home *** CD-ROM | disk | FTP | other *** search
- # Source Generated with Decompyle++
- # File: in.pyc (Python 2.6)
-
- from IPython.Extensions.PhysicalQInteractive import PhysicalQuantityInteractive
- pi = 3.14159
- c = PhysicalQuantityInteractive(299792458, 'm/s')
- c.__doc__ = 'speed of light in vacuum'
- c.__doc__ = 'speed of light in vacuum'
- u_0 = PhysicalQuantityInteractive(4 * pi * 1e-07, 'N/(A**2)')
- u_0.__doc__ = 'magnetic constant'
- mu_0 = PhysicalQuantityInteractive(4 * pi * 1e-07, 'N/(A**2)')
- epsilon_0 = PhysicalQuantityInteractive(8.85419e-12, 'F/m')
- epsilon_0.__doc__ = 'electric constant '
- Z_0 = PhysicalQuantityInteractive(376.73, 'ohm')
- Z_0.__doc__ = 'characteristic impedance of vacuum '
- G = PhysicalQuantityInteractive(6.673e-11, 'm**3/(kg*s**2)')
- G.__doc__ = 'Newtonian constant of gravitation '
- h = PhysicalQuantityInteractive(6.62607e-34, 'J*s')
- h.__doc__ = 'Planck constant '
- h_eV = PhysicalQuantityInteractive(4.13567e-15, 'eV*s')
- h_eV.__doc__ = 'Planck constant in eVs '
- h_bar = PhysicalQuantityInteractive(1.05457e-34, 'J*s')
- h_bar.__doc__ = 'Hbar'
- h_bar_eV = PhysicalQuantityInteractive(6.58212e-16, 'eV*s')
- h_bar_eV.__doc__ = 'Hbar in eV'
- P_m = PhysicalQuantityInteractive(2.1767e-08, 'kg')
- P_m.__doc__ = 'Planck mass'
- P_l = PhysicalQuantityInteractive(1.616e-35, 'm')
- P_l.__doc__ = 'Planck length '
- P_t = PhysicalQuantityInteractive(5.3906e-44, 's')
- P_t.__doc__ = 'Planck time '
- _e = PhysicalQuantityInteractive(1.60218e-19, 'C')
- _e.__doc__ = 'elementary charge'
- q = _e
- capitalphi_0 = PhysicalQuantityInteractive(2.06783e-15, 'Wb')
- capitalphi_0.__doc__ = 'magnetic flux quantum '
- mfq_0 = PhysicalQuantityInteractive(2.06783e-15, 'Wb')
- G_0 = PhysicalQuantityInteractive(7.74809e-05, 'S')
- G_0.__doc__ = 'conductance quantum '
- K_J = PhysicalQuantityInteractive(4.83598e+14, 'Hz/V')
- K_J.__doc__ = 'Josephson constant'
- R_K = PhysicalQuantityInteractive(25812.8, 'ohm')
- R_K.__doc__ = 'von Klitzing constant'
- u_B = PhysicalQuantityInteractive(9.27401e-24, 'J/T')
- u_B.__doc__ = 'Bohr magneton'
- ueVT_B = PhysicalQuantityInteractive(5.78838e-05, 'eV/T')
- ueVT_B.__doc__ = 'Bohr magneton in eV T-1'
- u_N = PhysicalQuantityInteractive(5.05078e-27, 'J/T')
- u_N.__doc__ = 'nuclear magneton '
- ueVT_N = PhysicalQuantityInteractive(3.15245e-08, 'eV/T')
- ueVT_N.__doc__ = 'nuclear magneton in eV T-1 '
- alpha = 0.00729735
- Ry = PhysicalQuantityInteractive(1.09737e+07, '1/m')
- Ry.__doc__ = 'Rydberg constant '
- Ry_INF = PhysicalQuantityInteractive(1.09737e+07, '1/m')
- a_0 = PhysicalQuantityInteractive(5.29177e-11, 'm')
