home *** CD-ROM | disk | FTP | other *** search
Text File | 2002-09-09 | 115.2 KB | 4,776 lines |
- =head1 NAME
-
- Math::Cephes - perl interface to the cephes math library
-
- =head1 SYNOPSIS
-
- use Math::Cephes qw(:all);
-
- =head1 DESCRIPTION
-
- This module provides an interface to over 150 functions of the
- cephes math library of Stephen Moshier. No functions are exported
- by default, but rather must be imported explicitly, as in
-
- use Math::Cephes qw(sin cos);
-
- There are a number of export tags defined which allow
- importing groups of functions:
-
- =over 4
-
- =item use Math::Cephes qw(:constants);
-
- imports the variables
-
- $PI : 3.14159265358979323846 # pi
- $PIO2 : 1.57079632679489661923 # pi/2
- $PIO4 : 0.785398163397448309616 # pi/4
- $SQRT2 : 1.41421356237309504880 # sqrt(2)
- $SQRTH : 0.707106781186547524401 # sqrt(2)/2
- $LOG2E : 1.4426950408889634073599 # 1/log(2)
- $SQ2OPI : 0.79788456080286535587989 # sqrt( 2/pi )
- $LOGE2 : 0.693147180559945309417 # log(2)
- $LOGSQ2 : 0.346573590279972654709 # log(2)/2
- $THPIO4 : 2.35619449019234492885 # 3*pi/4
- $TWOOPI : 0.636619772367581343075535 # 2/pi
-
- As well, there are 4 machine-specific numbers available:
-
- $MACHEP : machine roundoff error
- $MAXLOG : maximum log on the machine
- $MINLOG : minimum log on the machine
- $MAXNUM : largest number represented
-
- =item use Math::Cephes qw(:trigs);
-
- imports
-
- acos: Inverse circular cosine
- asin: Inverse circular sine
- atan: Inverse circular tangent (arctangent)
- atan2: Quadrant correct inverse circular tangent
- cos: Circular cosine
- cosdg: Circular cosine of angle in degrees
- cot: Circular cotangent
- cotdg: Circular cotangent of argument in degrees
- hypot: hypotenuse associated with the sides of a right triangle
- radian: Degrees, minutes, seconds to radians
- sin: Circular sine
- sindg: Circular sine of angle in degrees
- tan: Circular tangent
- tandg: Circular tangent of argument in degrees
- cosm1: Relative error approximations for function arguments near unity
-
- =item use Math::Cephes qw(:hypers);
-
- imports
-
- acosh: Inverse hyperbolic cosine
- asinh: Inverse hyperbolic sine
- atanh: Inverse hyperbolic tangent
- cosh: Hyperbolic cosine
- sinh: Hyperbolic sine
- tanh: Hyperbolic tangent
-
- =item use Math::Cephes qw(:explog);
-
- imports
-
- exp: Exponential function
- expxx: exp(x*x)
- exp10: Base 10 exponential function (Common antilogarithm)
- exp2: Base 2 exponential function
- log: Natural logarithm
- log10: Common logarithm
- log2: Base 2 logarithm
- log1p,expm1: Relative error approximations for function arguments near unity.
-
- =item use Math::Cephes qw(:cmplx);
-
- imports
-
- new_cmplx: create a new complex number object
- cabs: Complex absolute value
- cacos: Complex circular arc cosine
- cacosh: Complex inverse hyperbolic cosine
- casin: Complex circular arc sine
- casinh: Complex inverse hyperbolic sine
- catan: Complex circular arc tangent
- catanh: Complex inverse hyperbolic tangent
- ccos: Complex circular cosine
- ccosh: Complex hyperbolic cosine
- ccot: Complex circular cotangent
- cexp: Complex exponential function
- clog: Complex natural logarithm
- cadd: add two complex numbers
- csub: subtract two complex numbers
- cmul: multiply two complex numbers
- cdiv: divide two complex numbers
- cmov: copy one complex number to another
- cneg: negate a complex number
- cpow: Complex power function
- csin: Complex circular sine
- csinh: Complex hyperbolic sine
- csqrt: Complex square root
- ctan: Complex circular tangent
- ctanh: Complex hyperbolic tangent
-
- =item use Math::Cephes qw(:utils);
-
- imports
-
- cbrt: Cube root
- ceil: ceil
- drand: Pseudorandom number generator
- fabs: Absolute value
- fac: Factorial function
- floor: floor
- frexp: frexp
- ldexp: multiplies x by 2**n.
- lrand: Pseudorandom number generator
- lsqrt: Integer square root
- pow: Power function
- powi: Real raised to integer power
- round: Round double to nearest or even integer valued double
- sqrt: Square root
-
- =item use Math::Cephes qw(:bessels);
-
- imports
-
- i0: Modified Bessel function of order zero
- i0e: Modified Bessel function of order zero, exponentially scaled
- i1: Modified Bessel function of order one
- i1e: Modified Bessel function of order one, exponentially scaled
- iv: Modified Bessel function of noninteger order
- j0: Bessel function of order zero
- j1: Bessel function of order one
- jn: Bessel function of integer order
- jv: Bessel function of noninteger order
- k0: Modified Bessel function, third kind, order zero
- k0e: Modified Bessel function, third kind, order zero, exponentially scaled
- k1: Modified Bessel function, third kind, order one
- k1e: Modified Bessel function, third kind, order one, exponentially scaled
- kn: Modified Bessel function, third kind, integer order
- y0: Bessel function of the second kind, order zero
- y1: Bessel function of second kind of order one
- yn: Bessel function of second kind of integer order
- yv: Bessel function Yv with noninteger v
-
- =item use Math::Cephes qw(:dists);
-
- imports
-
- bdtr: Binomial distribution
- bdtrc: Complemented binomial distribution
- bdtri: Inverse binomial distribution
- btdtr: Beta distribution
- chdtr: Chi-square distribution
- chdtrc: Complemented Chi-square distribution
- chdtri: Inverse of complemented Chi-square distribution
- fdtr: F distribution
- fdtrc: Complemented F distribution
- fdtri: Inverse of complemented F distribution
- gdtr: Gamma distribution function
- gdtrc: Complemented gamma distribution function
- nbdtr: Negative binomial distribution
- nbdtrc: Complemented negative binomial distribution
- nbdtri: Functional inverse of negative binomial distribution
- ndtr: Normal distribution function
- ndtri: Inverse of Normal distribution function
- pdtr: Poisson distribution
- pdtrc: Complemented poisson distribution
- pdtri: Inverse Poisson distribution
- stdtr: Student's t distribution
- stdtri: Functional inverse of Student's t distribution
-
- =item use Math::Cephes qw(:gammas);
-
- imports
-
- fac: Factorial function
- gamma: Gamma function
- igam: Incomplete gamma integral
- igamc: Complemented incomplete gamma integral
- igami: Inverse of complemented imcomplete gamma integral
- psi: Psi (digamma) function
- rgamma: Reciprocal gamma function
-
- =item use Math::Cephes qw(:betas);
-
- imports
-
- beta: Beta function
- incbet: Incomplete beta integral
- incbi: Inverse of imcomplete beta integral
- lbeta: Natural logarithm of |beta|
-
- =item use Math::Cephes qw(:elliptics);
-
- imports
-
- ellie: Incomplete elliptic integral of the second kind
- ellik: Incomplete elliptic integral of the first kind
- ellpe: Complete elliptic integral of the second kind
- ellpj: Jacobian Elliptic Functions
- ellpk: Complete elliptic integral of the first kind
-
- =item use Math::Cephes qw(:hypergeometrics);
-
- imports
-
- hyp2f0: Gauss hypergeometric function F
- hyp2f1: Gauss hypergeometric function F
- hyperg: Confluent hypergeometric function
- onef2: Hypergeometric function 1F2
- threef0: Hypergeometric function 3F0
-
- =item use Math::Cephes qw(:misc);
-
- imports
-
- airy: Airy function
- bernum: Bernoulli numbers
- dawsn: Dawson's Integral
- ei: Exponential integral
- erf: Error function
- erfc: Complementary error function
- expn: Exponential integral En
- fresnl: Fresnel integral
- plancki: Integral of Planck's black body radiation formula
- polylog: Polylogarithm function
- shichi: Hyperbolic sine and cosine integrals
- sici: Sine and cosine integrals
- simpson: Simpson's rule to find an integral
- spence: Dilogarithm
- struve: Struve function
- vecang: angle between two vectors
- zeta: Riemann zeta function of two arguments
- zetac: Riemann zeta function
-
- =item use Math::Cephes qw(:fract);
-
- imports
-
- new_fract: create a new fraction object
- radd: add two fractions
- rmul: multiply two fractions
- rsub: subtracttwo fractions
- rdiv: divide two fractions
- euclid: finds the greatest common divisor
-
- =back
-
- =head1 FUNCTIONS
-
- A description of the various functions available follows.
-
- =over 4
-
- =item I<acosh>: Inverse hyperbolic cosine
-
- SYNOPSIS:
-
- # double x, y, acosh();
-
- $y = acosh( $x );
-
- DESCRIPTION:
-
- Returns inverse hyperbolic cosine of argument.
-
- If 1 <= x < 1.5, a rational approximation
-
- sqrt(z) * P(z)/Q(z)
-
- where z = x-1, is used. Otherwise,
-
- acosh(x) = log( x + sqrt( (x-1)(x+1) ).
-
- ACCURACY:
- Relative error:
- arithmetic domain # trials peak rms
- DEC 1,3 30000 4.2e-17 1.1e-17
- IEEE 1,3 30000 4.6e-16 8.7e-17
-
- ERROR MESSAGES:
-
- message condition value returned
- acosh domain |x| < 1 NAN
-
- =item I<airy>: Airy function
-
- SYNOPSIS:
-
- # double x, ai, aiprime, bi, biprime;
- # int airy();
-
- ($flag, $ai, $aiprime, $bi, $biprime) = airy( $x );
-
- DESCRIPTION:
-
- Solution of the differential equation
-
- y"(x) = xy.
-
- The function returns the two independent solutions Ai, Bi
- and their first derivatives Ai'(x), Bi'(x).
-
- Evaluation is by power series summation for small x,
- by rational minimax approximations for large x.
-
- ACCURACY:
- Error criterion is absolute when function <= 1, relative
- when function > 1, except * denotes relative error criterion.
- For large negative x, the absolute error increases as x^1.5.
- For large positive x, the relative error increases as x^1.5.
-
- Arithmetic domain function # trials peak rms
- IEEE -10, 0 Ai 10000 1.6e-15 2.7e-16
- IEEE 0, 10 Ai 10000 2.3e-14* 1.8e-15*
- IEEE -10, 0 Ai' 10000 4.6e-15 7.6e-16
- IEEE 0, 10 Ai' 10000 1.8e-14* 1.5e-15*
- IEEE -10, 10 Bi 30000 4.2e-15 5.3e-16
- IEEE -10, 10 Bi' 30000 4.9e-15 7.3e-16
- DEC -10, 0 Ai 5000 1.7e-16 2.8e-17
- DEC 0, 10 Ai 5000 2.1e-15* 1.7e-16*
- DEC -10, 0 Ai' 5000 4.7e-16 7.8e-17
- DEC 0, 10 Ai' 12000 1.8e-15* 1.5e-16*
- DEC -10, 10 Bi 10000 5.5e-16 6.8e-17
- DEC -10, 10 Bi' 7000 5.3e-16 8.7e-17
-
- =item I<radian>: Degrees, minutes, seconds to radians
-
- SYNOPSIS:
-
- # double d, m, s, radian();
-
- $r = radian( $d, $m, $s );
-
- DESCRIPTION:
-
- Converts an angle of degrees, minutes, seconds to radians.
-
- =item I<hypot>: returns the hypotenuse associated with the sides of a right triangle
-
- SYNOPSIS:
-
- # double a, b, c, hypot();
-
- $c = hypot( $a, $b );
-
- DESCRIPTION:
-
- Calculates the hypotenuse associated with the sides of a
- right triangle, according to
-
- c = sqrt( a**2 + b**2)
-
- =item I<asin>: Inverse circular sine
-
- SYNOPSIS:
-
- # double x, y, asin();
-
- $y = asin( $x );
-
- DESCRIPTION:
-
- Returns radian angle between -pi/2 and +pi/2 whose sine is x.
-
- A rational function of the form x + x**3 P(x**2)/Q(x**2)
- is used for |x| in the interval [0, 0.5]. If |x| > 0.5 it is
- transformed by the identity
-
- asin(x) = pi/2 - 2 asin( sqrt( (1-x)/2 ) ).
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC -1, 1 40000 2.6e-17 7.1e-18
- IEEE -1, 1 10^6 1.9e-16 5.4e-17
-
- ERROR MESSAGES:
-
- message condition value returned
- asin domain |x| > 1 NAN
-
- =item I<acos>: Inverse circular cosine
-
- SYNOPSIS:
-
- # double x, y, acos();
-
- $y = acos( $x );
-
- DESCRIPTION:
-
- Returns radian angle between 0 and pi whose cosine
- is x.
-
- Analytically, acos(x) = pi/2 - asin(x). However if |x| is
- near 1, there is cancellation error in subtracting asin(x)
- from pi/2. Hence if x < -0.5,
-
- acos(x) = pi - 2.0 * asin( sqrt((1+x)/2) );
-
- or if x > +0.5,
-
- acos(x) = 2.0 * asin( sqrt((1-x)/2) ).
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC -1, 1 50000 3.3e-17 8.2e-18
- IEEE -1, 1 10^6 2.2e-16 6.5e-17
-
- ERROR MESSAGES:
-
- message condition value returned
- asin domain |x| > 1 NAN
-
- =item I<asinh>: Inverse hyperbolic sine
-
- SYNOPSIS:
-
- # double x, y, asinh();
-
- $y = asinh( $x );
-
- DESCRIPTION:
-
- Returns inverse hyperbolic sine of argument.
-
- If |x| < 0.5, the function is approximated by a rational
- form x + x**3 P(x)/Q(x). Otherwise,
-
- asinh(x) = log( x + sqrt(1 + x*x) ).
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC -3,3 75000 4.6e-17 1.1e-17
- IEEE -1,1 30000 3.7e-16 7.8e-17
- IEEE 1,3 30000 2.5e-16 6.7e-17
-
- =item I<atan>: Inverse circular tangent (arctangent)
-
- SYNOPSIS:
-
- # double x, y, atan();
-
- $y = atan( $x );
-
- DESCRIPTION:
-
- Returns radian angle between -pi/2 and +pi/2 whose tangent
- is x.
-
- Range reduction is from three intervals into the interval
- from zero to 0.66. The approximant uses a rational
- function of degree 4/5 of the form x + x**3 P(x)/Q(x).
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC -10, 10 50000 2.4e-17 8.3e-18
- IEEE -10, 10 10^6 1.8e-16 5.0e-17
-
- =item I<atan2>: Quadrant correct inverse circular tangent
-
- SYNOPSIS:
-
- # double x, y, z, atan2();
-
- $z = atan2( $y, $x );
-
- DESCRIPTION:
-
- Returns radian angle whose tangent is y/x.
- Define compile time symbol ANSIC = 1 for ANSI standard,
- range -PI < z <= +PI, args (y,x); else ANSIC = 0 for range
- 0 to 2PI, args (x,y).
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE -10, 10 10^6 2.5e-16 6.9e-17
- See atan.c.
