home *** CD-ROM | disk | FTP | other *** search
- #ifndef _LINUX_MMU_NOTIFIER_H
- #define _LINUX_MMU_NOTIFIER_H
-
- #include <linux/list.h>
- #include <linux/spinlock.h>
- #include <linux/mm_types.h>
-
- struct mmu_notifier;
- struct mmu_notifier_ops;
-
- #ifdef CONFIG_MMU_NOTIFIER
-
- /*
- * The mmu notifier_mm structure is allocated and installed in
- * mm->mmu_notifier_mm inside the mm_take_all_locks() protected
- * critical section and it's released only when mm_count reaches zero
- * in mmdrop().
- */
- struct mmu_notifier_mm {
- /* all mmu notifiers registerd in this mm are queued in this list */
- struct hlist_head list;
- /* to serialize the list modifications and hlist_unhashed */
- spinlock_t lock;
- };
-
- struct mmu_notifier_ops {
- /*
- * Called either by mmu_notifier_unregister or when the mm is
- * being destroyed by exit_mmap, always before all pages are
- * freed. This can run concurrently with other mmu notifier
- * methods (the ones invoked outside the mm context) and it
- * should tear down all secondary mmu mappings and freeze the
- * secondary mmu. If this method isn't implemented you've to
- * be sure that nothing could possibly write to the pages
- * through the secondary mmu by the time the last thread with
- * tsk->mm == mm exits.
- *
- * As side note: the pages freed after ->release returns could
- * be immediately reallocated by the gart at an alias physical
- * address with a different cache model, so if ->release isn't
- * implemented because all _software_ driven memory accesses
- * through the secondary mmu are terminated by the time the
- * last thread of this mm quits, you've also to be sure that
- * speculative _hardware_ operations can't allocate dirty
- * cachelines in the cpu that could not be snooped and made
- * coherent with the other read and write operations happening
- * through the gart alias address, so leading to memory
- * corruption.
- */
- void (*release)(struct mmu_notifier *mn,
- struct mm_struct *mm);
-
- /*
- * clear_flush_young is called after the VM is
- * test-and-clearing the young/accessed bitflag in the
- * pte. This way the VM will provide proper aging to the
- * accesses to the page through the secondary MMUs and not
- * only to the ones through the Linux pte.
- */
- int (*clear_flush_young)(struct mmu_notifier *mn,
- struct mm_struct *mm,
- unsigned long address);
-
- /*
- * Before this is invoked any secondary MMU is still ok to
- * read/write to the page previously pointed to by the Linux
- * pte because the page hasn't been freed yet and it won't be
- * freed until this returns. If required set_page_dirty has to
- * be called internally to this method.
- */
- void (*invalidate_page)(struct mmu_notifier *mn,
- struct mm_struct *mm,
- unsigned long address);
-
- /*
- * invalidate_range_start() and invalidate_range_end() must be
- * paired and are called only when the mmap_sem and/or the
- * locks protecting the reverse maps are held. The subsystem
- * must guarantee that no additional references are taken to
- * the pages in the range established between the call to
- * invalidate_range_start() and the matching call to
- * invalidate_range_end().
- *
- * Invalidation of multiple concurrent ranges may be
- * optionally permitted by the driver. Either way the
- * establishment of sptes is forbidden in the range passed to
- * invalidate_range_begin/end for the whole duration of the
- * invalidate_range_begin/end critical section.
- *
- * invalidate_range_start() is called when all pages in the
- * range are still mapped and have at least a refcount of one.
- *
- * invalidate_range_end() is called when all pages in the
- * range have been unmapped and the pages have been freed by
- * the VM.
- *
- * The VM will remove the page table entries and potentially
- * the page between invalidate_range_start() and
- * invalidate_range_end(). If the page must not be freed
- * because of pending I/O or other circumstances then the
- * invalidate_range_start() callback (or the initial mapping
- * by the driver) must make sure that the refcount is kept
- * elevated.
- *
- * If the driver increases the refcount when the pages are
- * initially mapped into an address space then either
- * invalidate_range_start() or invalidate_range_end() may
- * decrease the refcount. If the refcount is decreased on
- * invalidate_range_start() then the VM can free pages as page
- * table entries are removed. If the refcount is only
- * droppped on invalidate_range_end() then the driver itself
- * will drop the last refcount but it must take care to flush
- * any secondary tlb before doing the final free on the
- * page. Pages will no longer be referenced by the linux
- * address space but may still be referenced by sptes until
- * the last refcount is dropped.
- */
- void (*invalidate_range_start)(struct mmu_notifier *mn,
- struct mm_struct *mm,
- unsigned long start, unsigned long end);
- void (*invalidate_range_end)(struct mmu_notifier *mn,
- struct mm_struct *mm,
- unsigned long start, unsigned long end);
- };
-
- /*
- * The notifier chains are protected by mmap_sem and/or the reverse map
- * semaphores. Notifier chains are only changed when all reverse maps and
- * the mmap_sem locks are taken.
