  534. {
  535.   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  536.   register JSAMPROW input_ptr;
  537.   register JSAMPROW output_ptr;
  538.   JSAMPROW colorindex_ci;
  539.   int * dither;            /* points to active row of dither matrix */
  540.   int row_index, col_index;    /* current indexes into dither matrix */
  541.   int nc = cinfo->out_color_components;
  542.   int ci;
  543.   int row;
  544.   JDIMENSION col;
  545.   JDIMENSION width = cinfo->output_width;
  546.  
  547.   for (row = 0; row < num_rows; row++) {
  548.     /* Initialize output values to 0 so can process components separately */
  549.     jzero_far((void FAR *) output_buf[row],
  550.           (size_t) (width * SIZEOF(JSAMPLE)));
  551.     row_index = cquantize->row_index;
  552.     for (ci = 0; ci < nc; ci++) {
  553.       input_ptr = input_buf[row] + ci;
  554.       output_ptr = output_buf[row];
  555.       colorindex_ci = cquantize->colorindex[ci];
  556.       dither = cquantize->odither[ci][row_index];
  557.       col_index = 0;
  558.  
  559.       for (col = width; col > 0; col--) {
  560.     /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
  561.      * select output value, accumulate into output code for this pixel.
  562.      * Range-limiting need not be done explicitly, as we have extended
  563.      * the colorindex table to produce the right answers for out-of-range
  564.      * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
  565.      * required amount of padding.
  566.      */
  567.     *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
  568.     input_ptr += nc;
  569.     output_ptr++;
  570.     col_index = (col_index + 1) & ODITHER_MASK;
  571.       }
  572.     }
  573.     /* Advance row index for next row */
  574.     row_index = (row_index + 1) & ODITHER_MASK;
  575.     cquantize->row_index = row_index;
  576.   }
  577. }
  578.  
  579.  
  580. METHODDEF void
  581. quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
  582.               JSAMPARRAY output_buf, int num_rows)
  583. /* Fast path for out_color_components==3, with ordered dithering */
  584. {
  585.   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  586.   register int pixcode;
  587.   register JSAMPROW input_ptr;
  588.   register JSAMPROW output_ptr;
  589.   JSAMPROW colorindex0 = cquantize->colorindex[0];
  590.   JSAMPROW colorindex1 = cquantize->colorindex[1];
  591.   JSAMPROW colorindex2 = cquantize->colorindex[2];
  592.   int * dither0;        /* points to active row of dither matrix */
  593.   int * dither1;
  594.   int * dither2;
  595.   int row_index, col_index;    /* current indexes into dither matrix */
  596.   int row;
  597.   JDIMENSION col;
  598.   JDIMENSION width = cinfo->output_width;
  599.  
  600.   for (row = 0; row < num_rows; row++) {
  601.     row_index = cquantize->row_index;
  602.     input_ptr = input_buf[row];
  603.     output_ptr = output_buf[row];
  604.     dither0 = cquantize->odither[0][row_index];
  605.     dither1 = cquantize->odither[1][row_index];
  606.     dither2 = cquantize->odither[2][row_index];
  607.     col_index = 0;
  608.  
  609.     for (col = width; col > 0; col--) {
  610.       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
  611.                     dither0[col_index]]);
  612.       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
  613.                     dither1[col_index]]);
  614.       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
  615.                     dither2[col_index]]);
  616.       *output_ptr++ = (JSAMPLE) pixcode;
  617.       col_index = (col_index + 1) & ODITHER_MASK;
  618.     }
  619.     row_index = (row_index + 1) & ODITHER_MASK;
  620.     cquantize->row_index = row_index;
  621.   }
  622. }
  623.  
  624.  
  625. METHODDEF void
  626. quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
  627.             JSAMPARRAY output_buf, int num_rows)
  628. /* General case, with Floyd-Steinberg dithering */
  629. {
  630.   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  631.   register LOCFSERROR cur;    /* current error or pixel value */
  632.   LOCFSERROR belowerr;        /* error for pixel below cur */
  633.   LOCFSERROR bpreverr;        /* error for below/prev col */
  634.   LOCFSERROR bnexterr;        /* error for below/next col */
  635.   LOCFSERROR delta;
  636.   register FSERRPTR errorptr;    /* => fserrors[] at column before current */
  637.   register JSAMPROW input_ptr;
  638.   register JSAMPROW output_ptr;
  639.   JSAMPROW colorindex_ci;
  640.   JSAMPROW colormap_ci;
  641.   int pixcode;
  642.   int nc = cinfo->out_color_components;
  643.   int dir;            /* 1 for left-to-right, -1 for right-to-left */
  644.   int dirnc;            /* dir * nc */
  645.   int ci;
  646.   int row;
  647.   JDIMENSION col;
  648.   JDIMENSION width = cinfo->output_width;
  649.   JSAMPLE *range_limit = cinfo->sample_range_limit;
  650.   SHIFT_TEMPS
  651.  