-
- =item I<atanh>: Inverse hyperbolic tangent
-
- SYNOPSIS:
-
- # double x, y, atanh();
-
- $y = atanh( $x );
-
- DESCRIPTION:
-
- Returns inverse hyperbolic tangent of argument in the range
- MINLOG to MAXLOG.
-
- If |x| < 0.5, the rational form x + x**3 P(x)/Q(x) is
- employed. Otherwise,
- atanh(x) = 0.5 * log( (1+x)/(1-x) ).
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC -1,1 50000 2.4e-17 6.4e-18
- IEEE -1,1 30000 1.9e-16 5.2e-17
-
- =item I<bdtr>: Binomial distribution
-
- SYNOPSIS:
-
- # int k, n;
- # double p, y, bdtr();
-
- $y = bdtr( $k, $n, $p );
-
- DESCRIPTION:
-
- Returns the sum of the terms 0 through k of the Binomial
- probability density:
-
- k
- -- ( n ) j n-j
- > ( ) p (1-p)
- -- ( j )
- j=0
-
- The terms are not summed directly; instead the incomplete
- beta integral is employed, according to the formula
-
- y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ).
-
- The arguments must be positive, with p ranging from 0 to 1.
-
- ACCURACY:
-
- Tested at random points (a,b,p), with p between 0 and 1.
-
- a,b Relative error:
- arithmetic domain # trials peak rms
- For p between 0.001 and 1:
- IEEE 0,100 100000 4.3e-15 2.6e-16
- See also incbet.c.
-
- ERROR MESSAGES:
-
- message condition value returned
- bdtr domain k < 0 0.0
- n < k
- x < 0, x > 1
-
- =item I<bdtrc>: Complemented binomial distribution
-
- SYNOPSIS:
-
- # int k, n;
- # double p, y, bdtrc();
-
- $y = bdtrc( $k, $n, $p );
-
- DESCRIPTION:
-
- Returns the sum of the terms k+1 through n of the Binomial
- probability density:
-
- n
- -- ( n ) j n-j
- > ( ) p (1-p)
- -- ( j )
- j=k+1
-
- The terms are not summed directly; instead the incomplete
- beta integral is employed, according to the formula
-
- y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ).
-
- The arguments must be positive, with p ranging from 0 to 1.
-
- ACCURACY:
-
- Tested at random points (a,b,p).
-
- a,b Relative error:
- arithmetic domain # trials peak rms
- For p between 0.001 and 1:
- IEEE 0,100 100000 6.7e-15 8.2e-16
- For p between 0 and .001:
- IEEE 0,100 100000 1.5e-13 2.7e-15
-
- ERROR MESSAGES:
-
- message condition value returned
- bdtrc domain x<0, x>1, n<k 0.0
-
- =item I<bdtri>: Inverse binomial distribution
-
- SYNOPSIS:
-
- # int k, n;
- # double p, y, bdtri();
-
- $p = bdtr( $k, $n, $y );
-
- DESCRIPTION:
-
- Finds the event probability p such that the sum of the
- terms 0 through k of the Binomial probability density
- is equal to the given cumulative probability y.
-
- This is accomplished using the inverse beta integral
- function and the relation
-
- 1 - p = incbi( n-k, k+1, y ).
-
- ACCURACY:
-
- Tested at random points (a,b,p).
-
- a,b Relative error:
- arithmetic domain # trials peak rms
- For p between 0.001 and 1:
- IEEE 0,100 100000 2.3e-14 6.4e-16
- IEEE 0,10000 100000 6.6e-12 1.2e-13
- For p between 10^-6 and 0.001:
- IEEE 0,100 100000 2.0e-12 1.3e-14
- IEEE 0,10000 100000 1.5e-12 3.2e-14
- See also incbi.c.
-
- ERROR MESSAGES:
-
- message condition value returned
- bdtri domain k < 0, n <= k 0.0
- x < 0, x > 1
-
- =item I<beta>: Beta function
-
- SYNOPSIS:
-
- # double a, b, y, beta();
-
- $y = beta( $a, $b );
-
- DESCRIPTION:
-
- - -
- | (a) | (b)
- beta( a, b ) = -----------.
- -
- | (a+b)
-
- For large arguments the logarithm of the function is
- evaluated using lgam(), then exponentiated.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC 0,30 1700 7.7e-15 1.5e-15
- IEEE 0,30 30000 8.1e-14 1.1e-14
-
- ERROR MESSAGES:
-
- message condition value returned
- beta overflow log(beta) > MAXLOG 0.0
- a or b <0 integer 0.0
-
- =item I<lbeta>: Natural logarithm of |beta|
-
- SYNOPSIS:
-
- # double a, b;
-
- # double lbeta( a, b );
-
- $y = lbeta( $a, $b);
-
- =item I<btdtr>: Beta distribution
-
- SYNOPSIS:
-
- # double a, b, x, y, btdtr();
-
- $y = btdtr( $a, $b, $x );
-
- DESCRIPTION:
-
- Returns the area from zero to x under the beta density
- function:
-
- x
- - -
- | (a+b) | | a-1 b-1
- P(x) = ---------- | t (1-t) dt
- - - | |
- | (a) | (b) -
- 0
-
- This function is identical to the incomplete beta
- integral function incbet(a, b, x).
-
- The complemented function is
-
- 1 - P(1-x) = incbet( b, a, x );
-
- ACCURACY:
-
- See incbet.c.
-
- =item I<cbrt>: Cube root
-
- SYNOPSIS:
-
- # double x, y, cbrt();
-
- $y = cbrt( $x );
-
- DESCRIPTION:
-
- Returns the cube root of the argument, which may be negative.
-
- Range reduction involves determining the power of 2 of
- the argument. A polynomial of degree 2 applied to the
- mantissa, and multiplication by the cube root of 1, 2, or 4
- approximates the root to within about 0.1%. Then Newton's
- iteration is used three times to converge to an accurate
- result.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC -10,10 200000 1.8e-17 6.2e-18
- IEEE 0,1e308 30000 1.5e-16 5.0e-17
-
- =item I<chdtr>: Chi-square distribution
-
- SYNOPSIS:
-
- # double v, x, y, chdtr();
-
- $y = chdtr( $v, $x );
-
- DESCRIPTION:
-
- Returns the area under the left hand tail (from 0 to x)
- of the Chi square probability density function with
- v degrees of freedom.
-
- inf.
- -
- 1 | | v/2-1 -t/2
- P( x | v ) = ----------- | t e dt
- v/2 - | |
- 2 | (v/2) -
- x
-
- where x is the Chi-square variable.
-
- The incomplete gamma integral is used, according to the
- formula
-
- y = chdtr( v, x ) = igam( v/2.0, x/2.0 ).
-
- The arguments must both be positive.
-
- ACCURACY:
-
- See igam().
-
- ERROR MESSAGES:
-
- message condition value returned
- chdtr domain x < 0 or v < 1 0.0
-
- =item I<chdtrc>: Complemented Chi-square distribution
-
- SYNOPSIS:
-
- # double v, x, y, chdtrc();
-
- $y = chdtrc( $v, $x );
-
- DESCRIPTION:
-
- Returns the area under the right hand tail (from x to
- infinity) of the Chi square probability density function
- with v degrees of freedom:
-
- inf.
- -
- 1 | | v/2-1 -t/2
- P( x | v ) = ----------- | t e dt
- v/2 - | |
- 2 | (v/2) -
- x
-
- where x is the Chi-square variable.
-
- The incomplete gamma integral is used, according to the
- formula
-
- y = chdtrc( v, x ) = igamc( v/2.0, x/2.0 ).
-
- The arguments must both be positive.
-
- ACCURACY:
-
- See igamc().
-
- ERROR MESSAGES:
-
- message condition value returned
- chdtrc domain x < 0 or v < 1 0.0
-
- =item I<chdtri>: Inverse of complemented Chi-square distribution
-
- SYNOPSIS:
-
- # double df, x, y, chdtri();
-
- $x = chdtri( $df, $y );
-
- DESCRIPTION:
-
- Finds the Chi-square argument x such that the integral
- from x to infinity of the Chi-square density is equal
- to the given cumulative probability y.
-
- This is accomplished using the inverse gamma integral
- function and the relation
-
- x/2 = igami( df/2, y );
-
- ACCURACY:
-
- See igami.c.
-
- ERROR MESSAGES:
-
- message condition value returned
- chdtri domain y < 0 or y > 1 0.0
- v < 1
-
- =item I<clog>: Complex natural logarithm
-
- SYNOPSIS:
-
- # void clog();
- # cmplx z, w;
-
- $z = new_cmplx(2, 3); # $z = 2 + 3 i
- $w = new_cmplx();
- clog($z, $w );
- print $w->{r}, ' ', $w->{i}; # prints real and imaginary parts of $w
-
- DESCRIPTION:
-
- Returns complex logarithm to the base e (2.718...) of
- the complex argument x.
-
- If z = x + iy, r = sqrt( x**2 + y**2 ),
- then
- w = log(r) + i arctan(y/x).
-
- The arctangent ranges from -PI to +PI.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC -10,+10 7000 8.5e-17 1.9e-17
- IEEE -10,+10 30000 5.0e-15 1.1e-16
-
- Larger relative error can be observed for z near 1 +i0.
- In IEEE arithmetic the peak absolute error is 5.2e-16, rms
- absolute error 1.0e-16.
-
- =item I<cexp>: Complex exponential function
-
- SYNOPSIS:
-
- # void cexp();
- # cmplx z, w;
-
- $z = new_cmplx(2, 3); # $z = 2 + 3 i
- $w = new_cmplx();
- cexp($z, $w );
- print $w->{r}, ' ', $w->{i}; # prints real and imaginary parts of $w
-
- DESCRIPTION:
-
- Returns the exponential of the complex argument z
- into the complex result w.
-
- If
- z = x + iy,
- r = exp(x),
-
- then
-
- w = r cos y + i r sin y.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC -10,+10 8700 3.7e-17 1.1e-17
- IEEE -10,+10 30000 3.0e-16 8.7e-17
-
- =item I<csin>: Complex circular sine
-
- SYNOPSIS:
-
- # void csin();
- # cmplx z, w;
-
- $z = new_cmplx(2, 3); # $z = 2 + 3 i
- $w = new_cmplx();
- csin($z, $w );
- print $w->{r}, ' ', $w->{i}; # prints real and imaginary parts of $w
-
- DESCRIPTION:
-
- If
- z = x + iy,
-
- then
-
- w = sin x cosh y + i cos x sinh y.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC -10,+10 8400 5.3e-17 1.3e-17
- IEEE -10,+10 30000 3.8e-16 1.0e-16
- Also tested by csin(casin(z)) = z.
-
- =item I<ccos>: Complex circular cosine
-
- SYNOPSIS:
-
- # void ccos();
- # cmplx z, w;
-
- $z = new_cmplx(2, 3); # $z = 2 + 3 i
- $w = new_cmplx();
- ccos($z, $w );
- print $w->{r}, ' ', $w->{i}; # prints real and imaginary parts of $w
-
- DESCRIPTION:
-
- If
- z = x + iy,
-
- then
-
- w = cos x cosh y - i sin x sinh y.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC -10,+10 8400 4.5e-17 1.3e-17
- IEEE -10,+10 30000 3.8e-16 1.0e-16
-
- =item I<ctan>: Complex circular tangent
-
- SYNOPSIS:
-
- # void ctan();
- # cmplx z, w;
-
- $z = new_cmplx(2, 3); # $z = 2 + 3 i
- $w = new_cmplx();
- ctan($z, $w );
- print $w->{r}, ' ', $w->{i}; # prints real and imaginary parts of $w
-
- DESCRIPTION:
-
- If
- z = x + iy,
-
- then
-
- sin 2x + i sinh 2y
- w = --------------------.
- cos 2x + cosh 2y
-
- On the real axis the denominator is zero at odd multiples
- of PI/2. The denominator is evaluated by its Taylor
- series near these points.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC -10,+10 5200 7.1e-17 1.6e-17
- IEEE -10,+10 30000 7.2e-16 1.2e-16
- Also tested by ctan * ccot = 1 and catan(ctan(z)) = z.
-
- =item I<ccot>: Complex circular cotangent
-
- SYNOPSIS:
-
- # void ccot();
- # cmplx z, w;
-
- $z = new_cmplx(2, 3); # $z = 2 + 3 i
- $w = new_cmplx();
- ccot($z, $w );
- print $w->{r}, ' ', $w->{i}; # prints real and imaginary parts of $w
-
- DESCRIPTION:
-
- If
- z = x + iy,
-
- then
-
- sin 2x - i sinh 2y
- w = --------------------.
- cosh 2y - cos 2x
-
- On the real axis, the denominator has zeros at even
- multiples of PI/2. Near these points it is evaluated
- by a Taylor series.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC -10,+10 3000 6.5e-17 1.6e-17
- IEEE -10,+10 30000 9.2e-16 1.2e-16
- Also tested by ctan * ccot = 1 + i0.
-
- =item I<casin>: Complex circular arc sine
-
- SYNOPSIS:
-
- # void casin();
- # cmplx z, w;
-
- $z = new_cmplx(2, 3); # $z = 2 + 3 i
- $w = new_cmplx();
- casin($z, $w );
- print $w->{r}, ' ', $w->{i}; # prints real and imaginary parts of $w
-
- DESCRIPTION:
-
- Inverse complex sine:
-
- 2
- w = -i clog( iz + csqrt( 1 - z ) ).
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC -10,+10 10100 2.1e-15 3.4e-16
- IEEE -10,+10 30000 2.2e-14 2.7e-15
- Larger relative error can be observed for z near zero.
- Also tested by csin(casin(z)) = z.
-
- =item I<cacos>: Complex circular arc cosine
-
- SYNOPSIS:
-
- # void cacos();
- # cmplx z, w;
-
- $z = new_cmplx(2, 3); # $z = 2 + 3 i
- $w = new_cmplx();
- cacos($z, $w );
- print $w->{r}, ' ', $w->{i}; # prints real and imaginary parts of $w
-
- DESCRIPTION:
-
- w = arccos z = PI/2 - arcsin z.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC -10,+10 5200 1.6e-15 2.8e-16
- IEEE -10,+10 30000 1.8e-14 2.2e-15
-
- =item I<catan>: Complex circular arc tangent
-
- SYNOPSIS:
-
- # void catan();
- # cmplx z, w;
-
- $z = new_cmplx(2, 3); # $z = 2 + 3 i
- $w = new_cmplx();
- catan($z, $w );
- print $w->{r}, ' ', $w->{i}; # prints real and imaginary parts of $w
-
- DESCRIPTION:
-
- If
- z = x + iy,
-
- then
- 1 ( 2x )
- Re w = - arctan(-----------) + k PI
- 2 ( 2 2)
- (1 - x - y )
-
- ( 2 2)
- 1 (x + (y+1) )
- Im w = - log(------------)
- 4 ( 2 2)
- (x + (y-1) )
-
- Where k is an arbitrary integer.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC -10,+10 5900 1.3e-16 7.8e-18
- IEEE -10,+10 30000 2.3e-15 8.5e-17
- The check catan( ctan(z) ) = z, with |x| and |y| < PI/2,
- had peak relative error 1.5e-16, rms relative error
- 2.9e-17. See also clog().
-
- =item I<csinh>: Complex hyperbolic sine
-
- SYNOPSIS:
-
- # void csinh();
- # cmplx z, w;
-
- $z = new_cmplx(2, 3); # $z = 2 + 3 i
- $w = new_cmplx();
- csinh($z, $w );
- print $w->{r}, ' ', $w->{i}; # prints real and imaginary parts of $w
-
- DESCRIPTION:
-
- csinh z = (cexp(z) - cexp(-z))/2
- = sinh x * cos y + i cosh x * sin y .
