home *** CD-ROM | disk | FTP | other *** search
- .SET #8(*2, *)
- .LET (*#34=#34+#8*) TEXT
- .LET (*#22=#22+#6*)
- @LAB:SCREEN23
- .SCR 0
- .SNA(*(.INF 39)0*)
- .COL 7,0
- .LOC 2,46(*23*)
- .COL 14,0
- .LOC 5,12(*The definition of the parabola is the locus of a point such*)
- .LOC 7,11(*that its distance from a fixed point*)
- .PAU(**) #4
- .LOC 7,49(*- the*)
- .COL 12,0
- .LOC 7,56(*FOCUS*)
- .COL 14,0
- .PAU(**) #4
- .LOC 7,63(*- is the*)
- .LOC 9,11(*same as its perpendicular distance from a fixed straight line*)
- .PAU(**) #4
- .LOC 11,20(*- the*)
- .COL 12,0
- .LOC 11,27(*DIRECTRIX*)
- .COL 14,0
- .LOC 11,40(*(plural: DIRECTRICES)*)
- .PAU(**) #4
- .COL 10,0
- .LOC 14,11(*This definition is rather more complicated than that for the*)
- .LOC 16,12(*circle but it is very similar to those for the ellipse and*)
- .LOC 18,17(*the hyperbola which follow in subsequent modules.*)
- .SPE PLAY (*AM050410.SPE*) WAIT
- .PAU(**) #4
- .COL 0,3
- .LOC 24,64(*SPACE >*)
- .PAU(*>*)
- @LAB:SCREEN24
- .SNA(*(.INF 39)0*)
- .COL 7,0
- .LOC 2,46(*24*)
- .COL 14,0
- .LOC 5,11(*The simplest way to establish the equation of a parabola from*)
- .LOC 7,11(*its definition is to choose:*)
- .PAU(**) #4
- .COL 11,0
- .LOC 9,20(*the x-axis perpendicular to the directrix*)
- .PAU(**) #4
- .LOC 11,20(*the x-axis to pass through the focus*)
- .PAU(**) #4
- .LOC 13,20(*the origin midway between the focus and the*)
- .LOC 15,24(*directrix*)
- .SPE PLAY (*AM050411.SPE*) WAIT
- .PAU(**) #4
- .COL 10,0
- .LOC 18,12(*Since the perpendicular distance from the directrix equals*)
- .LOC 20,11(*the distance from the focus, this last choice of origin means*)
- .LOC 22,21(*that the origin will*)
- .COL 12,0
- .LOC 22,42(*lie on the parabola.*)
- .PAU(**) #4
- .COL 0,3
- .LOC 24,64(*SPACE >*)
- .PAU(*>*)
- @LAB:SCREEN25
- .SCR 2
- .SNA(*(.INF 39)2*)
- .LOC 2,46(*25*)
- .LOC 5,40(*Let the focus be at (a,0)*)
- .PUT 60,30 PART=6
- .PAU(**) #4
- .LOC 7,40(*» directrix crosses the x-axis*)
- .LOC 9,43(*at (-a,0)*)
- .PAU(**) #4
- .LOC 11,40(*As the directrix is perpendicular*)
- .LOC 13,40(*to the x-axis, its equation will*)
- .LOC 15,40(*be x = - a*)
- .PAU(**) #4
- .LOC 17,11(*Take any point P(x,y) on the parabola.*)
- .PUT 60,30 PART=7
- .PAU(**) #4
- .LOC 19,11(*Join P to the focus, which traditionally is labelled S.*)
- .PAU(**) #4
- .LOC 21,11(*Draw from P parallel to the x-axis to meet the directrix at N.*)