  652.   for (row = 0; row < num_rows; row++) {
  653.     /* Initialize output values to 0 so can process components separately */
  654.     jzero_far((void FAR *) output_buf[row],
  655.           (size_t) (width * SIZEOF(JSAMPLE)));
  656.     for (ci = 0; ci < nc; ci++) {
  657.       input_ptr = input_buf[row] + ci;
  658.       output_ptr = output_buf[row];
  659.       if (cquantize->on_odd_row) {
  660.     /* work right to left in this row */
  661.     input_ptr += (width-1) * nc; /* so point to rightmost pixel */
  662.     output_ptr += width-1;
  663.     dir = -1;
  664.     dirnc = -nc;
  665.     errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
  666.       } else {
  667.     /* work left to right in this row */
  668.     dir = 1;
  669.     dirnc = nc;
  670.     errorptr = cquantize->fserrors[ci]; /* => entry before first column */
  671.       }
  672.       colorindex_ci = cquantize->colorindex[ci];
  673.       colormap_ci = cquantize->sv_colormap[ci];
  674.       /* Preset error values: no error propagated to first pixel from left */
  675.       cur = 0;
  676.       /* and no error propagated to row below yet */
  677.       belowerr = bpreverr = 0;
  678.  
  679.       for (col = width; col > 0; col--) {
  680.     /* cur holds the error propagated from the previous pixel on the
  681.      * current line.  Add the error propagated from the previous line
  682.      * to form the complete error correction term for this pixel, and
  683.      * round the error term (which is expressed * 16) to an integer.
  684.      * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
  685.      * for either sign of the error value.
  686.      * Note: errorptr points to *previous* column's array entry.
  687.      */
  688.     cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
  689.     /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
  690.      * The maximum error is +- MAXJSAMPLE; this sets the required size
  691.      * of the range_limit array.
  692.      */
  693.     cur += GETJSAMPLE(*input_ptr);
  694.     cur = GETJSAMPLE(range_limit[cur]);
  695.     /* Select output value, accumulate into output code for this pixel */
  696.     pixcode = GETJSAMPLE(colorindex_ci[cur]);
  697.     *output_ptr += (JSAMPLE) pixcode;
  698.     /* Compute actual representation error at this pixel */
  699.     /* Note: we can do this even though we don't have the final */
  700.     /* pixel code, because the colormap is orthogonal. */
  701.     cur -= GETJSAMPLE(colormap_ci[pixcode]);
  702.     /* Compute error fractions to be propagated to adjacent pixels.
  703.      * Add these into the running sums, and simultaneously shift the
  704.      * next-line error sums left by 1 column.
  705.      */
  706.     bnexterr = cur;
  707.     delta = cur * 2;
  708.     cur += delta;        /* form error * 3 */
  709.     errorptr[0] = (FSERROR) (bpreverr + cur);
  710.     cur += delta;        /* form error * 5 */
  711.     bpreverr = belowerr + cur;
  712.     belowerr = bnexterr;
  713.     cur += delta;        /* form error * 7 */
  714.     /* At this point cur contains the 7/16 error value to be propagated
  715.      * to the next pixel on the current line, and all the errors for the
  716.      * next line have been shifted over. We are therefore ready to move on.
  717.      */
  718.     input_ptr += dirnc;    /* advance input ptr to next column */
  719.     output_ptr += dir;    /* advance output ptr to next column */
  720.     errorptr += dir;    /* advance errorptr to current column */
  721.       }
  722.       /* Post-loop cleanup: we must unload the final error value into the
  723.        * final fserrors[] entry.  Note we need not unload belowerr because
  724.        * it is for the dummy column before or after the actual array.
  725.        */
  726.       errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
  727.     }
  728.     cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
  729.   }
  730. }
  731.  
  732.  
  733. /*
  734.  * Allocate workspace for Floyd-Steinberg errors.
  735.  */
  736.  
  737. LOCAL void
  738. alloc_fs_workspace (j_decompress_ptr cinfo)
  739. {
  740.   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  741.   size_t arraysize;
  742.   int i;
  743.  
  744.   arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
  745.   for (i = 0; i < cinfo->out_color_components; i++) {
  746.     cquantize->fserrors[i] = (FSERRPTR)
  747.       (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
  748.   }
  749. }
  750.  
  751.  