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE -10,+10 30000 3.1e-16 8.2e-17
-
- =item I<casinh>: Complex inverse hyperbolic sine
-
- SYNOPSIS:
-
- # void casinh();
- # cmplx z, w;
-
- $z = new_cmplx(2, 3); # $z = 2 + 3 i
- $w = new_cmplx();
- casinh($z, $w );
- print $w->{r}, ' ', $w->{i}; # prints real and imaginary parts of $w
- print_new_cmplx($w); # prints $w as Re($w) + i Im($w)
-
- DESCRIPTION:
-
- casinh z = -i casin iz .
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE -10,+10 30000 1.8e-14 2.6e-15
-
- =item I<ccosh>: Complex hyperbolic cosine
-
- SYNOPSIS:
-
- # void ccosh();
- # cmplx z, w;
-
- $z = new_cmplx(2, 3); # $z = 2 + 3 i
- $w = new_cmplx();
- ccosh($z, $w );
- print $w->{r}, ' ', $w->{i}; # prints real and imaginary parts of $w
-
- DESCRIPTION:
-
- ccosh(z) = cosh x cos y + i sinh x sin y .
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE -10,+10 30000 2.9e-16 8.1e-17
-
- =item I<cacosh>: Complex inverse hyperbolic cosine
-
- SYNOPSIS:
-
- # void cacosh();
- # cmplx z, w;
-
- $z = new_cmplx(2, 3); # $z = 2 + 3 i
- $w = new_cmplx();
- cacosh($z, $w );
- print $w->{r}, ' ', $w->{i}; # prints real and imaginary parts of $w
-
- DESCRIPTION:
-
- acosh z = i acos z .
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE -10,+10 30000 1.6e-14 2.1e-15
-
- =item I<ctanh>: Complex hyperbolic tangent
-
- SYNOPSIS:
-
- # void ctanh();
- # cmplx z, w;
-
- $z = new_cmplx(2, 3); # $z = 2 + 3 i
- $w = new_cmplx();
- ctanh($z, $w );
- print $w->{r}, ' ', $w->{i}; # prints real and imaginary parts of $w
-
- DESCRIPTION:
-
- tanh z = (sinh 2x + i sin 2y) / (cosh 2x + cos 2y) .
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE -10,+10 30000 1.7e-14 2.4e-16
-
- =item I<catanh>: Complex inverse hyperbolic tangent
-
- SYNOPSIS:
-
- # void catanh();
- # cmplx z, w;
-
- $z = new_cmplx(2, 3); # $z = 2 + 3 i
- $w = new_cmplx();
- catanh($z, $w );
- print $w->{r}, ' ', $w->{i}; # prints real and imaginary parts of $w
-
- DESCRIPTION:
-
- Inverse tanh, equal to -i catan (iz);
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE -10,+10 30000 2.3e-16 6.2e-17
-
- =item I<cpow>: Complex power function
-
- SYNOPSIS:
-
- # void cpow();
- # cmplx a, z, w;
-
- $a = new_cmplx(5, 6); # $z = 5 + 6 i
- $z = new_cmplx(2, 3); # $z = 2 + 3 i
- $w = new_cmplx();
- cpow($a, $z, $w );
- print $w->{r}, ' ', $w->{i}; # prints real and imaginary parts of $w
-
- DESCRIPTION:
-
- Raises complex A to the complex Zth power.
- Definition is per AMS55 # 4.2.8,
- analytically equivalent to cpow(a,z) = cexp(z clog(a)).
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE -10,+10 30000 9.4e-15 1.5e-15
-
- =item I<cmplx>: Complex number arithmetic
-
- SYNOPSIS:
-
- # typedef struct {
- # double r; real part
- # double i; imaginary part
- # }cmplx;
-
- # cmplx *a, *b, *c;
-
- $a = new_cmplx(3, 5); # $a = 3 + 5 i
- $b = new_cmplx(2, 3); # $b = 2 + 3 i
- $c = new_cmplx();
-
- cadd( $a, $b, $c ); # c = b + a
- csub( $a, $b, $c ); # c = b - a
- cmul( $a, $b, $c ); # c = b * a
- cdiv( $a, $b, $c ); # c = b / a
- cneg( $c ); # c = -c
- cmov( $b, $c ); # c = b
-
- print $c->{r}, ' ', $c->{i}; # prints real and imaginary parts of $c
-
- DESCRIPTION:
-
- Addition:
- c.r = b.r + a.r
- c.i = b.i + a.i
-
- Subtraction:
- c.r = b.r - a.r
- c.i = b.i - a.i
-
- Multiplication:
- c.r = b.r * a.r - b.i * a.i
- c.i = b.r * a.i + b.i * a.r
-
- Division:
- d = a.r * a.r + a.i * a.i
- c.r = (b.r * a.r + b.i * a.i)/d
- c.i = (b.i * a.r - b.r * a.i)/d
- ACCURACY:
-
- In DEC arithmetic, the test (1/z) * z = 1 had peak relative
- error 3.1e-17, rms 1.2e-17. The test (y/z) * (z/y) = 1 had
- peak relative error 8.3e-17, rms 2.1e-17.
-
- Tests in the rectangle {-10,+10}:
- Relative error:
- arithmetic function # trials peak rms
- DEC cadd 10000 1.4e-17 3.4e-18
- IEEE cadd 100000 1.1e-16 2.7e-17
- DEC csub 10000 1.4e-17 4.5e-18
- IEEE csub 100000 1.1e-16 3.4e-17
- DEC cmul 3000 2.3e-17 8.7e-18
- IEEE cmul 100000 2.1e-16 6.9e-17
- DEC cdiv 18000 4.9e-17 1.3e-17
- IEEE cdiv 100000 3.7e-16 1.1e-16
-
- =item I<cabs>: Complex absolute value
-
- SYNOPSIS:
-
- # double a, cabs();
- # cmplx z;
-
- $z = new_cmplx(2, 3); # $z = 2 + 3 i
- $a = cabs( $z );
-
- DESCRIPTION:
-
- If z = x + iy
-
- then
-
- a = sqrt( x**2 + y**2 ).
-
- Overflow and underflow are avoided by testing the magnitudes
- of x and y before squaring. If either is outside half of
- the floating point full scale range, both are rescaled.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC -30,+30 30000 3.2e-17 9.2e-18
- IEEE -10,+10 100000 2.7e-16 6.9e-17
-
- =item I<csqrt>: Complex square root
-
- SYNOPSIS:
-
- # void csqrt();
- # cmplx z, w;
-
- $z = new_cmplx(2, 3); # $z = 2 + 3 i
- $w = new_cmplx();
- csqrt($z, $w );
- print $w->{r}, ' ', $w->{i}; # prints real and imaginary parts of $w
-
- DESCRIPTION:
-
- If z = x + iy, r = |z|, then
-
- 1/2
- Im w = [ (r - x)/2 ] ,
-
- Re w = y / 2 Im w.
-
- Note that -w is also a square root of z. The root chosen
- is always in the upper half plane.
-
- Because of the potential for cancellation error in r - x,
- the result is sharpened by doing a Heron iteration
- (see sqrt.c) in complex arithmetic.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC -10,+10 25000 3.2e-17 9.6e-18
- IEEE -10,+10 100000 3.2e-16 7.7e-17
-
- 2
- Also tested by csqrt( z ) = z, and tested by arguments
- close to the real axis.
-
- =item I<machconst>: Globally declared constants
-
- SYNOPSIS:
-
- extern double nameofconstant;
-
- DESCRIPTION:
-
- This file contains a number of mathematical constants and
- also some needed size parameters of the computer arithmetic.
- The values are supplied as arrays of hexadecimal integers
- for IEEE arithmetic; arrays of octal constants for DEC
- arithmetic; and in a normal decimal scientific notation for
- other machines. The particular notation used is determined
- by a symbol (DEC, IBMPC, or UNK) defined in the include file
- mconf.h.
-
- The default size parameters are as follows.
-
- For DEC and UNK modes:
- MACHEP = 1.38777878078144567553E-17 2**-56
- MAXLOG = 8.8029691931113054295988E1 log(2**127)
- MINLOG = -8.872283911167299960540E1 log(2**-128)
- MAXNUM = 1.701411834604692317316873e38 2**127
-
- For IEEE arithmetic (IBMPC):
- MACHEP = 1.11022302462515654042E-16 2**-53
- MAXLOG = 7.09782712893383996843E2 log(2**1024)
- MINLOG = -7.08396418532264106224E2 log(2**-1022)
- MAXNUM = 1.7976931348623158E308 2**1024
-
- These lists are subject to change.
-
- =item I<cosh>: Hyperbolic cosine
-
- SYNOPSIS:
-
- # double x, y, cosh();
-
- $y = cosh( $x );
-
- DESCRIPTION:
-
- Returns hyperbolic cosine of argument in the range MINLOG to
- MAXLOG.
-
- cosh(x) = ( exp(x) + exp(-x) )/2.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC +- 88 50000 4.0e-17 7.7e-18
- IEEE +-MAXLOG 30000 2.6e-16 5.7e-17
-
- ERROR MESSAGES:
-
- message condition value returned
- cosh overflow |x| > MAXLOG MAXNUM
-
- =item I<dawsn>: Dawson's Integral
-
- SYNOPSIS:
-
- # double x, y, dawsn();
-
- $y = dawsn( $x );
-
- DESCRIPTION:
-
- Approximates the integral
-
- x
- -
- 2 | | 2
- dawsn(x) = exp( -x ) | exp( t ) dt
- | |
- -
- 0
-
- Three different rational approximations are employed, for
- the intervals 0 to 3.25; 3.25 to 6.25; and 6.25 up.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE 0,10 10000 6.9e-16 1.0e-16
- DEC 0,10 6000 7.4e-17 1.4e-17
-
- =item I<drand>: Pseudorandom number generator
-
- SYNOPSIS:
-
- # double y, drand();
-
- ($flag, $y) = drand( );
-
- DESCRIPTION:
-
- Yields a random number 1.0 <= y < 2.0.
-
- The three-generator congruential algorithm by Brian
- Wichmann and David Hill (BYTE magazine, March, 1987,
- pp 127-8) is used. The period, given by them, is
- 6953607871644.
-
- Versions invoked by the different arithmetic compile
- time options DEC, IBMPC, and MIEEE, produce
- approximately the same sequences, differing only in the
- least significant bits of the numbers. The UNK option
- implements the algorithm as recommended in the BYTE
- article. It may be used on all computers. However,
- the low order bits of a double precision number may
- not be adequately random, and may vary due to arithmetic
- implementation details on different computers.
-
- The other compile options generate an additional random
- integer that overwrites the low order bits of the double
- precision number. This reduces the period by a factor of
- two but tends to overcome the problems mentioned.
-
- =item I<ellie>: Incomplete elliptic integral of the second kind
-
- SYNOPSIS:
-
- # double phi, m, y, ellie();
-
- $y = ellie( $phi, $m );
-
- DESCRIPTION:
-
- Approximates the integral
-
- phi
- -
- | |
- | 2
- E(phi_\m) = | sqrt( 1 - m sin t ) dt
- |
- | |
- -
- 0
-
- of amplitude phi and modulus m, using the arithmetic -
- geometric mean algorithm.
-
- ACCURACY:
-
- Tested at random arguments with phi in [-10, 10] and m in
- [0, 1].
- Relative error:
- arithmetic domain # trials peak rms
- DEC 0,2 2000 1.9e-16 3.4e-17
- IEEE -10,10 150000 3.3e-15 1.4e-16
-
- =item I<ellik>: Incomplete elliptic integral of the first kind
-
- SYNOPSIS:
-
- # double phi, m, y, ellik();
-
- $y = ellik( $phi, $m );
-
- DESCRIPTION:
-
- Approximates the integral
-
- phi
- -
- | |
- | dt
- F(phi_\m) = | ------------------
- | 2
- | | sqrt( 1 - m sin t )
- -
- 0
-
- of amplitude phi and modulus m, using the arithmetic -
- geometric mean algorithm.
-
- ACCURACY:
-
- Tested at random points with m in [0, 1] and phi as indicated.
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE -10,10 200000 7.4e-16 1.0e-16
-
- =item I<ellpe>: Complete elliptic integral of the second kind
-
- SYNOPSIS:
-
- # double m1, y, ellpe();
-
- $y = ellpe( $m1 );
-
- DESCRIPTION:
-
- Approximates the integral
-
- pi/2
- -
- | | 2
- E(m) = | sqrt( 1 - m sin t ) dt
- | |
- -
- 0
-
- Where m = 1 - m1, using the approximation
-
- P(x) - x log x Q(x).
-
- Though there are no singularities, the argument m1 is used
- rather than m for compatibility with ellpk().
-
- E(1) = 1; E(0) = pi/2.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC 0, 1 13000 3.1e-17 9.4e-18
- IEEE 0, 1 10000 2.1e-16 7.3e-17
-
- ERROR MESSAGES:
-
- message condition value returned
- ellpe domain x<0, x>1 0.0
-
- =item I<ellpj>: Jacobian Elliptic Functions
-
- SYNOPSIS:
-
- # double u, m, sn, cn, dn, phi;
- # int ellpj();
-
- ($flag, $sn, $cn, $dn, $phi) = ellpj( $u, $m );
-
- DESCRIPTION:
-
- Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m),
- and dn(u|m) of parameter m between 0 and 1, and real
- argument u.
-
- These functions are periodic, with quarter-period on the
- real axis equal to the complete elliptic integral
- ellpk(1.0-m).
-
- Relation to incomplete elliptic integral:
- If u = ellik(phi,m), then sn(u|m) = sin(phi),
- and cn(u|m) = cos(phi). Phi is called the amplitude of u.
-
- Computation is by means of the arithmetic-geometric mean
- algorithm, except when m is within 1e-9 of 0 or 1. In the
- latter case with m close to 1, the approximation applies
- only for phi < pi/2.
-
- ACCURACY:
-
- Tested at random points with u between 0 and 10, m between
- 0 and 1.
-
- Absolute error (* = relative error):
- arithmetic function # trials peak rms
- DEC sn 1800 4.5e-16 8.7e-17
- IEEE phi 10000 9.2e-16* 1.4e-16*
- IEEE sn 50000 4.1e-15 4.6e-16
- IEEE cn 40000 3.6e-15 4.4e-16
- IEEE dn 10000 1.3e-12 1.8e-14
-
- Peak error observed in consistency check using addition
- theorem for sn(u+v) was 4e-16 (absolute). Also tested by
- the above relation to the incomplete elliptic integral.
- Accuracy deteriorates when u is large.
-
- =item I<ellpk>: Complete elliptic integral of the first kind
-
- SYNOPSIS:
-
- # double m1, y, ellpk();
-
- $y = ellpk( $m1 );
-
- DESCRIPTION:
-
- Approximates the integral
-
- pi/2
- -
- | |
- | dt
- K(m) = | ------------------
- | 2
- | | sqrt( 1 - m sin t )
- -
- 0
-
- where m = 1 - m1, using the approximation
-
- P(x) - log x Q(x).
-
- The argument m1 is used rather than m so that the logarithmic
- singularity at m = 1 will be shifted to the origin; this
- preserves maximum accuracy.