- .SPE PLAY (*AM050412.SPE*) WAIT
- .PAU(**) #4
- .PUT 500,187 PART=4 PSET
- .PAU(**)
- @LAB:SCREEN26
- .SNA(*(.INF 39)2*)
- .LOC 2,46(*26*)
- .PUT 40,30 PART=6
- .PUT 40,30 PART=7
- .LOC 5,40(*From the definition:*)
- .PAU(**) #4
- .LOC 8,40(*PS = PN for all positions of P*)
- .LOC 10,50(*on the parabola*)
- .PAU(**) #4
- .LOC 12,40(*» PS² = PN²*)
- .PAU(**) #4
- .LOC 15,11(*But PS² = (x - a)² + (y - 0)²*)
- .PAU(**) #4
- .LOC 15,44(*= x² - 2ax + a² + y²*)
- .PAU(**) #4
- .LOC 17,11(*and PN² = (x - -a)²*)
- .PAU(**) #4
- .LOC 17,33(*= (x + a)²*)
- .PAU(**) #4
- .LOC 17,44(*= x² + 2ax + a²*)
- .PAU(**) #4
- .LOC 19,11(*Hence:*)
- .PAU(**) #4
- .LOC 19,24(*x² - 2ax + a² + y² = x² + 2ax + a²*)
- .PAU(**) #4
- .LOC 21,16(*»*)
- .LOC 21,40(*y² = 4ax*)
- .DRA(*BM300,157C1R101D14L101U14*)
- .SPE PLAY (*AM050413.SPE*) WAIT
- .PUT 500,187 PART=2 PSET
- @SIN(*"C"=L:SCREEN27,"c"=L:SCREEN27,"R"=L:-SCREEN23,"r"=L:-SCREEN23*)
- @LAB:SCREEN27
- .SCR 0
- .SNA(*(.INF 39)0*)
- .COL 7,0
- .LOC 2,46(*27*)
- .COL 11,0
- .LOC 5,34(*┌────────────┐*)
- .LOC 6,34(*│ y² = 4ax │*)
- .LOC 7,34(*└────────────┘*)
- .PAU(**) #4
- .COL 14,0
- .LOC 8,11(*From this, we can see*)
- .PAU(**) #4
- .COL 12,0
- .LOC 10,15(*1)*)
- .COL 10,0
- .LOC 10,21(*the curve is symmetric about the x-axis*)
- .COL 13,0
- .LOC 10,62(*[ y = ± √4ax ]*)
- .PAU(**) #4
- .COL 12,0
- .LOC 12,15(*2)*)
- .COL 10,0
- .LOC 12,21(*it is*)
- .COL 11,0
- .LOC 12,27(*NOT DEFINED*)
- .COL 10,0
- .LOC 12,39(*if*)
- .PAU(**) #4
- .COL 12,0
- .LOC 12,42(*(a)*)
- .COL 10,0
- .LOC 12,46(*x is negative and*)
- .LOC 14,46(*a is positive,*)
- .COL 14,0
- .LOC 16,39(*or*)
- .COL 12,0
- .LOC 16,42(*(b)*)
- .COL 10,0
- .LOC 16,46(*x is positive and*)
- .LOC 18,46(*a is negative*)
- .PAU(**) #4
- .COL 12,0
- .LOC 20,15(*3)*)
- .COL 10,0
- .LOC 20,21(*y*)
- .COL 11,0
- .LOC 20,23(*ALWAYS INCREASES NUMERICALLY*)
- .COL 10,0
- .LOC 20,52(*as x increases.*)
- .PAU(**) #4
- .COL 0,3
- .LOC 24,64(*SPACE >*)
- .PAU(*>*)
- @LAB:SCREEN28
- .SCR 2
- .SNA(*(.INF 39)2*)
- .LOC 2,46(*28*)
- .LOC 5,11(*Remember:*)
- .INV 5,10,11
- .PAU(**) #4
- .LOC 5,25(*try to put the equation in the form Y² = 4AX*)
- .PAU(**) #4
- .LOC 7,25(*when the focus will be at (A,0) and the*)
- .LOC 9,25(*directrix will be X = - A*)
- .SPE PLAY (*AM050414.SPE*) WAIT
- .PAU(**) #4
- .LOC 12,11(*It is possible to have parabolas shaped:*)
- .PAU(**) #4