- a_0.__doc__ = 'Bohr radius '
- E_h = PhysicalQuantityInteractive(4.35974e-18, 'J')
- E_h.__doc__ = 'Hartree energy '
- Eev_h = PhysicalQuantityInteractive(27.2114, 'eV')
- Eev_h.__doc__ = 'Hartree energy in eV '
- qcir2 = PhysicalQuantityInteractive(0.000363695, 'm**2/s')
- qcir2.__doc__ = 'quantum of circulation h/(2me) '
- qcir = PhysicalQuantityInteractive(0.00072739, 'm**2/s')
- qcir.__doc__ = 'quantum of circulation h/(me) '
- Fcc = PhysicalQuantityInteractive(1.16639e-05, '1/GeV**2')
- Fcc.__doc__ = 'Fermi coupling constant '
- wma_W = 0.2224
- m_e = PhysicalQuantityInteractive(9.10938e-31, 'kg')
- m_e.__doc__ = 'electron mass '
- m_e_u = PhysicalQuantityInteractive(0.00054858, 'amu')
- m_e_u.__doc__ = 'electron mass (electron relative atomic mass times amu)'
- me_J = PhysicalQuantityInteractive(8.1871e-14, 'J')
- me_J.__doc__ = 'electron mass - energy equivalent '
- me_MeV = PhysicalQuantityInteractive(0.510999, 'MeV')
- me_MeV.__doc__ = 'electron mass - energy equivalent in MeV'
- memu = 0.00483633
- metau = 0.000287555
- memp = 0.000544617
- memn = 0.000543867
- memd = 0.000272444
- memalpha = 0.000137093
- echargeemass = PhysicalQuantityInteractive(-1.75882e+11, 'C/kg')
- echargeemass.__doc__ = 'electron charge to mass quotient '
- Molar_e = PhysicalQuantityInteractive(5.4858e-07, 'kg/mol')
- Molar_e.__doc__ = 'electron molar mass '
- lambdaC = PhysicalQuantityInteractive(2.42631e-12, 'm')
- lambdaC.__doc__ = 'Compton wavelength '
- r_e = PhysicalQuantityInteractive(2.81794e-15, 'm')
- r_e.__doc__ = 'classical electron radius '
- sigma_e = PhysicalQuantityInteractive(6.65246e-29, 'm**2')
- sigma_e.__doc__ = 'Thomson cross section '
- u_e = PhysicalQuantityInteractive(-9.28476e-24, 'J/T')
- u_e.__doc__ = 'electron magnetic moment '
- ueuB = -1.00116
- ueuN = -1838.28
- a_e = 0.00115965
- g_e = -2.00232
- ueuu = 206.767
- ueup = -658.211
- ueusp = -658.228
- ueun = 960.92
- ueud = -2143.92
- ueush = 864.058
- gamma_e = PhysicalQuantityInteractive(1.76086e+11, '1/(s*T)')
- gamma_e.__doc__ = 'electron gyromagnetic ratio '
- m_u = PhysicalQuantityInteractive(1.88353e-28, 'kg')
- m_u.__doc__ = 'muon mass '
- mu_u = PhysicalQuantityInteractive(0.113429, 'amu')
- mu_u.__doc__ = 'muon mass in muon relative atomic mass times amu '
- muc2_J = PhysicalQuantityInteractive(1.69283e-11, 'J')
- muc2_J.__doc__ = 'energy equivalent '
- muc2_MeV = PhysicalQuantityInteractive(105.658, 'MeV')
- muc2_MeV.__doc__ = 'energy equivalent in MeV '
- mume = 206.768
- mum = 0.0594572
- mump = 0.11261
- mumn = 0.112455
- Molar_u = PhysicalQuantityInteractive(0.000113429, 'kg/mol')
- Molar_u.__doc__ = 'muon molar mass '