-
- K(0) = pi/2.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC 0,1 16000 3.5e-17 1.1e-17
- IEEE 0,1 30000 2.5e-16 6.8e-17
-
- ERROR MESSAGES:
-
- message condition value returned
- ellpk domain x<0, x>1 0.0
-
- =item I<euclid>: Rational arithmetic routines
-
- SYNOPSIS:
-
-
- # typedef struct
- # {
- # double n; numerator
- # double d; denominator
- # }fract;
-
- $a = new_fract(3, 4); # a = 3 / 4
- $b = new_fract(2, 3); # b = 2 / 3
- $c = new_fract();
- radd( $a, $b, $c ); # c = b + a
- rsub( $a, $b, $c ); # c = b - a
- rmul( $a, $b, $c ); # c = b * a
- rdiv( $a, $b, $c ); # c = b / a
- print $c->{n}, ' ', $c->{d}; # prints numerator and denominator of $c
-
- ($gcd, $m_reduced, $n_reduced) = euclid($m, $n);
- # returns the greatest common divisor of $m and $n, as well as
- # the result of reducing $m and $n by $gcd
-
- Arguments of the routines are pointers to the structures.
- The double precision numbers are assumed, without checking,
- to be integer valued. Overflow conditions are reported.
-
- =item I<exp>: Exponential function
-
- SYNOPSIS:
-
- # double x, y, exp();
-
- $y = exp( $x );
-
- DESCRIPTION:
-
- Returns e (2.71828...) raised to the x power.
-
- Range reduction is accomplished by separating the argument
- into an integer k and fraction f such that
-
- x k f
- e = 2 e.
-
- A Pade' form 1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
- of degree 2/3 is used to approximate exp(f) in the basic
- interval [-0.5, 0.5].
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC +- 88 50000 2.8e-17 7.0e-18
- IEEE +- 708 40000 2.0e-16 5.6e-17
-
- Error amplification in the exponential function can be
- a serious matter. The error propagation involves
- exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
- which shows that a 1 lsb error in representing X produces
- a relative error of X times 1 lsb in the function.
- While the routine gives an accurate result for arguments
- that are exactly represented by a double precision
- computer number, the result contains amplified roundoff
- error for large arguments not exactly represented.
-
- ERROR MESSAGES:
-
- message condition value returned
- exp underflow x < MINLOG 0.0
- exp overflow x > MAXLOG INFINITY
-
- =item I<expxx>: exp(x*x)
-
- # double x, y, expxx();
- # int sign;
-
- $y = expxx( $x, $sign );
-
- DESCRIPTION:
-
- Computes y = exp(x*x) while suppressing error amplification
- that would ordinarily arise from the inexactness of the
- exponential argument x*x.
-
- If sign < 0, exp(-x*x) is returned.
- If sign > 0, or omitted, exp(x*x) is returned.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE -26.6, 26.6 10^7 3.9e-16 8.9e-17
-
-
-
- =item I<exp10>: Base 10 exponential function (Common antilogarithm)
-
- SYNOPSIS:
-
- # double x, y, exp10();
-
- $y = exp10( $x );
-
- DESCRIPTION:
-
- Returns 10 raised to the x power.
-
- Range reduction is accomplished by expressing the argument
- as 10**x = 2**n 10**f, with |f| < 0.5 log10(2).
- The Pade' form
-
- 1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
-
- is used to approximate 10**f.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE -307,+307 30000 2.2e-16 5.5e-17
- Test result from an earlier version (2.1):
- DEC -38,+38 70000 3.1e-17 7.0e-18
-
- ERROR MESSAGES:
-
- message condition value returned
- exp10 underflow x < -MAXL10 0.0
- exp10 overflow x > MAXL10 MAXNUM
-
- DEC arithmetic: MAXL10 = 38.230809449325611792.
- IEEE arithmetic: MAXL10 = 308.2547155599167.
-
- =item I<exp2>: Base 2 exponential function
-
- SYNOPSIS:
-
- # double x, y, exp2();
-
- $y = exp2( $x );
-
- DESCRIPTION:
-
- Returns 2 raised to the x power.
-
- Range reduction is accomplished by separating the argument
- into an integer k and fraction f such that
- x k f
- 2 = 2 2.
-
- A Pade' form
-
- 1 + 2x P(x**2) / (Q(x**2) - x P(x**2) )
-
- approximates 2**x in the basic range [-0.5, 0.5].
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE -1022,+1024 30000 1.8e-16 5.4e-17
-
- See exp.c for comments on error amplification.
-
- ERROR MESSAGES:
-
- message condition value returned
- exp underflow x < -MAXL2 0.0
- exp overflow x > MAXL2 MAXNUM
-
- For DEC arithmetic, MAXL2 = 127.
- For IEEE arithmetic, MAXL2 = 1024.
-
- =item I<ei>: Exponential integral
-
- SYNOPSIS:
-
- #double x, y, ei();
-
- $y = ei( $x );
-
-
- DESCRIPTION:
-
- x
- - t
- | | e
- Ei(x) = -|- --- dt .
- | | t
- -
- -inf
-
- Not defined for x <= 0.
- See also expn.c.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE 0,100 50000 8.6e-16 1.3e-16
-
- =item I<expn>: Exponential integral En
-
- SYNOPSIS:
-
- # int n;
- # double x, y, expn();
-
- $y = expn( $n, $x );
-
- DESCRIPTION:
-
- Evaluates the exponential integral
-
- inf.
- -
- | | -xt
- | e
- E (x) = | ---- dt.
- n | n
- | | t
- -
- 1
-
- Both n and x must be nonnegative.
-
- The routine employs either a power series, a continued
- fraction, or an asymptotic formula depending on the
- relative values of n and x.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC 0, 30 5000 2.0e-16 4.6e-17
- IEEE 0, 30 10000 1.7e-15 3.6e-16
-
- =item I<fabs>: Absolute value
-
- SYNOPSIS:
-
- # double x, y;
-
- $y = fabs( $x );
-
- DESCRIPTION:
-
- Returns the absolute value of the argument.
-
- =item I<fac>: Factorial function
-
- SYNOPSIS:
-
- # double y, fac();
- # int i;
-
- $y = fac( $i );
-
- DESCRIPTION:
-
- Returns factorial of i = 1 * 2 * 3 * ... * i.
- fac(0) = 1.0.
-
- Due to machine arithmetic bounds the largest value of
- i accepted is 33 in DEC arithmetic or 170 in IEEE
- arithmetic. Greater values, or negative ones,
- produce an error message and return MAXNUM.
-
- ACCURACY:
-
- For i < 34 the values are simply tabulated, and have
- full machine accuracy. If i > 55, fac(i) = gamma(i+1);
- see gamma.c.
-
- Relative error:
- arithmetic domain peak
- IEEE 0, 170 1.4e-15
- DEC 0, 33 1.4e-17
-
- =item I<fdtr>: F distribution
-
- SYNOPSIS:
-
- # int df1, df2;
- # double x, y, fdtr();
-
- $y = fdtr( $df1, $df2, $x );
-
- DESCRIPTION:
-
- Returns the area from zero to x under the F density
- function (also known as Snedcor's density or the
- variance ratio density). This is the density
- of x = (u1/df1)/(u2/df2), where u1 and u2 are random
- variables having Chi square distributions with df1
- and df2 degrees of freedom, respectively.
-
- The incomplete beta integral is used, according to the
- formula
-
- P(x) = incbet( df1/2, df2/2, df1*x/(df2 + df1*x) ).
-
- The arguments a and b are greater than zero, and x is
- nonnegative.
-
- ACCURACY:
-
- Tested at random points (a,b,x).
-
- x a,b Relative error:
- arithmetic domain domain # trials peak rms
- IEEE 0,1 0,100 100000 9.8e-15 1.7e-15
- IEEE 1,5 0,100 100000 6.5e-15 3.5e-16
- IEEE 0,1 1,10000 100000 2.2e-11 3.3e-12
- IEEE 1,5 1,10000 100000 1.1e-11 1.7e-13
- See also incbet.c.
-
- ERROR MESSAGES:
-
- message condition value returned
- fdtr domain a<0, b<0, x<0 0.0
-
- =item I<fdtrc>: Complemented F distribution
-
- SYNOPSIS:
-
- # int df1, df2;
- # double x, y, fdtrc();
-
- $y = fdtrc( $df1, $df2, $x );
-
- DESCRIPTION:
-
- Returns the area from x to infinity under the F density
- function (also known as Snedcor's density or the
- variance ratio density).
-
- inf.
- -
- 1 | | a-1 b-1
- 1-P(x) = ------ | t (1-t) dt
- B(a,b) | |
- -
- x
-
- The incomplete beta integral is used, according to the
- formula
-
- P(x) = incbet( df2/2, df1/2, df2/(df2 + df1*x) ).
-
- ACCURACY:
-
- Tested at random points (a,b,x) in the indicated intervals.
- x a,b Relative error:
- arithmetic domain domain # trials peak rms
- IEEE 0,1 1,100 100000 3.7e-14 5.9e-16
- IEEE 1,5 1,100 100000 8.0e-15 1.6e-15
- IEEE 0,1 1,10000 100000 1.8e-11 3.5e-13
- IEEE 1,5 1,10000 100000 2.0e-11 3.0e-12
- See also incbet.c.
-
- ERROR MESSAGES:
-
- message condition value returned
- fdtrc domain a<0, b<0, x<0 0.0
-
- =item I<fdtri>: Inverse of complemented F distribution
-
- SYNOPSIS:
-
- # int df1, df2;
- # double x, p, fdtri();
-
- $x = fdtri( $df1, $df2, $p );
-
- DESCRIPTION:
-
- Finds the F density argument x such that the integral
- from x to infinity of the F density is equal to the
- given probability p.
-
- This is accomplished using the inverse beta integral
- function and the relations
-
- z = incbi( df2/2, df1/2, p )
- x = df2 (1-z) / (df1 z).
-
- Note: the following relations hold for the inverse of
- the uncomplemented F distribution:
-
- z = incbi( df1/2, df2/2, p )
- x = df2 z / (df1 (1-z)).
-
- ACCURACY:
-
- Tested at random points (a,b,p).
-
- a,b Relative error:
- arithmetic domain # trials peak rms
- For p between .001 and 1:
- IEEE 1,100 100000 8.3e-15 4.7e-16
- IEEE 1,10000 100000 2.1e-11 1.4e-13
- For p between 10^-6 and 10^-3:
- IEEE 1,100 50000 1.3e-12 8.4e-15
- IEEE 1,10000 50000 3.0e-12 4.8e-14
- See also fdtrc.c.
-
- ERROR MESSAGES:
-
- message condition value returned
- fdtri domain p <= 0 or p > 1 0.0
- v < 1
-
- =item I<ceil>: ceil
-
- ceil() returns the smallest integer greater than or equal
- to x. It truncates toward plus infinity.
-
- SYNOPSIS:
-
- # double x, y, ceil();
-
- $y = ceil( $x );
-
- =item I<floor>: floor
-
- floor() returns the largest integer less than or equal to x.
- It truncates toward minus infinity.
-
- SYNOPSIS:
-
- # double x, y, floor();
-
- $y = floor( $x );
-
- =item I<frexp>: frexp
-
- frexp() extracts the exponent from x. It returns an integer
- power of two to expnt and the significand between 0.5 and 1
- to y. Thus x = y * 2**expn.
-
- SYNOPSIS:
-
- # double x, y, frexp();
- # int expnt;
-
- ($y, $expnt) = frexp( $x );
-
- =item I<ldexp>: multiplies x by 2**n.
-
- SYNOPSIS:
-
- # double x, y, ldexp();
- # int n;
-
- $y = ldexp( $x, $n );
-
- =item I<fresnl>: Fresnel integral
-
- SYNOPSIS:
-
- # double x, S, C;
- # void fresnl();
-
- ($flag, $S, $C) = fresnl( $x );
-
- DESCRIPTION:
-
- Evaluates the Fresnel integrals
-
- x
- -
- | |
- C(x) = | cos(pi/2 t**2) dt,
- | |
- -
- 0
-
- x
- -
- | |
- S(x) = | sin(pi/2 t**2) dt.
- | |
- -
- 0
-
- The integrals are evaluated by a power series for x < 1.
- For x >= 1 auxiliary functions f(x) and g(x) are employed
- such that
-
- C(x) = 0.5 + f(x) sin( pi/2 x**2 ) - g(x) cos( pi/2 x**2 )
- S(x) = 0.5 - f(x) cos( pi/2 x**2 ) - g(x) sin( pi/2 x**2 )
-
- ACCURACY:
-
- Relative error.
-
- Arithmetic function domain # trials peak rms
- IEEE S(x) 0, 10 10000 2.0e-15 3.2e-16
- IEEE C(x) 0, 10 10000 1.8e-15 3.3e-16
- DEC S(x) 0, 10 6000 2.2e-16 3.9e-17
- DEC C(x) 0, 10 5000 2.3e-16 3.9e-17
-
- =item I<gamma>: Gamma function
-
- SYNOPSIS:
-
- # double x, y, gamma();
- # extern int sgngam;
-
- $y = gamma( $x );
-
- DESCRIPTION:
-
- Returns gamma function of the argument. The result is
- correctly signed, and the sign (+1 or -1) is also
- returned in a global (extern) variable named sgngam.
- This variable is also filled in by the logarithmic gamma
- function lgam().
-
- Arguments |x| <= 34 are reduced by recurrence and the function
- approximated by a rational function of degree 6/7 in the
- interval (2,3). Large arguments are handled by Stirling's
- formula. Large negative arguments are made positive using
- a reflection formula.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC -34, 34 10000 1.3e-16 2.5e-17
- IEEE -170,-33 20000 2.3e-15 3.3e-16
- IEEE -33, 33 20000 9.4e-16 2.2e-16
- IEEE 33, 171.6 20000 2.3e-15 3.2e-16
-
- Error for arguments outside the test range will be larger
- owing to error amplification by the exponential function.
-
- =item I<lgam>: Natural logarithm of gamma function
-
- SYNOPSIS:
-
- # double x, y, lgam();
- # extern int sgngam;
-
- $y = lgam( $x );
-
- DESCRIPTION:
-
- Returns the base e (2.718...) logarithm of the absolute
- value of the gamma function of the argument.
- The sign (+1 or -1) of the gamma function is returned in a
- global (extern) variable named sgngam.
-
- For arguments greater than 13, the logarithm of the gamma
- function is approximated by the logarithmic version of
- Stirling's formula using a polynomial approximation of
- degree 4. Arguments between -33 and +33 are reduced by
- recurrence to the interval [2,3] of a rational approximation.
- The cosecant reflection formula is employed for arguments
- less than -33.
-
- Arguments greater than MAXLGM return MAXNUM and an error
- message. MAXLGM = 2.035093e36 for DEC
- arithmetic or 2.556348e305 for IEEE arithmetic.
-
- ACCURACY:
-
- arithmetic domain # trials peak rms
- DEC 0, 3 7000 5.2e-17 1.3e-17
- DEC 2.718, 2.035e36 5000 3.9e-17 9.9e-18
- IEEE 0, 3 28000 5.4e-16 1.1e-16
- IEEE 2.718, 2.556e305 40000 3.5e-16 8.3e-17
- The error criterion was relative when the function magnitude
- was greater than one but absolute when it was less than one.
-
- The following test used the relative error criterion, though
- at certain points the relative error could be much higher than
- indicated.