- *
- * Therefore notifier chains can only be traversed when either
- *
- * 1. mmap_sem is held.
- * 2. One of the reverse map locks is held (i_mmap_lock or anon_vma->lock).
- * 3. No other concurrent thread can access the list (release)
- */
- struct mmu_notifier {
- struct hlist_node hlist;
- const struct mmu_notifier_ops *ops;
- };
-
- static inline int mm_has_notifiers(struct mm_struct *mm)
- {
- return unlikely(mm->mmu_notifier_mm);
- }
-
- extern int mmu_notifier_register(struct mmu_notifier *mn,
- struct mm_struct *mm);
- extern int __mmu_notifier_register(struct mmu_notifier *mn,
- struct mm_struct *mm);
- extern void mmu_notifier_unregister(struct mmu_notifier *mn,
- struct mm_struct *mm);
- extern void __mmu_notifier_mm_destroy(struct mm_struct *mm);
- extern void __mmu_notifier_release(struct mm_struct *mm);
- extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
- unsigned long address);
- extern void __mmu_notifier_invalidate_page(struct mm_struct *mm,
- unsigned long address);
- extern void __mmu_notifier_invalidate_range_start(struct mm_struct *mm,
- unsigned long start, unsigned long end);
- extern void __mmu_notifier_invalidate_range_end(struct mm_struct *mm,
- unsigned long start, unsigned long end);
-
- static inline void mmu_notifier_release(struct mm_struct *mm)
- {
- if (mm_has_notifiers(mm))
- __mmu_notifier_release(mm);
- }
-
- static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
- unsigned long address)
- {
- if (mm_has_notifiers(mm))
- return __mmu_notifier_clear_flush_young(mm, address);
- return 0;
- }
-
- static inline void mmu_notifier_invalidate_page(struct mm_struct *mm,
- unsigned long address)
- {
- if (mm_has_notifiers(mm))
- __mmu_notifier_invalidate_page(mm, address);
- }
-
- static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
- unsigned long start, unsigned long end)
- {
- if (mm_has_notifiers(mm))
- __mmu_notifier_invalidate_range_start(mm, start, end);
- }
-
- static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
- unsigned long start, unsigned long end)
- {
- if (mm_has_notifiers(mm))
- __mmu_notifier_invalidate_range_end(mm, start, end);
- }
-
- static inline void mmu_notifier_mm_init(struct mm_struct *mm)
- {
- mm->mmu_notifier_mm = NULL;
- }
-
- static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
- {
- if (mm_has_notifiers(mm))
- __mmu_notifier_mm_destroy(mm);
- }
-
- /*
- * These two macros will sometime replace ptep_clear_flush.
- * ptep_clear_flush is impleemnted as macro itself, so this also is
- * implemented as a macro until ptep_clear_flush will converted to an
- * inline function, to diminish the risk of compilation failure. The
- * invalidate_page method over time can be moved outside the PT lock
- * and these two macros can be later removed.
- */
- #define ptep_clear_flush_notify(__vma, __address, __ptep) \
- ({ \
- pte_t __pte; \
- struct vm_area_struct *___vma = __vma; \
- unsigned long ___address = __address; \
- __pte = ptep_clear_flush(___vma, ___address, __ptep); \
- mmu_notifier_invalidate_page(___vma->vm_mm, ___address); \
- __pte; \
- })
-
- #define ptep_clear_flush_young_notify(__vma, __address, __ptep) \
- ({ \
- int __young; \
- struct vm_area_struct *___vma = __vma; \
- unsigned long ___address = __address; \
- __young = ptep_clear_flush_young(___vma, ___address, __ptep); \
- __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
- ___address); \
- __young; \
- })
-
- #else /* CONFIG_MMU_NOTIFIER */
-
- static inline void mmu_notifier_release(struct mm_struct *mm)
- {
- }
-
- static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
- unsigned long address)
- {
- return 0;
- }
-
- static inline void mmu_notifier_invalidate_page(struct mm_struct *mm,
- unsigned long address)
- {
- }
-
- static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
- unsigned long start, unsigned long end)
- {
- }
-
- static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
- unsigned long start, unsigned long end)
- {
- }
-
- static inline void mmu_notifier_mm_init(struct mm_struct *mm)
- {
- }
-
- static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
- {
- }
-
- #define ptep_clear_flush_young_notify ptep_clear_flush_young
- #define ptep_clear_flush_notify ptep_clear_flush
-
- #endif /* CONFIG_MMU_NOTIFIER */
-
- #endif /* _LINUX_MMU_NOTIFIER_H */
-