- .PUT 76,100 PART=8
- .LOC 14,17(*y² = - 4ax (a > 0)*)
- .PAU(**) #4
- .LOC 14,44(*defined only for x < 0*)
- .PAU(**) #4
- .LOC 16,29(*focus at (-a,0) and directrix x = a*)
- .PAU(**) #4
- .PUT 82,132 PART=9
- .LOC 18,17(*x² = 4ay (a > 0)*)
- .PAU(**) #4
- .LOC 18,38(*focus (0,a) directrix y = -a*)
- .PAU(**) #4
- .LOC 18,70(*y > 0*)
- .PAU(**) #4
- .PUT 84,157 PART=10
- .LOC 21,17(*x² = - 4ay (a > 0)*)
- .PAU(**) #4
- .LOC 21,38(*focus (0,-a) directrix y = a*)
- .PAU(**) #4
- .LOC 21,70(*y < 0*)
- .SPE PLAY (*AM050415.SPE*) WAIT
- .PAU(**) #4
- .PUT 500,187 PART=4 PSET
- .PAU(**)
- @LAB:SCREEN29
- .SCR 0
- .SNA(*(.INF 39)0*)
- .COL 7,0
- .LOC 2,46(*29*)
- .COL 12,0
- .LOC 5,11(*Some examples:*)
- .PAU(**) #4
- .COL 14,0
- .LOC 7,15(*Show that y² - 2y = 4x - 1 is a parabola*)
- .COL 0,3
- .LOC 24,64(*SPACE >*)
- .PAU(*>*)
- .LOC 24,64(* *)
- .COL 14,0
- .LOC 9,11(*Complete the square on the left hand side by adding 1 to both*)
- .LOC 11,11(*sides:*)
- .PAU(**) #4
- .COL 10,0
- .LOC 11,26(*y² - 2y + 1 = 4x - 1 + 1*)
- .PAU(**) #4
- .LOC 13,29(*(y - 1)² = 4x*)
- .PAU(**) #4
- .LOC 15,11(*Since this is of the form Y² = 4AX, it must be a parabola*)
- .PAU(**) #4
- .COL 14,0
- .LOC 17,11(*Move the origin to (0,1)*)
- .PAU(**) #4
- .LOC 17,38(*»*)
- .COL 10,0
- .LOC 17,43(*y² = 4ax with a = 1*)
- .PAU(**) #4
- .LOC 19,21(*Vertex at (0,1)*)
- .PAU(**) #4
- .LOC 19,41(*Focus at 0 + a*)
- .PAU(**) #4
- .COL 14,0
- .LOC 19,57(*»*)
- .COL 10,0
- .LOC 19,61(*(1,1)*)
- .PAU(**) #4
- .LOC 21,21(*Directrix will be at 0 - a*)
- .PAU(**) #4
- .COL 14,0
- .LOC 21,57(*»*)
- .COL 10,0
- .LOC 21,61(*x = - a*)
- .SPE PLAY (*AM050416.SPE*) WAIT
- .PAU(**) #4
- .COL 0,3
- .LOC 24,64(*SPACE >*)
- .PAU(*>*)
- @LAB:SCREEN30
- .SCR 2
- .SNA(*(.INF 39)2*)
- .LOC 2,46(*30*)
- .LOC 5,11(*Another example...*)
- .PAU(**) #4
- .WIP (4,2)-(23,79)
- .LOC 5,15(*Show that x² + x - 5y = 0 is a parabola*)
- .USE PROG=PAUSE.USE
- .LOC 7,29(*x² + x = 5y*)
- .PAU(**) #4
- .LOC 9,11(*Complete the square on the left by adding*)
- .PUT 416,62 PART=11
- .LOC 9,55(*to both sides:*)
- .PAU(**) #4
- .LOC 11,21(*x² + 2.*)
- .PUT 216,78 PART=12
- .LOC 11,29(*.x +*)
- .PUT 264,78 PART=11
- .LOC 11,36(*= 5y +*)
- .PUT 336,78 PART=11
- .PAU(**) #4
- .LOC 13,11(*»*)
- .LOC 13,27(*(x +*)
- .PUT 248,94 PART=12
- .LOC 13,33(*)² = 5(y +*)
- .PUT 344,94 PART=13
- .LOC 13,46(*)*)
- .PAU(**) #4
- .LOC 15,11(*»*)
- .LOC 15,27(*(x +*)