- IEEE -200, -4 10000 4.8e-16 1.3e-16
-
- =item I<gdtr>: Gamma distribution function
-
- SYNOPSIS:
-
- # double a, b, x, y, gdtr();
-
- $y = gdtr( $a, $b, $x );
-
- DESCRIPTION:
-
- Returns the integral from zero to x of the gamma probability
- density function:
-
- x
- b -
- a | | b-1 -at
- y = ----- | t e dt
- - | |
- | (b) -
- 0
-
- The incomplete gamma integral is used, according to the
- relation
-
- y = igam( b, ax ).
-
- ACCURACY:
-
- See igam().
-
- ERROR MESSAGES:
-
- message condition value returned
- gdtr domain x < 0 0.0
-
- =item I<gdtrc>: Complemented gamma distribution function
-
- SYNOPSIS:
-
- # double a, b, x, y, gdtrc();
-
- $y = gdtrc( $a, $b, $x );
-
- DESCRIPTION:
-
- Returns the integral from x to infinity of the gamma
- probability density function:
-
- inf.
- b -
- a | | b-1 -at
- y = ----- | t e dt
- - | |
- | (b) -
- x
-
- The incomplete gamma integral is used, according to the
- relation
-
- y = igamc( b, ax ).
-
- ACCURACY:
-
- See igamc().
-
- ERROR MESSAGES:
-
- message condition value returned
- gdtrc domain x < 0 0.0
-
- =item I<hyp2f0>: Gauss hypergeometric function 2F0
-
- SYNOPSIS:
-
- # double a, b, x, value, *err;
- # int type; /* determines what converging factor to use */
-
- ($value, $err) = hyp2f0( $a, $b, $x, $type )
-
- =item I<hyp2f1>: Gauss hypergeometric function 2F1
-
- SYNOPSIS:
-
- # double a, b, c, x, y, hyp2f1();
-
- $y = hyp2f1( $a, $b, $c, $x );
-
- DESCRIPTION:
-
- hyp2f1( a, b, c, x ) = F ( a, b; c; x )
- 2 1
-
- inf.
- - a(a+1)...(a+k) b(b+1)...(b+k) k+1
- = 1 + > ----------------------------- x .
- - c(c+1)...(c+k) (k+1)!
- k = 0
-
- Cases addressed are
- Tests and escapes for negative integer a, b, or c
- Linear transformation if c - a or c - b negative integer
- Special case c = a or c = b
- Linear transformation for x near +1
- Transformation for x < -0.5
- Psi function expansion if x > 0.5 and c - a - b integer
- Conditionally, a recurrence on c to make c-a-b > 0
-
- |x| > 1 is rejected.
-
- The parameters a, b, c are considered to be integer
- valued if they are within 1.0e-14 of the nearest integer
- (1.0e-13 for IEEE arithmetic).
-
- ACCURACY:
-
- Relative error (-1 < x < 1):
- arithmetic domain # trials peak rms
- IEEE -1,7 230000 1.2e-11 5.2e-14
-
- Several special cases also tested with a, b, c in
- the range -7 to 7.
-
- ERROR MESSAGES:
-
- A "partial loss of precision" message is printed if
- the internally estimated relative error exceeds 1^-12.
- A "singularity" message is printed on overflow or
- in cases not addressed (such as x < -1).
-
- =item I<hyperg>: Confluent hypergeometric function
-
- SYNOPSIS:
-
- # double a, b, x, y, hyperg();
-
- $y = hyperg( $a, $b, $x );
-
- DESCRIPTION:
-
- Computes the confluent hypergeometric function
-
- 1 2
- a x a(a+1) x
- F ( a,b;x ) = 1 + ---- + --------- + ...
- 1 1 b 1! b(b+1) 2!
-
- Many higher transcendental functions are special cases of
- this power series.
-
- As is evident from the formula, b must not be a negative
- integer or zero unless a is an integer with 0 >= a > b.
-
- The routine attempts both a direct summation of the series
- and an asymptotic expansion. In each case error due to
- roundoff, cancellation, and nonconvergence is estimated.
- The result with smaller estimated error is returned.
-
- ACCURACY:
-
- Tested at random points (a, b, x), all three variables
- ranging from 0 to 30.
- Relative error:
- arithmetic domain # trials peak rms
- DEC 0,30 2000 1.2e-15 1.3e-16
- IEEE 0,30 30000 1.8e-14 1.1e-15
-
- Larger errors can be observed when b is near a negative
- integer or zero. Certain combinations of arguments yield
- serious cancellation error in the power series summation
- and also are not in the region of near convergence of the
- asymptotic series. An error message is printed if the
- self-estimated relative error is greater than 1.0e-12.
-
- =item I<i0>: Modified Bessel function of order zero
-
- SYNOPSIS:
-
- # double x, y, i0();
-
- $y = i0( $x );
-
- DESCRIPTION:
-
- Returns modified Bessel function of order zero of the
- argument.
-
- The function is defined as i0(x) = j0( ix ).
-
- The range is partitioned into the two intervals [0,8] and
- (8, infinity). Chebyshev polynomial expansions are employed
- in each interval.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC 0,30 6000 8.2e-17 1.9e-17
- IEEE 0,30 30000 5.8e-16 1.4e-16
-
- =item I<i0e>: Modified Bessel function of order zero, exponentially scaled
-
- SYNOPSIS:
-
- # double x, y, i0e();
-
- $y = i0e( $x );
-
- DESCRIPTION:
-
- Returns exponentially scaled modified Bessel function
- of order zero of the argument.
-
- The function is defined as i0e(x) = exp(-|x|) j0( ix ).
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE 0,30 30000 5.4e-16 1.2e-16
- See i0().
-
- =item I<i1>: Modified Bessel function of order one
-
- SYNOPSIS:
-
- # double x, y, i1();
-
- $y = i1( $x );
-
- DESCRIPTION:
-
- Returns modified Bessel function of order one of the
- argument.
-
- The function is defined as i1(x) = -i j1( ix ).
-
- The range is partitioned into the two intervals [0,8] and
- (8, infinity). Chebyshev polynomial expansions are employed
- in each interval.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC 0, 30 3400 1.2e-16 2.3e-17
- IEEE 0, 30 30000 1.9e-15 2.1e-16
-
- =item I<i1e>: Modified Bessel function of order one, exponentially scaled
-
- SYNOPSIS:
-
- # double x, y, i1e();
-
- $y = i1e( $x );
-
- DESCRIPTION:
-
- Returns exponentially scaled modified Bessel function
- of order one of the argument.
-
- The function is defined as i1(x) = -i exp(-|x|) j1( ix ).
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE 0, 30 30000 2.0e-15 2.0e-16
- See i1().
-
- =item I<igam>: Incomplete gamma integral
-
- SYNOPSIS:
-
- # double a, x, y, igam();
-
- $y = igam( $a, $x );
-
- DESCRIPTION:
-
- The function is defined by
-
- x
- -
- 1 | | -t a-1
- igam(a,x) = ----- | e t dt.
- - | |
- | (a) -
- 0
-
- In this implementation both arguments must be positive.
- The integral is evaluated by either a power series or
- continued fraction expansion, depending on the relative
- values of a and x.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE 0,30 200000 3.6e-14 2.9e-15
- IEEE 0,100 300000 9.9e-14 1.5e-14
-
- =item I<igamc>: Complemented incomplete gamma integral
-
- SYNOPSIS:
-
- # double a, x, y, igamc();
-
- $y = igamc( $a, $x );
-
- DESCRIPTION:
-
- The function is defined by
-
- igamc(a,x) = 1 - igam(a,x)
-
- inf.
- -
- 1 | | -t a-1
- = ----- | e t dt.
- - | |
- | (a) -
- x
-
- In this implementation both arguments must be positive.
- The integral is evaluated by either a power series or
- continued fraction expansion, depending on the relative
- values of a and x.
-
- ACCURACY:
-
- Tested at random a, x.
- a x Relative error:
- arithmetic domain domain # trials peak rms
- IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15
- IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15
-
- =item I<igami>: Inverse of complemented imcomplete gamma integral
-
- SYNOPSIS:
-
- # double a, x, p, igami();
-
- $x = igami( $a, $p );
-
- DESCRIPTION:
-
- Given p, the function finds x such that
-
- igamc( a, x ) = p.
-
- Starting with the approximate value
-
- 3
- x = a t
-
- where
-
- t = 1 - d - ndtri(p) sqrt(d)
-
- and
-
- d = 1/9a,
-
- the routine performs up to 10 Newton iterations to find the
- root of igamc(a,x) - p = 0.
-
- ACCURACY:
-
- Tested at random a, p in the intervals indicated.
-
- a p Relative error:
- arithmetic domain domain # trials peak rms
- IEEE 0.5,100 0,0.5 100000 1.0e-14 1.7e-15
- IEEE 0.01,0.5 0,0.5 100000 9.0e-14 3.4e-15
- IEEE 0.5,10000 0,0.5 20000 2.3e-13 3.8e-14
-
- =item I<incbet>: Incomplete beta integral
-
- SYNOPSIS:
-
- # double a, b, x, y, incbet();
-
- $y = incbet( $a, $b, $x );
-
- DESCRIPTION:
-
- Returns incomplete beta integral of the arguments, evaluated
- from zero to x. The function is defined as
-
- x
- - -
- | (a+b) | | a-1 b-1
- ----------- | t (1-t) dt.
- - - | |
- | (a) | (b) -
- 0
-
- The domain of definition is 0 <= x <= 1. In this
- implementation a and b are restricted to positive values.
- The integral from x to 1 may be obtained by the symmetry
- relation
-
- 1 - incbet( a, b, x ) = incbet( b, a, 1-x ).
-
- The integral is evaluated by a continued fraction expansion
- or, when b*x is small, by a power series.
-
- ACCURACY:
-
- Tested at uniformly distributed random points (a,b,x) with a and b
- in "domain" and x between 0 and 1.
- Relative error
- arithmetic domain # trials peak rms
- IEEE 0,5 10000 6.9e-15 4.5e-16
- IEEE 0,85 250000 2.2e-13 1.7e-14
- IEEE 0,1000 30000 5.3e-12 6.3e-13
- IEEE 0,10000 250000 9.3e-11 7.1e-12
- IEEE 0,100000 10000 8.7e-10 4.8e-11
- Outputs smaller than the IEEE gradual underflow threshold
- were excluded from these statistics.
-
- ERROR MESSAGES:
- message condition value returned
- incbet domain x<0, x>1 0.0
- incbet underflow 0.0
-
- =item I<incbi>: Inverse of imcomplete beta integral
-
- SYNOPSIS:
-
- # double a, b, x, y, incbi();
-
- $x = incbi( $a, $b, $y );
-
- DESCRIPTION:
-
- Given y, the function finds x such that
-
- incbet( a, b, x ) = y .
-
- The routine performs interval halving or Newton iterations to find the
- root of incbet(a,b,x) - y = 0.
-
- ACCURACY:
-
- Relative error:
- x a,b
- arithmetic domain domain # trials peak rms
- IEEE 0,1 .5,10000 50000 5.8e-12 1.3e-13
- IEEE 0,1 .25,100 100000 1.8e-13 3.9e-15
- IEEE 0,1 0,5 50000 1.1e-12 5.5e-15
- VAX 0,1 .5,100 25000 3.5e-14 1.1e-15
- With a and b constrained to half-integer or integer values:
- IEEE 0,1 .5,10000 50000 5.8e-12 1.1e-13
- IEEE 0,1 .5,100 100000 1.7e-14 7.9e-16
- With a = .5, b constrained to half-integer or integer values:
- IEEE 0,1 .5,10000 10000 8.3e-11 1.0e-11
-
- =item I<iv>: Modified Bessel function of noninteger order
-
- SYNOPSIS:
-
- # double v, x, y, iv();
-
- $y = iv( $v, $x );
-
- DESCRIPTION:
-
- Returns modified Bessel function of order v of the
- argument. If x is negative, v must be integer valued.
-
- The function is defined as Iv(x) = Jv( ix ). It is
- here computed in terms of the confluent hypergeometric
- function, according to the formula
-
- v -x
- Iv(x) = (x/2) e hyperg( v+0.5, 2v+1, 2x ) / gamma(v+1)
-
- If v is a negative integer, then v is replaced by -v.
-
- ACCURACY:
-
- Tested at random points (v, x), with v between 0 and
- 30, x between 0 and 28.
- Relative error:
- arithmetic domain # trials peak rms
- DEC 0,30 2000 3.1e-15 5.4e-16
- IEEE 0,30 10000 1.7e-14 2.7e-15
-
- Accuracy is diminished if v is near a negative integer.
-
- See also hyperg.c.
-
- =item I<j0>: Bessel function of order zero
-
- SYNOPSIS:
-
- # double x, y, j0();
-
- $y = j0( $x );
-
- DESCRIPTION:
-
- Returns Bessel function of order zero of the argument.
-
- The domain is divided into the intervals [0, 5] and
- (5, infinity). In the first interval the following rational
- approximation is used:
-
- 2 2
- (w - r ) (w - r ) P (w) / Q (w)
- 1 2 3 8
-
- 2
- where w = x and the two r's are zeros of the function.
-
- In the second interval, the Hankel asymptotic expansion
- is employed with two rational functions of degree 6/6
- and 7/7.
-
- ACCURACY:
-
- Absolute error:
- arithmetic domain # trials peak rms
- DEC 0, 30 10000 4.4e-17 6.3e-18
- IEEE 0, 30 60000 4.2e-16 1.1e-16
-
- =item I<y0>: Bessel function of the second kind, order zero
-
- SYNOPSIS:
-
- # double x, y, y0();
-
- $y = y0( $x );
-
- DESCRIPTION:
-
- Returns Bessel function of the second kind, of order
- zero, of the argument.
-
- The domain is divided into the intervals [0, 5] and
- (5, infinity). In the first interval a rational approximation
- R(x) is employed to compute
- y0(x) = R(x) + 2 * log(x) * j0(x) / PI.
- Thus a call to j0() is required.
-
- In the second interval, the Hankel asymptotic expansion
- is employed with two rational functions of degree 6/6
- and 7/7.
-
- ACCURACY:
-
- Absolute error, when y0(x) < 1; else relative error:
-
- arithmetic domain # trials peak rms
- DEC 0, 30 9400 7.0e-17 7.9e-18
- IEEE 0, 30 30000 1.3e-15 1.6e-16
-
- =item I<j1>: Bessel function of order one
-
- SYNOPSIS:
-
- # double x, y, j1();
-
- $y = j1( $x );
-
- DESCRIPTION:
-
- Returns Bessel function of order one of the argument.
-
- The domain is divided into the intervals [0, 8] and
- (8, infinity). In the first interval a 24 term Chebyshev
- expansion is used. In the second, the asymptotic
- trigonometric representation is employed using two
- rational functions of degree 5/5.
-
- ACCURACY:
-
- Absolute error:
- arithmetic domain # trials peak rms
- DEC 0, 30 10000 4.0e-17 1.1e-17
- IEEE 0, 30 30000 2.6e-16 1.1e-16
-
- =item I<y1>: Bessel function of second kind of order one
-
- SYNOPSIS:
-
- # double x, y, y1();
-
- $y = y1( $x );
-
- DESCRIPTION:
-
- Returns Bessel function of the second kind of order one
- of the argument.
-
- The domain is divided into the intervals [0, 8] and
- (8, infinity). In the first interval a 25 term Chebyshev
- expansion is used, and a call to j1() is required.
- In the second, the asymptotic trigonometric representation
- is employed using two rational functions of degree 5/5.
-
- ACCURACY:
-
- Absolute error:
- arithmetic domain # trials peak rms
- DEC 0, 30 10000 8.6e-17 1.3e-17
- IEEE 0, 30 30000 1.0e-15 1.3e-16
-
- (error criterion relative when |y1| > 1).