  752. /*
  753.  * Initialize for one-pass color quantization.
  754.  */
  755.  
  756. METHODDEF void
  757. start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
  758. {
  759.   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  760.   size_t arraysize;
  761.   int i;
  762.  
  763.   /* Install my colormap. */
  764.   cinfo->colormap = cquantize->sv_colormap;
  765.   cinfo->actual_number_of_colors = cquantize->sv_actual;
  766.  
  767.   /* Initialize for desired dithering mode. */
  768.   switch (cinfo->dither_mode) {
  769.   case JDITHER_NONE:
  770.     if (cinfo->out_color_components == 3)
  771.       cquantize->pub.color_quantize = color_quantize3;
  772.     else
  773.       cquantize->pub.color_quantize = color_quantize;
  774.     break;
  775.   case JDITHER_ORDERED:
  776.     if (cinfo->out_color_components == 3)
  777.       cquantize->pub.color_quantize = quantize3_ord_dither;
  778.     else
  779.       cquantize->pub.color_quantize = quantize_ord_dither;
  780.     cquantize->row_index = 0;    /* initialize state for ordered dither */
  781.     /* If user changed to ordered dither from another mode,
  782.      * we must recreate the color index table with padding.
  783.      * This will cost extra space, but probably isn't very likely.
  784.      */
  785.     if (! cquantize->is_padded)
  786.       create_colorindex(cinfo);
  787.     /* Create ordered-dither tables if we didn't already. */
  788.     if (cquantize->odither[0] == NULL)
  789.       create_odither_tables(cinfo);
  790.     break;
  791.   case JDITHER_FS:
  792.     cquantize->pub.color_quantize = quantize_fs_dither;
  793.     cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
  794.     /* Allocate Floyd-Steinberg workspace if didn't already. */
  795.     if (cquantize->fserrors[0] == NULL)
  796.       alloc_fs_workspace(cinfo);
  797.     /* Initialize the propagated errors to zero. */
  798.     arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
  799.     for (i = 0; i < cinfo->out_color_components; i++)
  800.       jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
  801.     break;
  802.   default:
  803.     ERREXIT(cinfo, JERR_NOT_COMPILED);
  804.     break;
  805.   }
  806. }
  807.  
  808.  
  809. /*
  810.  * Finish up at the end of the pass.
  811.  */
  812.  
  813. METHODDEF void
  814. finish_pass_1_quant (j_decompress_ptr cinfo)
  815. {
  816.   /* no work in 1-pass case */
  817. }
  818.  
  819.  
  820. /*
  821.  * Switch to a new external colormap between output passes.
  822.  * Shouldn't get to this module!
  823.  */
  824.  
  825. METHODDEF void
  826. new_color_map_1_quant (j_decompress_ptr cinfo)
  827. {
  828.   ERREXIT(cinfo, JERR_MODE_CHANGE);
  829. }
  830.  
  831.  
  832. /*
  833.  * Module initialization routine for 1-pass color quantization.
  834.  */
  835.  
  836. GLOBAL void
  837. jinit_1pass_quantizer (j_decompress_ptr cinfo)
  838. {
  839.   my_cquantize_ptr cquantize;
  840.  
  841.   cquantize = (my_cquantize_ptr)
  842.     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  843.                 SIZEOF(my_cquantizer));
  844.   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
  845.   cquantize->pub.start_pass = start_pass_1_quant;
  846.   cquantize->pub.finish_pass = finish_pass_1_quant;
  847.   cquantize->pub.new_color_map = new_color_map_1_quant;
  848.   cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
  849.   cquantize->odither[0] = NULL;    /* Also flag odither arrays not allocated */
  850.  
  851.   /* Make sure my internal arrays won't overflow */
  852.   if (cinfo->out_color_components > MAX_Q_COMPS)
  853.     ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
  854.   /* Make sure colormap indexes can be represented by JSAMPLEs */
  855.   if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
  856.     ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
  857.  
  858.   /* Create the colormap and color index table. */
  859.   create_colormap(cinfo);
  860.   create_colorindex(cinfo);
  861.  
  862.   /* Allocate Floyd-Steinberg workspace now if requested.
  863.    * We do this now since it is FAR storage and may affect the memory
  864.    * manager's space calculations.  If the user changes to FS dither
  865.    * mode in a later pass, we will allocate the space then, and will
  866.    * possibly overrun the max_memory_to_use setting.
  867.    */
  868.   if (cinfo->dither_mode == JDITHER_FS)
  869.     alloc_fs_workspace(cinfo);
  870. }
  871.  
  872. #endif /* QUANT_1PASS_SUPPORTED */
  873.