- .PUT 249,110 PART=12
- .LOC 15,33(*)² = 4.*)
- .PUT 312,110 PART=14
- .LOC 15,41(*.(y +*)
- .PUT 368,110 PART=13
- .LOC 15,49(*)*)
- .PAU(**) #4
- .LOC 18,11(*Vertex is at (-*)
- .PUT 208,134 PART=12
- .LOC 18,29(*, -*)
- .PUT 248,134 PART=13
- .LOC 18,34(*)*)
- .PAU(**) #4
- .LOC 18,40(*Parabola is*)
- .PUT 420,132 PART=9
- .LOC 18,59(*shaped*)
- .PAU(**) #4
- .LOC 20,11(*Focus is at -*)
- .PUT 208,150 PART=13
- .LOC 20,30(*+*)
- .PUT 248,150 PART=14
- .PAU(**) #4
- .LOC 20,35(*=*)
- .PUT 296,150 PART=15
- .PAU(**) #4
- .LOC 20,42(*=*)
- .PUT 352,150 PART=16
- .PAU(**) #4
- .LOC 20,51(*» ( -*)
- .PUT 465,150 PART=12
- .LOC 20,61(*, )*)
- .PUT 495,150 PART=16
- .PAU(**) #4
- .LOC 22,11(*Directrix y = -*)
- .PUT 224,166 PART=13
- .LOC 22,32(*-*)
- .PUT 264,166 PART=14
- .PAU(**) #4
- .LOC 22,37(*= -*)
- .PUT 328,166 PART=17
- .PAU(**) #4
- .LOC 22,51(*» y = -*)
- .PUT 488,166 PART=17
- .PAU(**) #4
- .SPE PLAY (*AM050417.SPE*) WAIT
- .PUT 500,187 PART=4 PSET
- .PAU(**)
- @LAB:SCREEN31
- .SCR 0
- .SNA(*(.INF 39)0*)
- .COL 7,0
- .LOC 2,46(*31*)
- .COL 14,0
- .LOC 5,11(*Another example...*)
- .PAU(**) #4
- .WIP (4,2)-(23,79)
- .LOC 5,15(*Find the equation of the parabola with focus at (4,1)*)
- .LOC 7,20(*and whose directrix is the line y + 4x = 0*)
- .COL 0,3
- .LOC 24,64(*SPACE >*)
- .PAU(*>*)
- .LOC 24,64(* *)
- .COL 14,0
- .LOC 9,11(*Choose any point P(α,ß) on the parabola:*)
- .PAU(**) #4
- .LOC 11,11(*Distance to focus:*)
- .PAU(**) #4
- .COL 10,0
- .LOC 11,35(*PS² = (α - 4)² + (ß - 1)²*)
- .PAU(**) #4
- .COL 14,0
- .LOC 13,11(*Perpendicular distance to the line y + 4x + 1 = 0 is,*)
- .LOC 16,11(*numerically:*)
- .PAU(**) #4
- .COL 10,0
- .LOC 16,35(*PN =*)
- .LOC 15,42(*4α + ß + 1*)
- .LOC 16,42(*──────────*)
- .LOC 17,43(*√(4²+1²)*)
- .PAU(**) #4
- .LOC 16,54(*=*)
- .LOC 15,57(*4α + ß + 1*)
- .LOC 16,57(*──────────*)
- .LOC 17,61(*√17*)
- .SPE PLAY (*AM050418.SPE*) WAIT
- .PAU(**) #4
- .COL 14,0
- .LOC 20,11(*squaring this:*)
- .PAU(**) #4
- .COL 10,0
- .LOC 20,35(*PN² =*)
- .LOC 19,42(*(4α + ß + 1)²*)
- .LOC 20,42(*─────────────*)
- .LOC 21,47(*17*)
- .PAU(**) #4
- .COL 0,3
- .LOC 24,64(*SPACE >*)
- .PAU(*>*)
- .LOC 24,64(* *)
- .COL 7,0
- .LOC 2,46(*31a*)
- .WIP (4,2)-(23,79) #7
- .COL 14,0
- .LOC 16,11(*From the definition of the parabola:*)
- .PAU(**) #4
- .COL 10,0
- .LOC 16,50(*PS = PN*)
- .PAU(**) #4
- .COL 14,0
- .LOC 16,60(*»*)