-
- =item I<jn>: Bessel function of integer order
-
- SYNOPSIS:
-
- # int n;
- # double x, y, jn();
-
- $y = jn( $n, $x );
-
- DESCRIPTION:
-
- Returns Bessel function of order n, where n is a
- (possibly negative) integer.
-
- The ratio of jn(x) to j0(x) is computed by backward
- recurrence. First the ratio jn/jn-1 is found by a
- continued fraction expansion. Then the recurrence
- relating successive orders is applied until j0 or j1 is
- reached.
-
- If n = 0 or 1 the routine for j0 or j1 is called
- directly.
-
- ACCURACY:
-
- Absolute error:
- arithmetic range # trials peak rms
- DEC 0, 30 5500 6.9e-17 9.3e-18
- IEEE 0, 30 5000 4.4e-16 7.9e-17
-
- Not suitable for large n or x. Use jv() instead.
-
- =item I<jv>: Bessel function of noninteger order
-
- SYNOPSIS:
-
- # double v, x, y, jv();
-
- $y = jv( $v, $x );
-
- DESCRIPTION:
-
- Returns Bessel function of order v of the argument,
- where v is real. Negative x is allowed if v is an integer.
-
- Several expansions are included: the ascending power
- series, the Hankel expansion, and two transitional
- expansions for large v. If v is not too large, it
- is reduced by recurrence to a region of best accuracy.
- The transitional expansions give 12D accuracy for v > 500.
-
- ACCURACY:
-
- Results for integer v are indicated by *, where x and v
- both vary from -125 to +125. Otherwise,
- x ranges from 0 to 125, v ranges as indicated by "domain."
- Error criterion is absolute, except relative when |jv()| > 1.
-
- arithmetic v domain x domain # trials peak rms
- IEEE 0,125 0,125 100000 4.6e-15 2.2e-16
- IEEE -125,0 0,125 40000 5.4e-11 3.7e-13
- IEEE 0,500 0,500 20000 4.4e-15 4.0e-16
- Integer v:
- IEEE -125,125 -125,125 50000 3.5e-15* 1.9e-16*
-
- =item I<k0>: Modified Bessel function, third kind, order zero
-
- SYNOPSIS:
-
- # double x, y, k0();
-
- $y = k0( $x );
-
- DESCRIPTION:
-
- Returns modified Bessel function of the third kind
- of order zero of the argument.
-
- The range is partitioned into the two intervals [0,8] and
- (8, infinity). Chebyshev polynomial expansions are employed
- in each interval.
-
- ACCURACY:
-
- Tested at 2000 random points between 0 and 8. Peak absolute
- error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15.
- Relative error:
- arithmetic domain # trials peak rms
- DEC 0, 30 3100 1.3e-16 2.1e-17
- IEEE 0, 30 30000 1.2e-15 1.6e-16
-
- ERROR MESSAGES:
-
- message condition value returned
- K0 domain x <= 0 MAXNUM
-
- =item I<k0e>: Modified Bessel function, third kind, order zero, exponentially scaled
-
- SYNOPSIS:
-
- # double x, y, k0e();
-
- $y = k0e( $x );
-
- DESCRIPTION:
-
- Returns exponentially scaled modified Bessel function
- of the third kind of order zero of the argument.
-
- k0e(x) = exp(x) * k0(x).
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE 0, 30 30000 1.4e-15 1.4e-16
- See k0().
-
- =item I<k1>: Modified Bessel function, third kind, order one
-
- SYNOPSIS:
-
- # double x, y, k1();
-
- $y = k1( $x );
-
- DESCRIPTION:
-
- Computes the modified Bessel function of the third kind
- of order one of the argument.
-
- The range is partitioned into the two intervals [0,2] and
- (2, infinity). Chebyshev polynomial expansions are employed
- in each interval.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC 0, 30 3300 8.9e-17 2.2e-17
- IEEE 0, 30 30000 1.2e-15 1.6e-16
-
- ERROR MESSAGES:
-
- message condition value returned
- k1 domain x <= 0 MAXNUM
-
- =item I<k1e>: Modified Bessel function, third kind, order one, exponentially scaled
-
- SYNOPSIS:
-
- # double x, y, k1e();
-
- $y = k1e( $x );
-
- DESCRIPTION:
-
- Returns exponentially scaled modified Bessel function
- of the third kind of order one of the argument:
-
- k1e(x) = exp(x) * k1(x).
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE 0, 30 30000 7.8e-16 1.2e-16
- See k1().
-
- =item I<kn>: Modified Bessel function, third kind, integer order
-
- SYNOPSIS:
-
- # double x, y, kn();
- # int n;
-
- $y = kn( $n, $x );
-
- DESCRIPTION:
-
- Returns modified Bessel function of the third kind
- of order n of the argument.
-
- The range is partitioned into the two intervals [0,9.55] and
- (9.55, infinity). An ascending power series is used in the
- low range, and an asymptotic expansion in the high range.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC 0,30 3000 1.3e-9 5.8e-11
- IEEE 0,30 90000 1.8e-8 3.0e-10
-
- Error is high only near the crossover point x = 9.55
- between the two expansions used.
-
- =item I<log>: Natural logarithm
-
- SYNOPSIS:
-
- # double x, y, log();
-
- $y = log( $x );
-
- DESCRIPTION:
-
- Returns the base e (2.718...) logarithm of x.
-
- The argument is separated into its exponent and fractional
- parts. If the exponent is between -1 and +1, the logarithm
- of the fraction is approximated by
-
- log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
-
- Otherwise, setting z = 2(x-1)/x+1),
-
- log(x) = z + z**3 P(z)/Q(z).
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE 0.5, 2.0 150000 1.44e-16 5.06e-17
- IEEE +-MAXNUM 30000 1.20e-16 4.78e-17
- DEC 0, 10 170000 1.8e-17 6.3e-18
-
- In the tests over the interval [+-MAXNUM], the logarithms
- of the random arguments were uniformly distributed over
- [0, MAXLOG].
-
- ERROR MESSAGES:
-
- log singularity: x = 0; returns -INFINITY
- log domain: x < 0; returns NAN
-
- =item I<log10>: Common logarithm
-
- SYNOPSIS:
-
- # double x, y, log10();
-
- $y = log10( $x );
-
- DESCRIPTION:
-
- Returns logarithm to the base 10 of x.
-
- The argument is separated into its exponent and fractional
- parts. The logarithm of the fraction is approximated by
-
- log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE 0.5, 2.0 30000 1.5e-16 5.0e-17
- IEEE 0, MAXNUM 30000 1.4e-16 4.8e-17
- DEC 1, MAXNUM 50000 2.5e-17 6.0e-18
-
- In the tests over the interval [1, MAXNUM], the logarithms
- of the random arguments were uniformly distributed over
- [0, MAXLOG].
-
- ERROR MESSAGES:
-
- log10 singularity: x = 0; returns -INFINITY
- log10 domain: x < 0; returns NAN
-
- =item I<log2>: Base 2 logarithm
-
- SYNOPSIS:
-
- # double x, y, log2();
-
- $y = log2( $x );
-
- DESCRIPTION:
-
- Returns the base 2 logarithm of x.
-
- The argument is separated into its exponent and fractional
- parts. If the exponent is between -1 and +1, the base e
- logarithm of the fraction is approximated by
-
- log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
-
- Otherwise, setting z = 2(x-1)/x+1),
-
- log(x) = z + z**3 P(z)/Q(z).
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE 0.5, 2.0 30000 2.0e-16 5.5e-17
- IEEE exp(+-700) 40000 1.3e-16 4.6e-17
-
- In the tests over the interval [exp(+-700)], the logarithms
- of the random arguments were uniformly distributed.
-
- ERROR MESSAGES:
-
- log2 singularity: x = 0; returns -INFINITY
- log2 domain: x < 0; returns NAN
-
- =item I<lrand>: Pseudorandom number generator
-
- SYNOPSIS:
-
- long y, lrand();
-
- $y = lrand( );
-
- DESCRIPTION:
-
- Yields a long integer random number.
-
- The three-generator congruential algorithm by Brian
- Wichmann and David Hill (BYTE magazine, March, 1987,
- pp 127-8) is used. The period, given by them, is
- 6953607871644.
-
- =item I<lsqrt>: Integer square root
-
- SYNOPSIS:
-
- long x, y;
- long lsqrt();
-
- $y = lsqrt( $x );
-
- DESCRIPTION:
-
- Returns a long integer square root of the long integer
- argument. The computation is by binary long division.
-
- The largest possible result is lsqrt(2,147,483,647)
- = 46341.
-
- If x < 0, the square root of |x| is returned, and an
- error message is printed.
-
- ACCURACY:
-
- An extra, roundoff, bit is computed; hence the result
- is the nearest integer to the actual square root.
- NOTE: only DEC arithmetic is currently supported.
-
- =item I<mtherr>: Library common error handling routine
-
- SYNOPSIS:
-
- char *fctnam;
- # int code;
- # int mtherr();
-
- mtherr( $fctnam, $code );
-
- DESCRIPTION:
-
- This routine may be called to report one of the following
- error conditions (in the include file mconf.h).
-
- Mnemonic Value Significance
-
- DOMAIN 1 argument domain error
- SING 2 function singularity
- OVERFLOW 3 overflow range error
- UNDERFLOW 4 underflow range error
- TLOSS 5 total loss of precision
- PLOSS 6 partial loss of precision
- EDOM 33 Unix domain error code
- ERANGE 34 Unix range error code
-
- The default version of the file prints the function name,
- passed to it by the pointer fctnam, followed by the
- error condition. The display is directed to the standard
- output device. The routine then returns to the calling
- program. Users may wish to modify the program to abort by
- calling exit() under severe error conditions such as domain
- errors.
-
- Since all error conditions pass control to this function,
- the display may be easily changed, eliminated, or directed
- to an error logging device.
-
- SEE ALSO: mconf.h
-
- =item I<nbdtr>: Negative binomial distribution
-
- SYNOPSIS:
-
- # int k, n;
- # double p, y, nbdtr();
-
- $y = nbdtr( $k, $n, $p );
-
- DESCRIPTION:
-
- Returns the sum of the terms 0 through k of the negative
- binomial distribution:
-
- k
- -- ( n+j-1 ) n j
- > ( ) p (1-p)
- -- ( j )
- j=0
-
- In a sequence of Bernoulli trials, this is the probability
- that k or fewer failures precede the nth success.
-
- The terms are not computed individually; instead the incomplete
- beta integral is employed, according to the formula
-
- y = nbdtr( k, n, p ) = incbet( n, k+1, p ).
-
- The arguments must be positive, with p ranging from 0 to 1.
-
- ACCURACY:
-
- Tested at random points (a,b,p), with p between 0 and 1.
-
- a,b Relative error:
- arithmetic domain # trials peak rms
- IEEE 0,100 100000 1.7e-13 8.8e-15
- See also incbet.c.
-
- =item I<nbdtrc>: Complemented negative binomial distribution
-
- SYNOPSIS:
-
- # int k, n;
- # double p, y, nbdtrc();
-
- $y = nbdtrc( $k, $n, $p );
-
- DESCRIPTION:
-
- Returns the sum of the terms k+1 to infinity of the negative
- binomial distribution:
-
- inf
- -- ( n+j-1 ) n j
- > ( ) p (1-p)
- -- ( j )
- j=k+1
-
- The terms are not computed individually; instead the incomplete
- beta integral is employed, according to the formula
-
- y = nbdtrc( k, n, p ) = incbet( k+1, n, 1-p ).
-
- The arguments must be positive, with p ranging from 0 to 1.
-
- ACCURACY:
-
- Tested at random points (a,b,p), with p between 0 and 1.
-
- a,b Relative error:
- arithmetic domain # trials peak rms
- IEEE 0,100 100000 1.7e-13 8.8e-15
- See also incbet.c.
-
- =item I<nbdtrc>: Complemented negative binomial distribution
-
- SYNOPSIS:
-
- # int k, n;
- # double p, y, nbdtrc();
-
- $y = nbdtrc( $k, $n, $p );
-
- DESCRIPTION:
-
- Returns the sum of the terms k+1 to infinity of the negative
- binomial distribution:
-
- inf
- -- ( n+j-1 ) n j
- > ( ) p (1-p)
- -- ( j )
- j=k+1
-
- The terms are not computed individually; instead the incomplete
- beta integral is employed, according to the formula
-
- y = nbdtrc( k, n, p ) = incbet( k+1, n, 1-p ).
-
- The arguments must be positive, with p ranging from 0 to 1.
-
- ACCURACY:
-
- See incbet.c.
-
- =item I<nbdtri>: Functional inverse of negative binomial distribution
-
- SYNOPSIS:
-
- # int k, n;
- # double p, y, nbdtri();
-
- $p = nbdtri( $k, $n, $y );
-
- DESCRIPTION:
-
- Finds the argument p such that nbdtr(k,n,p) is equal to y.
-
- ACCURACY:
-
- Tested at random points (a,b,y), with y between 0 and 1.
-
- a,b Relative error:
- arithmetic domain # trials peak rms
- IEEE 0,100 100000 1.5e-14 8.5e-16
- See also incbi.c.
-
- =item I<ndtr>: Normal distribution function
-
- SYNOPSIS:
-
- # double x, y, ndtr();
-
- $y = ndtr( $x );
-
- DESCRIPTION:
-
- Returns the area under the Gaussian probability density
- function, integrated from minus infinity to x:
-
- x
- -
- 1 | | 2
- ndtr(x) = --------- | exp( - t /2 ) dt
- sqrt(2pi) | |
- -
- -inf.
-
- = ( 1 + erf(z) ) / 2
-
- where z = x/sqrt(2). Computation is via the functions
- erf and erfc.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC -13,0 8000 2.1e-15 4.8e-16
- IEEE -13,0 30000 3.4e-14 6.7e-15
-
- ERROR MESSAGES:
-
- message condition value returned
- erfc underflow x > 37.519379347 0.0
-
- =item I<erf>: Error function
-
- SYNOPSIS:
-
- # double x, y, erf();
-
- $y = erf( $x );
-
- DESCRIPTION:
-
- The integral is
-
- x
- -
- 2 | | 2
- erf(x) = -------- | exp( - t ) dt.
- sqrt(pi) | |
- -
- 0
-
- The magnitude of x is limited to 9.231948545 for DEC
- arithmetic; 1 or -1 is returned outside this range.
-
- For 0 <= |x| < 1, erf(x) = x * P4(x**2)/Q5(x**2); otherwise
- erf(x) = 1 - erfc(x).
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC 0,1 14000 4.7e-17 1.5e-17
- IEEE 0,1 30000 3.7e-16 1.0e-16
-
- =item I<erfc>: Complementary error function
-
- SYNOPSIS:
-
- # double x, y, erfc();
-
- $y = erfc( $x );
-
- DESCRIPTION:
-
- 1 - erf(x) =
-
- inf.
- -
- 2 | | 2
- erfc(x) = -------- | exp( - t ) dt
- sqrt(pi) | |
- -
- x
-
- For small x, erfc(x) = 1 - erf(x); otherwise rational
- approximations are computed.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC 0, 9.2319 12000 5.1e-16 1.2e-16
- IEEE 0,26.6417 30000 5.7e-14 1.5e-14
-
- ERROR MESSAGES:
-
- message condition value returned
- erfc underflow x > 9.231948545 (DEC) 0.0
-
- =item I<ndtri>: Inverse of Normal distribution function
-
- SYNOPSIS:
-
- # double x, y, ndtri();
-
- $x = ndtri( $y );
-
- DESCRIPTION:
-
- Returns the argument, x, for which the area under the
- Gaussian probability density function (integrated from
- minus infinity to x) is equal to y.