- lambda_C_u = PhysicalQuantityInteractive(1.17344e-14, 'm')
- lambda_C_u.__doc__ = 'muon Compton wavelength '
- uu = PhysicalQuantityInteractive(-4.49045e-26, 'J/T')
- uu.__doc__ = 'muon magnetic moment '
- uuuB = -0.00484197
- uuuN = -8.8906
- a_u = 0.00116592
- g_u = -2.00233
- uuup = -3.18335
- m_tau = PhysicalQuantityInteractive(3.16788e-27, 'kg')
- m_tau.__doc__ = 'tau mass '
- mu_tau = PhysicalQuantityInteractive(1.90774, 'amu')
- mu_tau.__doc__ = 'tau mass (tau relative atomic mass times amu) '
- mtauc2_J = PhysicalQuantityInteractive(2.84715e-10, 'J')
- mtauc2_J.__doc__ = 'tau mass energy equivalent '
- mtauc2_MeV = PhysicalQuantityInteractive(1777.05, 'MeV')
- mtauc2_MeV.__doc__ = 'tau mass energy equivalent in MeV '
- mtaume = 3477.6
- mtaumu = 16.8188
- mtaump = 1.89396
- mtaumn = 1.89135
- Molar_tau = PhysicalQuantityInteractive(0.00190774, 'kg/mol')
- Molar_tau.__doc__ = 'tau molar mass '
- lambda_C_tau = PhysicalQuantityInteractive(6.977e-16, 'm')
- lambda_C_tau.__doc__ = 'tau Compton wavelength '
- m_p = PhysicalQuantityInteractive(1.67262e-27, 'kg')
- m_p.__doc__ = 'proton mass '
- mu_p = PhysicalQuantityInteractive(1.00728, 'amu')
- mu_p.__doc__ = 'proton mass (proton relative atomic mass times amu) '
- mpc2_J = PhysicalQuantityInteractive(1.50328e-10, 'J')
- mpc2_J.__doc__ = 'energy equivalent '
- mpc2_MeV = PhysicalQuantityInteractive(938.272, 'MeV')
- mpc2_MeV.__doc__ = 'energy equivalent in MeV '
- mpme = 1836.15
- mpmu = 8.88024
- mpmtau = 0.527994
- mpmn = 0.998623
- emp = PhysicalQuantityInteractive(9.57883e+07, 'C/kg')
- emp.__doc__ = 'proton charge to mass quotient '
- Molar_p = PhysicalQuantityInteractive(0.00100728, 'kg/mol')
- Molar_p.__doc__ = 'proton molar mass '
- lambda_C_p = PhysicalQuantityInteractive(1.32141e-15, 'm')
- lambda_C_p.__doc__ = 'proton Compton wavelength h/mpc '
- up = PhysicalQuantityInteractive(1.41061e-26, 'J/T')
- up.__doc__ = 'proton magnetic moment '
- upuB = 0.00152103
- upuN = 2.79285
- g_p = 5.58569
- upun = -1.4599
- usp = PhysicalQuantityInteractive(1.41057e-26, 'J/T')
- usp.__doc__ = 'shielded proton magnetic moment (H2O, sphere, 25 C)'
- uspuB = 0.00152099
- uspuN = 2.79278
- spc = 2.5687e-05
- gamma_p = PhysicalQuantityInteractive(2.67522e+08, '1/(s*T)')
- gamma_p.__doc__ = 'proton gyromagnetic ratio '
- gamma_sp = PhysicalQuantityInteractive(2.67515e+08, '1/(s*T)')
- gamma_sp.__doc__ = 'shielded proton gyromagnetic ratio (H2O, sphere, 25 C)'
- m_n = PhysicalQuantityInteractive(1.67493e-27, 'kg')
- m_n.__doc__ = 'neutron mass '
- mu_n = PhysicalQuantityInteractive(1.00866, 'amu')
- mu_n.__doc__ = 'neutron mass (neutron relative atomic mass times amu) '