- .COL 10,0
- .LOC 16,63(*PS² = PN²*)
- .PAU(**) #4
- .LOC 19,22(*(α - 4)² + (ß - 1)² =*)
- .LOC 18,46(*(4α + ß + 1)²*)
- .LOC 19,46(*─────────────*)
- .LOC 20,51(*17*)
- .PAU(**) #4
- .COL 14,0
- .LOC 22,6(*»*)
- .PAU(**) #4
- .COL 10,0
- .LOC 22,11(*17(α² - 8α + 16 + ß² - 2ß + 1) = 16α² + ß² + 1 + 8αß + 2ß + 8α*)
- .PAU(**) #4
- .COL 0,3
- .LOC 24,64(*SPACE >*)
- .PAU(*>*)
- .LOC 24,64(* *)
- .COL 7,0
- .WIP (4,2)-(23,79) #12
- .LOC 2,46(*31b*)
- .COL 14,0
- .LOC 12,11(*»*)
- .COL 10,0
- .LOC 12,22(*α² - 8αß + 16ß² - 144α - 36ß + 288 = 0*)
- .PAU(**) #4
- .COL 11,0
- .LOC 14,11(*Required equation is x² - 8xy + 16y² - 144x - 36y + 288 = 0*)
- .LOC 15,33(*──────────────────────────────────────*)
- .COL 0,3
- .LOC 24,64(*SPACE >*)
- .PAU(*>*)
- .LOC 24,64(* *)
- .COL 14,0
- .LOC 17,14(*Note, unlike a circle, the coefficient of x² and y² are*)
- .LOC 19,11(*different and there is an xy term.*)
- .PAU(**) #4
- .LOC 19,47(*This is an example of the*)
- .LOC 21,11(*general conic equation:*)
- .COL 11,0
- .LOC 21,39(*ax² + bxy + cy² + dx + ey + f = 0*)
- .PAU(**) #4
- .COL 0,3
- .LOC 24,64(*C / R >>*)
- @SIN(*"C"=L:SCREEN32,"c"=L:SCREEN32,"R"=L:-SCREEN28,"r"=L:-SCREEN28*)
- @LAB:SCREEN32
- .COL 0,0
- .SCR 1
- .SNA(*(.INF 39)1*)
- .COL 8
- .PAL 1
- .LOC 2,23(*32*)
- .LOC 7,5(*At this point in the full version*)
- .LOC 9,9(*of the program the user is*)
- .LOC 11,5(*requested to complete a worksheet*)
- .LOC 13,6(*for this section, entering the*)
- .LOC 15,7(*results via the keyboard onto*)
- .LOC 17,9(*the computer for checking.*)
- .PAU(**)#4
- .LOC 19,6(*Type C <enter> to continue.*)
- .SET #10(*SCREEN33*)
- .USE PROG=PRESSC.USE
- @LAB:SCREEN33
- .COL 0,0
- .SCR 1
- .SNA(*(.INF 39)1*)
- .COL 8
- .PAL 1
- .LOC 2,23(*33*)
- .LOC 6,4(*However, in this demonstration the*)
- .LOC 8,7(*results checking facility is*)
- .LOC 10,4(*unavailable, so you will continue to*)
- .LOC 12,6(*the next phase of the tutorial.*)
- .PAU(**)#4
- .LOC 18,6(*Type C <enter> to continue.*)
- .SET #10(*SCREEN34Z*)
- .USE PROG=PRESSC.USE
- @LAB:SCREEN34Z
- .WIP (20,2)-(23,39)
- .PAU(**) #4
- .COL 1,
- .LOC 14,8(*Do you wish to:*)
- .COL 2,
- .LOC 16,4(*(C) continue to the next Part*)
- .LOC 18,4(*(R) return to the Contents page*)
- .COL 1,
- .LOC 20,8(*Please type C or R >*)
- .COL 3,
- @SIN (*"C"=C:AM0504D.CHA,"c"=C:AM0504D.CHA,"R"=L:BACKB,"r"=L:BACKB*)
- @LAB:BACKB
- @GOB:SCREEN09 PROG=AM0504
-
-