-
- For small arguments 0 < y < exp(-2), the program computes
- z = sqrt( -2.0 * log(y) ); then the approximation is
- x = z - log(z)/z - (1/z) P(1/z) / Q(1/z).
- There are two rational functions P/Q, one for 0 < y < exp(-32)
- and the other for y up to exp(-2). For larger arguments,
- w = y - 0.5, and x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC 0.125, 1 5500 9.5e-17 2.1e-17
- DEC 6e-39, 0.135 3500 5.7e-17 1.3e-17
- IEEE 0.125, 1 20000 7.2e-16 1.3e-16
- IEEE 3e-308, 0.135 50000 4.6e-16 9.8e-17
-
- ERROR MESSAGES:
-
- message condition value returned
- ndtri domain x <= 0 -MAXNUM
- ndtri domain x >= 1 MAXNUM
-
- =item I<pdtr>: Poisson distribution
-
- SYNOPSIS:
-
- # int k;
- # double m, y, pdtr();
-
- $y = pdtr( $k, $m );
-
- DESCRIPTION:
-
- Returns the sum of the first k terms of the Poisson
- distribution:
-
- k j
- -- -m m
- > e --
- -- j!
- j=0
-
- The terms are not summed directly; instead the incomplete
- gamma integral is employed, according to the relation
-
- y = pdtr( k, m ) = igamc( k+1, m ).
-
- The arguments must both be positive.
-
- ACCURACY:
-
- See igamc().
-
- =item I<pdtrc>: Complemented poisson distribution
-
- SYNOPSIS:
-
- # int k;
- # double m, y, pdtrc();
-
- $y = pdtrc( $k, $m );
-
- DESCRIPTION:
-
- Returns the sum of the terms k+1 to infinity of the Poisson
- distribution:
-
- inf. j
- -- -m m
- > e --
- -- j!
- j=k+1
-
- The terms are not summed directly; instead the incomplete
- gamma integral is employed, according to the formula
-
- y = pdtrc( k, m ) = igam( k+1, m ).
-
- The arguments must both be positive.
-
- ACCURACY:
-
- See igam.c.
-
- =item I<pdtri>: Inverse Poisson distribution
-
- SYNOPSIS:
-
- # int k;
- # double m, y, pdtr();
-
- $m = pdtri( $k, $y );
-
- DESCRIPTION:
-
- Finds the Poisson variable x such that the integral
- from 0 to x of the Poisson density is equal to the
- given probability y.
-
- This is accomplished using the inverse gamma integral
- function and the relation
-
- m = igami( k+1, y ).
-
- ACCURACY:
-
- See igami.c.
-
- ERROR MESSAGES:
-
- message condition value returned
- pdtri domain y < 0 or y >= 1 0.0
- k < 0
-
- =item I<pow>: Power function
-
- SYNOPSIS:
-
- # double x, y, z, pow();
-
- $z = pow( $x, $y );
-
- DESCRIPTION:
-
- Computes x raised to the yth power. Analytically,
-
- x**y = exp( y log(x) ).
-
- Following Cody and Waite, this program uses a lookup table
- of 2**-i/16 and pseudo extended precision arithmetic to
- obtain an extra three bits of accuracy in both the logarithm
- and the exponential.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE -26,26 30000 4.2e-16 7.7e-17
- DEC -26,26 60000 4.8e-17 9.1e-18
- 1/26 < x < 26, with log(x) uniformly distributed.
- -26 < y < 26, y uniformly distributed.
- IEEE 0,8700 30000 1.5e-14 2.1e-15
- 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed.
-
- ERROR MESSAGES:
-
- message condition value returned
- pow overflow x**y > MAXNUM INFINITY
- pow underflow x**y < 1/MAXNUM 0.0
- pow domain x<0 and y noninteger 0.0
-
- =item I<powi>: Real raised to integer power
-
- SYNOPSIS:
-
- # double x, y, powi();
- # int n;
-
- $y = powi( $x, $n );
-
- DESCRIPTION:
-
- Returns argument x raised to the nth power.
- The routine efficiently decomposes n as a sum of powers of
- two. The desired power is a product of two-to-the-kth
- powers of x. Thus to compute the 32767 power of x requires
- 28 multiplications instead of 32767 multiplications.
-
- ACCURACY:
-
- Relative error:
- arithmetic x domain n domain # trials peak rms
- DEC .04,26 -26,26 100000 2.7e-16 4.3e-17
- IEEE .04,26 -26,26 50000 2.0e-15 3.8e-16
- IEEE 1,2 -1022,1023 50000 8.6e-14 1.6e-14
-
- Returns MAXNUM on overflow, zero on underflow.
-
- =item I<psi>: Psi (digamma) function
-
- SYNOPSIS:
-
- # double x, y, psi();
-
- $y = psi( $x );
-
- DESCRIPTION:
-
- d -
- psi(x) = -- ln | (x)
- dx
-
- is the logarithmic derivative of the gamma function.
- For integer x,
- n-1
- -
- psi(n) = -EUL + > 1/k.
- -
- k=1
-
- This formula is used for 0 < n <= 10. If x is negative, it
- is transformed to a positive argument by the reflection
- formula psi(1-x) = psi(x) + pi cot(pi x).
- For general positive x, the argument is made greater than 10
- using the recurrence psi(x+1) = psi(x) + 1/x.
- Then the following asymptotic expansion is applied:
-
- inf. B
- - 2k
- psi(x) = log(x) - 1/2x - > -------
- - 2k
- k=1 2k x
-
- where the B2k are Bernoulli numbers.
-
- ACCURACY:
- Relative error (except absolute when |psi| < 1):
- arithmetic domain # trials peak rms
- DEC 0,30 2500 1.7e-16 2.0e-17
- IEEE 0,30 30000 1.3e-15 1.4e-16
- IEEE -30,0 40000 1.5e-15 2.2e-16
-
- ERROR MESSAGES:
- message condition value returned
- psi singularity x integer <=0 MAXNUM
-
- =item I<rgamma>: Reciprocal gamma function
-
- SYNOPSIS:
-
- # double x, y, rgamma();
-
- $y = rgamma( $x );
-
- DESCRIPTION:
-
- Returns one divided by the gamma function of the argument.
-
- The function is approximated by a Chebyshev expansion in
- the interval [0,1]. Range reduction is by recurrence
- for arguments between -34.034 and +34.84425627277176174.
- 1/MAXNUM is returned for positive arguments outside this
- range. For arguments less than -34.034 the cosecant
- reflection formula is applied; lograrithms are employed
- to avoid unnecessary overflow.
-
- The reciprocal gamma function has no singularities,
- but overflow and underflow may occur for large arguments.
- These conditions return either MAXNUM or 1/MAXNUM with
- appropriate sign.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC -30,+30 4000 1.2e-16 1.8e-17
- IEEE -30,+30 30000 1.1e-15 2.0e-16
- For arguments less than -34.034 the peak error is on the
- order of 5e-15 (DEC), excepting overflow or underflow.
-
- =item I<round>: Round double to nearest or even integer valued double
-
- SYNOPSIS:
-
- # double x, y, round();
-
- $y = round( $x );
-
- DESCRIPTION:
-
- Returns the nearest integer to x as a double precision
- floating point result. If x ends in 0.5 exactly, the
- nearest even integer is chosen.
-
- ACCURACY:
-
- If x is greater than 1/(2*MACHEP), its closest machine
- representation is already an integer, so rounding does
- not change it.
-
- =item I<shichi>: Hyperbolic sine and cosine integrals
-
- SYNOPSIS:
-
- # double x, Chi, Shi, shichi();
-
- ($flag, $Shi, $Chi) = shichi( $x );
-
- DESCRIPTION:
-
- Approximates the integrals
-
- x
- -
- | | cosh t - 1
- Chi(x) = eul + ln x + | ----------- dt,
- | | t
- -
- 0
-
- x
- -
- | | sinh t
- Shi(x) = | ------ dt
- | | t
- -
- 0
-
- where eul = 0.57721566490153286061 is Euler's constant.
- The integrals are evaluated by power series for x < 8
- and by Chebyshev expansions for x between 8 and 88.
- For large x, both functions approach exp(x)/2x.
- Arguments greater than 88 in magnitude return MAXNUM.
-
- ACCURACY:
-
- Test interval 0 to 88.
- Relative error:
- arithmetic function # trials peak rms
- DEC Shi 3000 9.1e-17
- IEEE Shi 30000 6.9e-16 1.6e-16
- Absolute error, except relative when |Chi| > 1:
- DEC Chi 2500 9.3e-17
- IEEE Chi 30000 8.4e-16 1.4e-16
-
- =item I<sici>: Sine and cosine integrals
-
- SYNOPSIS:
-
- # double x, Ci, Si, sici();
-
- ($flag, $Si, $Ci) = sici( $x );
-
- DESCRIPTION:
-
- Evaluates the integrals
-
- x
- -
- | cos t - 1
- Ci(x) = eul + ln x + | --------- dt,
- | t
- -
- 0
- x
- -
- | sin t
- Si(x) = | ----- dt
- | t
- -
- 0
-
- where eul = 0.57721566490153286061 is Euler's constant.
- The integrals are approximated by rational functions.
- For x > 8 auxiliary functions f(x) and g(x) are employed
- such that
-
- Ci(x) = f(x) sin(x) - g(x) cos(x)
- Si(x) = pi/2 - f(x) cos(x) - g(x) sin(x)
-
- ACCURACY:
- Test interval = [0,50].
- Absolute error, except relative when > 1:
- arithmetic function # trials peak rms
- IEEE Si 30000 4.4e-16 7.3e-17
- IEEE Ci 30000 6.9e-16 5.1e-17
- DEC Si 5000 4.4e-17 9.0e-18
- DEC Ci 5300 7.9e-17 5.2e-18
-
- =item I<sin>: Circular sine
-
- SYNOPSIS:
-
- # double x, y, sin();
-
- $y = sin( $x );
-
- DESCRIPTION:
-
- Range reduction is into intervals of pi/4. The reduction
- error is nearly eliminated by contriving an extended precision
- modular arithmetic.
-
- Two polynomial approximating functions are employed.
- Between 0 and pi/4 the sine is approximated by
- x + x**3 P(x**2).
- Between pi/4 and pi/2 the cosine is represented as
- 1 - x**2 Q(x**2).
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC 0, 10 150000 3.0e-17 7.8e-18
- IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17
-
- ERROR MESSAGES:
-
- message condition value returned
- sin total loss x > 1.073741824e9 0.0
-
- Partial loss of accuracy begins to occur at x = 2**30
- = 1.074e9. The loss is not gradual, but jumps suddenly to
- about 1 part in 10e7. Results may be meaningless for
- x > 2**49 = 5.6e14. The routine as implemented flags a
- TLOSS error for x > 2**30 and returns 0.0.
-
- =item I<cos>: Circular cosine
-
- SYNOPSIS:
-
- # double x, y, cos();
-
- $y = cos( $x );
-
- DESCRIPTION:
-
- Range reduction is into intervals of pi/4. The reduction
- error is nearly eliminated by contriving an extended precision
- modular arithmetic.
-
- Two polynomial approximating functions are employed.
- Between 0 and pi/4 the cosine is approximated by
- 1 - x**2 Q(x**2).
- Between pi/4 and pi/2 the sine is represented as
- x + x**3 P(x**2).
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17
- DEC 0,+1.07e9 17000 3.0e-17 7.2e-18
-
- =item I<sindg>: Circular sine of angle in degrees
-
- SYNOPSIS:
-
- # double x, y, sindg();
-
- $y = sindg( $x );
-
- DESCRIPTION:
-
- Range reduction is into intervals of 45 degrees.
-
- Two polynomial approximating functions are employed.
- Between 0 and pi/4 the sine is approximated by
- x + x**3 P(x**2).
- Between pi/4 and pi/2 the cosine is represented as
- 1 - x**2 P(x**2).
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC +-1000 3100 3.3e-17 9.0e-18
- IEEE +-1000 30000 2.3e-16 5.6e-17
-
- ERROR MESSAGES:
-
- message condition value returned
- sindg total loss x > 8.0e14 (DEC) 0.0
- x > 1.0e14 (IEEE)
-
- =item I<cosdg>: Circular cosine of angle in degrees
-
- SYNOPSIS:
-
- # double x, y, cosdg();
-
- $y = cosdg( $x );
-
- DESCRIPTION:
-
- Range reduction is into intervals of 45 degrees.
-
- Two polynomial approximating functions are employed.
- Between 0 and pi/4 the cosine is approximated by
- 1 - x**2 P(x**2).
- Between pi/4 and pi/2 the sine is represented as
- x + x**3 P(x**2).
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC +-1000 3400 3.5e-17 9.1e-18
- IEEE +-1000 30000 2.1e-16 5.7e-17
- See also sin().
-
- =item I<sinh>: Hyperbolic sine
-
- SYNOPSIS:
-
- # double x, y, sinh();
-
- $y = sinh( $x );
-
- DESCRIPTION:
-
- Returns hyperbolic sine of argument in the range MINLOG to
- MAXLOG.
-
- The range is partitioned into two segments. If |x| <= 1, a
- rational function of the form x + x**3 P(x)/Q(x) is employed.
- Otherwise the calculation is sinh(x) = ( exp(x) - exp(-x) )/2.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC +- 88 50000 4.0e-17 7.7e-18
- IEEE +-MAXLOG 30000 2.6e-16 5.7e-17
-
- =item I<spence>: Dilogarithm
-
- SYNOPSIS:
-
- # double x, y, spence();
-
- $y = spence( $x );
-
- DESCRIPTION:
-
- Computes the integral
-
- x
- -
- | | log t
- spence(x) = - | ----- dt
- | | t - 1
- -
- 1
-
- for x >= 0. A rational approximation gives the integral in
- the interval (0.5, 1.5). Transformation formulas for 1/x
- and 1-x are employed outside the basic expansion range.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE 0,4 30000 3.9e-15 5.4e-16
- DEC 0,4 3000 2.5e-16 4.5e-17
-
- =item I<sqrt>: Square root
-
- SYNOPSIS:
-
- # double x, y, sqrt();
-
- $y = sqrt( $x );
-
- DESCRIPTION:
-
- Returns the square root of x.
-
- Range reduction involves isolating the power of two of the
- argument and using a polynomial approximation to obtain
- a rough value for the square root. Then Heron's iteration
- is used three times to converge to an accurate value.
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC 0, 10 60000 2.1e-17 7.9e-18
- IEEE 0,1.7e308 30000 1.7e-16 6.3e-17
-
- ERROR MESSAGES:
-
- message condition value returned
- sqrt domain x < 0 0.0
-
- =item I<stdtr>: Student's t distribution
-
- SYNOPSIS:
-
- # double t, stdtr();
- short k;
-
- $y = stdtr( $k, $t );
-
- DESCRIPTION:
-
- Computes the integral from minus infinity to t of the Student
- t distribution with integer k > 0 degrees of freedom:
-
- t
- -
- | |
- - | 2 -(k+1)/2
- | ( (k+1)/2 ) | ( x )
- ---------------------- | ( 1 + --- ) dx
- - | ( k )
- sqrt( k pi ) | ( k/2 ) |
- | |
- -
- -inf.