- mnc2_J = PhysicalQuantityInteractive(1.50535e-10, 'J')
- mnc2_J.__doc__ = 'neutron mass energy equivalent '
- mnc2_MeV = PhysicalQuantityInteractive(939.565, 'MeV')
- mnc2_MeV.__doc__ = 'neutron mass energy equivalent in MeV '
- mnme = 1838.68
- mnmu = 8.89248
- mnm = 0.528722
- mnmp = 1.00138
- Molar_n = PhysicalQuantityInteractive(0.00100866, 'kg/mol')
- Molar_n.__doc__ = 'neutron molar mass '
- lambda_C_n = PhysicalQuantityInteractive(1.31959e-15, 'm')
- lambda_C_n.__doc__ = 'neutron Compton wavelength'
- un = PhysicalQuantityInteractive(-9.66236e-27, 'J/T')
- un.__doc__ = 'neutron magnetic moment '
- unuB = -0.00104188
- unuN = -1.91304
- g_n = -3.82609
- unue = 0.00104067
- unup = -0.684979
- unusp = -0.684997
- gamma_n = PhysicalQuantityInteractive(1.83247e+08, '1/(s*T)')
- gamma_n.__doc__ = 'neutron gyromagnetic ratio '
- m_d = PhysicalQuantityInteractive(3.34358e-27, 'kg')
- m_d.__doc__ = 'deuteron mass '
- mu_d = PhysicalQuantityInteractive(2.01355, 'amu')
- mu_d.__doc__ = 'deuteron mass (deuteron relative atomic mass times amu) '
- mdc2_J = PhysicalQuantityInteractive(3.00506e-10, 'J')
- mdc2_J.__doc__ = 'deuteron mass energy equivalent '
- mdc2_eV = PhysicalQuantityInteractive(1875.61, 'MeV')
- mdc2_eV.__doc__ = 'deuteron mass energy equivalent in MeV '
- mdme = 3670.48
- mdmp = 1.99901
- Molar_d = PhysicalQuantityInteractive(0.00201355, 'kg/mol')
- Molar_d.__doc__ = 'deuteron molar mass '
- ud = PhysicalQuantityInteractive(4.33073e-27, 'J/T')
- ud.__doc__ = 'deuteron magnetic moment '
- uduB = 0.000466975
- uduN = 0.857438
- udue = -0.000466435
- udup = 0.307012
- udun = -0.448207
- m_h = PhysicalQuantityInteractive(5.00641e-27, 'kg')
- m_h.__doc__ = 'helion mass '
- mu_h = PhysicalQuantityInteractive(3.01493, 'amu')
- mu_h.__doc__ = 'helion mass (helion relative atomic mass times amu) '
- mhc2_J = PhysicalQuantityInteractive(4.49954e-10, 'J')
- mhc2_J.__doc__ = 'helion mass energy equivalent '
- mhc2_MeV = PhysicalQuantityInteractive(2808.39, 'MeV')
- mhc2_MeV.__doc__ = 'helion mass energy equivalent in MeV '
- mhme = 5495.89
- mhmp = 2.99315
- Molar_h = PhysicalQuantityInteractive(0.00301493, 'kg/mol')
- Molar_h.__doc__ = 'helion molar mass '
- ush = PhysicalQuantityInteractive(-1.07455e-26, 'J/T')
- ush.__doc__ = 'shielded helion magnetic moment (gas, sphere, 25 C)'
- ushuB = -0.00115867
- ushuN = -2.1275
- ushup = -0.761767
- ushusp = -0.761786
- gamma_h = PhysicalQuantityInteractive(2.03789e+08, '1/(s*T)')
- gamma_h.__doc__ = 'shielded helion gyromagnetic (gas, sphere, 25 C) '
- m_alpha = PhysicalQuantityInteractive(6.64466e-27, 'kg')
- m_alpha.__doc__ = 'alpha particle mass '
- mu_alpha = PhysicalQuantityInteractive(4.00151, 'amu')
- mu_alpha.__doc__ = 'alpha particle mass (alpha particle relative atomic mass times amu) '
- malphac2_J = PhysicalQuantityInteractive(5.97192e-10, 'J')
- malphac2_J.__doc__ = 'alpha particle mass energy equivalent '
- malphac2_MeV = PhysicalQuantityInteractive(3727.38, 'MeV')
- malphac2_MeV.__doc__ = 'alpha particle mass energy equivalent in MeV '
- malphame = 7294.3
- malphamp = 3.9726
- Molar_alpha = PhysicalQuantityInteractive(0.00400151, 'kg/mol')
- Molar_alpha.__doc__ = 'alpha particle molar mass'
- N_A = PhysicalQuantityInteractive(6.02214e+23, '1/mol')
- N_A.__doc__ = 'Avogadro constant '
- L = PhysicalQuantityInteractive(6.02214e+23, '1/mol')
- m_u = PhysicalQuantityInteractive(1.66054e-27, 'kg')
- m_u.__doc__ = 'atomic mass constant mu = 112m(12C) = 1 u = 10E-3 kg mol-1/NA'
- amu = m_u
- muc2_J = PhysicalQuantityInteractive(1.49242e-10, 'J')
- muc2_J.__doc__ = 'energy equivalent of the atomic mass constant'
- muc2_MeV = PhysicalQuantityInteractive(931.494, 'MeV')
- muc2_MeV.__doc__ = 'energy equivalent of the atomic mass constant in MeV '
- F = PhysicalQuantityInteractive(96485.3, 'C/mol')
- F.__doc__ = 'Faraday constant'
- N_Ah = PhysicalQuantityInteractive(3.99031e-10, 'J*s/mol')
- N_Ah.__doc__ = 'molar Planck constant '
- R = PhysicalQuantityInteractive(8.31447, 'J/(mol*K)')
- R.__doc__ = 'molar gas constant '
- k_J = PhysicalQuantityInteractive(1.38065e-23, 'J/K')
- k_J.__doc__ = 'Boltzmann constant '
- k_eV = PhysicalQuantityInteractive(8.61734e-05, 'eV/K')
- k_eV.__doc__ = 'Boltzmann constant in eV '
- n_0 = PhysicalQuantityInteractive(2.68678e+25, '1/m**3')
- n_0.__doc__ = 'Loschmidt constant NA/Vm '
- Vm_1 = PhysicalQuantityInteractive(0.022414, 'm**3/mol')
- Vm_1.__doc__ = 'molar volume of ideal gas RT/p T = 273.15 K, p = 101.325 kPa '
- Vm_2 = PhysicalQuantityInteractive(0.022711, 'm**3/mol')
- Vm_2.__doc__ = 'molar volume of ideal gas RT/p T = 273.15 K, p = 100 kPa '
- S_0R_1 = -1.1517
- S_0R_2 = -1.16487
- sigma = PhysicalQuantityInteractive(5.6704e-08, 'W/(m**2*K**4)')
- sigma.__doc__ = 'Stefan-Boltzmann constant '
- c_1 = PhysicalQuantityInteractive(3.74177e-16, 'W*m**2')
- c_1.__doc__ = 'first radiation constant'
- c_1L = PhysicalQuantityInteractive(1.19104e-16, 'W*m**2/sr')
- c_1L.__doc__ = 'first radiation constant for spectral radiance'
- c_2 = PhysicalQuantityInteractive(0.0143878, 'm*K')
- c_2.__doc__ = 'second radiation constant'
- b = PhysicalQuantityInteractive(0.00289777, 'm*K')
- b.__doc__ = 'Wien displacement law constant b = maxT = c2/4.965 114231... '
-