-
- Relation to incomplete beta integral:
-
- 1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z )
- where
- z = k/(k + t**2).
-
- For t < -2, this is the method of computation. For higher t,
- a direct method is derived from integration by parts.
- Since the function is symmetric about t=0, the area under the
- right tail of the density is found by calling the function
- with -t instead of t.
-
- ACCURACY:
-
- Tested at random 1 <= k <= 25. The "domain" refers to t.
- Relative error:
- arithmetic domain # trials peak rms
- IEEE -100,-2 50000 5.9e-15 1.4e-15
- IEEE -2,100 500000 2.7e-15 4.9e-17
-
- =item I<stdtri>: Functional inverse of Student's t distribution
-
- SYNOPSIS:
-
- # double p, t, stdtri();
- # int k;
-
- $t = stdtri( $k, $p );
-
- DESCRIPTION:
-
- Given probability p, finds the argument t such that stdtr(k,t)
- is equal to p.
-
- ACCURACY:
-
- Tested at random 1 <= k <= 100. The "domain" refers to p:
- Relative error:
- arithmetic domain # trials peak rms
- IEEE .001,.999 25000 5.7e-15 8.0e-16
- IEEE 10^-6,.001 25000 2.0e-12 2.9e-14
-
- =item I<struve>: Struve function
-
- SYNOPSIS:
-
- # double v, x, y, struve();
-
- $y = struve( $v, $x );
-
- DESCRIPTION:
-
- Computes the Struve function Hv(x) of order v, argument x.
- Negative x is rejected unless v is an integer.
-
- ACCURACY:
-
- Not accurately characterized, but spot checked against tables.
-
- =item I<plancki>: Integral of Planck's black body radiation formula
-
- SYNOPSIS:
-
- # double lambda, T, y, plancki()
-
- $y = plancki( $lambda, $T );
-
- DESCRIPTION:
-
- Evaluates the definite integral, from wavelength 0 to lambda,
- of Planck's radiation formula
- -5
- c1 lambda
- E = ------------------
- c2/(lambda T)
- e - 1
-
- Physical constants c1 = 3.7417749e-16 and c2 = 0.01438769 are built in
- to the function program. They are scaled to provide a result
- in watts per square meter. Argument T represents temperature in degrees
- Kelvin; lambda is wavelength in meters.
-
- The integral is expressed in closed form, in terms of polylogarithms
- (see polylog.c).
-
- The total area under the curve is
- (-1/8) (42 zeta(4) - 12 pi^2 zeta(2) + pi^4 ) c1 (T/c2)^4
- = (pi^4 / 15) c1 (T/c2)^4
- = 5.6705032e-8 T^4
- where sigma = 5.6705032e-8 W m^2 K^-4 is the Stefan-Boltzmann constant.
-
-
- ACCURACY:
-
- The left tail of the function experiences some relative error
- amplification in computing the dominant term exp(-c2/(lambda T)).
- For the right-hand tail see planckc, below.
-
- Relative error.
- The domain refers to lambda T / c2.
- arithmetic domain # trials peak rms
- IEEE 0.1, 10 50000 7.1e-15 5.4e-16
-
- =item I<polylog>: polylogarithm function
- SYNOPSIS:
-
- # double x, y, polylog();
- # int n;
-
- $y = polylog( $n, $x );
-
- The polylogarithm of order n is defined by the series
-
- inf k
- - x
- Li (x) = > --- .
- n - n
- k=1 k
-
- For x = 1,
-
- inf
- - 1
- Li (1) = > --- = Riemann zeta function (n) .
- n - n
- k=1 k
-
- When n = 2, the function is the dilogarithm, related to Spence's integral:
-
- x 1-x
- - -
- | | -ln(1-t) | | ln t
- Li (x) = | -------- dt = | ------ dt = spence(1-x) .
- 2 | | t | | 1 - t
- - -
- 0 1
-
- ACCURACY:
-
- Relative error:
- arithmetic domain n # trials peak rms
- IEEE 0, 1 2 50000 6.2e-16 8.0e-17
- IEEE 0, 1 3 100000 2.5e-16 6.6e-17
- IEEE 0, 1 4 30000 1.7e-16 4.9e-17
- IEEE 0, 1 5 30000 5.1e-16 7.8e-17
-
- =item I<bernum>: Bernoulli numbers
-
- SYNOPSIS:
-
- ($num, $den) = bernum( $n);
- ($num_array, $den_array) = bernum();
-
- DESCRIPTION:
-
- This calculates the Bernoulli numbers, up to 30th order.
- If called with an integer argument, the numerator and denominator
- of that Bernoulli number is returned; if called with no argument,
- two array references representing the numerator and denominators
- of the first 30 Bernoulli numbers are returned.
-
- =item I<simpson>: Simpson's rule to find an integral
-
- SYNOPSIS:
-
- $result = simpson(\&fun, $a, $b, $abs_err, $rel_err, $nmax);
-
- sub fun {
- my $x = shift;
- return cos($x)*exp($x);
- }
-
- DESCRIPTION:
-
- This evaluates the area under the graph of a function,
- represented in a subroutine, from $a to $b, using an 8-point
- Newton-Cotes formula. The routine divides up the interval into
- equal segments, evaluates the integral, then compares that
- to the result with double the number of segments. If the two
- results agree, to within an absolute error $abs_err or a
- relative error $rel_err, the result is returned; otherwise,
- the number of segments is doubled again, and the results
- compared. This continues until the desired accuracy is attained,
- or until the maximum number of iterations $nmax is reached.
-
- =item I<vecang>: angle between two vectors
-
- SYNOPSIS:
-
- # double p[3], q[3], vecang();
-
- $y = vecang( $p, $q );
-
- DESCRIPTION:
-
- For two vectors p, q, the angle A between them is given by
-
- p.q / (|p| |q|) = cos A .
-
- where "." represents inner product, "|x|" the length of vector x.
- If the angle is small, an expression in sin A is preferred.
- Set r = q - p. Then
-
- p.q = p.p + p.r ,
-
- |p|^2 = p.p ,
-
- |q|^2 = p.p + 2 p.r + r.r ,
-
- p.p^2 + 2 p.p p.r + p.r^2
- cos^2 A = ----------------------------
- p.p (p.p + 2 p.r + r.r)
-
- p.p + 2 p.r + p.r^2 / p.p
- = --------------------------- ,
- p.p + 2 p.r + r.r
-
- sin^2 A = 1 - cos^2 A
-
- r.r - p.r^2 / p.p
- = --------------------
- p.p + 2 p.r + r.r
-
- = (r.r - p.r^2 / p.p) / q.q .
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE -1, 1 10^6 1.7e-16 4.2e-17
-
-
- =item I<onef2>: Hypergeometric function 1F2
-
- SYNOPSIS:
-
- # double a, b, c, x, value;
-
- # double *err;
-
- ($value, $err) = onef2( $a, $b, $c, $x)
-
- ACCURACY:
-
- Not accurately characterized, but spot checked against tables.
-
- =item I<threef0>: Hypergeometric function 3F0
-
- SYNOPSIS:
-
- # double a, b, c, x, value;
-
- # double *err;
-
- ($value, $err) = threef0( $a, $b, $c, $x )
-
- ACCURACY:
-
- Not accurately characterized, but spot checked against tables.
-
- =item I<yv>: Bessel function Yv with noninteger v
-
- SYNOPSIS:
-
- # double v, x;
-
- # double yv( v, x );
-
- $y = yv( $v, $x );
-
- ACCURACY:
-
- Not accurately characterized, but spot checked against tables.
-
- =item I<tan>: Circular tangent
-
- SYNOPSIS:
-
- # double x, y, tan();
-
- $y = tan( $x );
-
- DESCRIPTION:
-
- Returns the circular tangent of the radian argument x.
-
- Range reduction is modulo pi/4. A rational function
- x + x**3 P(x**2)/Q(x**2)
- is employed in the basic interval [0, pi/4].
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC +-1.07e9 44000 4.1e-17 1.0e-17
- IEEE +-1.07e9 30000 2.9e-16 8.1e-17
-
- ERROR MESSAGES:
-
- message condition value returned
- tan total loss x > 1.073741824e9 0.0
-
- =item I<cot>: Circular cotangent
-
- SYNOPSIS:
-
- # double x, y, cot();
-
- $y = cot( $x );
-
- DESCRIPTION:
-
- Returns the circular cotangent of the radian argument x.
-
- Range reduction is modulo pi/4. A rational function
- x + x**3 P(x**2)/Q(x**2)
- is employed in the basic interval [0, pi/4].
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE +-1.07e9 30000 2.9e-16 8.2e-17
-
- ERROR MESSAGES:
-
- message condition value returned
- cot total loss x > 1.073741824e9 0.0
- cot singularity x = 0 INFINITY
-
- =item I<tandg>: Circular tangent of argument in degrees
-
- SYNOPSIS:
-
- # double x, y, tandg();
-
- $y = tandg( $x );
-
- DESCRIPTION:
-
- Returns the circular tangent of the argument x in degrees.
-
- Range reduction is modulo pi/4. A rational function
- x + x**3 P(x**2)/Q(x**2)
- is employed in the basic interval [0, pi/4].
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC 0,10 8000 3.4e-17 1.2e-17
- IEEE 0,10 30000 3.2e-16 8.4e-17
-
- ERROR MESSAGES:
-
- message condition value returned
- tandg total loss x > 8.0e14 (DEC) 0.0
- x > 1.0e14 (IEEE)
- tandg singularity x = 180 k + 90 MAXNUM
-
- =item I<cotdg>: Circular cotangent of argument in degrees
-
- SYNOPSIS:
-
- # double x, y, cotdg();
-
- $y = cotdg( $x );
-
- DESCRIPTION:
-
- Returns the circular cotangent of the argument x in degrees.
-
- Range reduction is modulo pi/4. A rational function
- x + x**3 P(x**2)/Q(x**2)
- is employed in the basic interval [0, pi/4].
-
- ERROR MESSAGES:
-
- message condition value returned
- cotdg total loss x > 8.0e14 (DEC) 0.0
- x > 1.0e14 (IEEE)
- cotdg singularity x = 180 k MAXNUM
-
- =item I<tanh>: Hyperbolic tangent
-
- SYNOPSIS:
-
- # double x, y, tanh();
-
- $y = tanh( $x );
-
- DESCRIPTION:
-
- Returns hyperbolic tangent of argument in the range MINLOG to
- MAXLOG.
-
- A rational function is used for |x| < 0.625. The form
- x + x**3 P(x)/Q(x) of Cody _& Waite is employed.
- Otherwise,
- tanh(x) = sinh(x)/cosh(x) = 1 - 2/(exp(2x) + 1).
-
- ACCURACY:
-
- Relative error:
- arithmetic domain # trials peak rms
- DEC -2,2 50000 3.3e-17 6.4e-18
- IEEE -2,2 30000 2.5e-16 5.8e-17
-
- =item I<unity>: Relative error approximations for function arguments near unity.
-
- SYNOPSIS:
-
- # log1p(x) = log(1+x)
-
- $y = log1p( $x );
-
- # expm1(x) = exp(x) - 1
-
- $y = expm1( $x );
-
- # cosm1(x) = cos(x) - 1
-
- $y = cosm1( $x );
-
- =item I<yn>: Bessel function of second kind of integer order
-
- SYNOPSIS:
-
- # double x, y, yn();
- # int n;
-
- $y = yn( $n, $x );
-
- DESCRIPTION:
-
- Returns Bessel function of order n, where n is a
- (possibly negative) integer.
-
- The function is evaluated by forward recurrence on
- n, starting with values computed by the routines
- y0() and y1().
-
- If n = 0 or 1 the routine for y0 or y1 is called
- directly.
-
- ACCURACY:
-
- Absolute error, except relative
- when y > 1:
- arithmetic domain # trials peak rms
- DEC 0, 30 2200 2.9e-16 5.3e-17
- IEEE 0, 30 30000 3.4e-15 4.3e-16
-
- ERROR MESSAGES:
-
- message condition value returned
- yn singularity x = 0 MAXNUM
- yn overflow MAXNUM
-
- Spot checked against tables for x, n between 0 and 100.
-
- =item I<zeta>: Riemann zeta function of two arguments
-
- SYNOPSIS:
-
- # double x, q, y, zeta();
-
- $y = zeta( $x, $q );
-
- DESCRIPTION:
-
- inf.
- - -x
- zeta(x,q) = > (k+q)
- -
- k=0
-
- where x > 1 and q is not a negative integer or zero.
- The Euler-Maclaurin summation formula is used to obtain
- the expansion
-
- n
- - -x
- zeta(x,q) = > (k+q)
- -
- k=1
-
- 1-x inf. B x(x+1)...(x+2j)
- (n+q) 1 - 2j
- + --------- - ------- + > --------------------
- x-1 x - x+2j+1
- 2(n+q) j=1 (2j)! (n+q)
-
- where the B2j are Bernoulli numbers. Note that (see zetac.c)
- zeta(x,1) = zetac(x) + 1.
-
- ACCURACY:
-
- REFERENCE:
-
- Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals,
- Series, and Products, p. 1073; Academic Press, 1980.
-
- =item I<zetac>: Riemann zeta function
-
- SYNOPSIS:
-
- # double x, y, zetac();
-
- $y = zetac( $x );
-
- DESCRIPTION:
-
- inf.
- - -x
- zetac(x) = > k , x > 1,
- -
- k=2
-
- is related to the Riemann zeta function by
-
- Riemann zeta(x) = zetac(x) + 1.
-
- Extension of the function definition for x < 1 is implemented.
- Zero is returned for x > log2(MAXNUM).
-
- An overflow error may occur for large negative x, due to the
- gamma function in the reflection formula.
-
- ACCURACY:
-
- Tabulated values have full machine accuracy.
-
- Relative error:
- arithmetic domain # trials peak rms
- IEEE 1,50 10000 9.8e-16 1.3e-16
- DEC 1,50 2000 1.1e-16 1.9e-17
-
- =back
-
- =head1 TODO
-
- =over 4
-
- =item * Make the configuration of mconf.h automatic.
-
- =item * Include the rest of the routines in the cephes library, such as
- polynomial and matrix manipulation functions; this will involve
- writing typemaps for arrays.
-
- =back
-
- =head1 BUGS
-
- Please report any to Randy Kobes <randy@theoryx5.uwinnipeg.ca>
-
- =head1 SEE ALSO
-
- For interfaces to programs which can do symbolic manipulation,
- see L<PDL>, L<Math::Pari>, and L<Math::ematica>.
- For a command line interface to the routines of I<Math::Cephes>,
- see the included C<pmath> script. For a
- different interface to the fraction and complex number routines,
- see L<Math::Cephes::Fraction> and L<Math::Cephes::Complex>.
- For an interface to some polynomial routines, see
- L<Math::Cephes::Polynomial>, and for some matrix routines,
- see L<Math::Cephes::Matrix>.
-
- =head1 COPYRIGHT
-
- The C code for the Cephes Math Library is
- Copyright 1984, 1987, 1989, 2002 by Stephen L. Moshier,
- and is available at http://www.netlib.org/cephes/.
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140.
-
- The file arrays.c included here to handle passing arrays
- into and out of C routines comes from the PGPLOT module
- of Karl Glazebrook <kgb@zzoepp.aao.gov.au>.
-
- The perl interface is copyright 2000, 2002 by Randy Kobes.
- This library is free software; you can redistribute it and/or
- modify it under the same terms as Perl itself.
-
- =cut
-
-
-