home *** CD-ROM | disk | FTP | other *** search
- # library li.(x)
- # li(x) is the log integral function,
- # li(x) = inte(1/ln(t), t,0,x) = ei(ln(x)), li'(x)=1/ln(x).
-
- # li(n,x) is the incomplete log integral function, li(n,x)=ei(n,ln(x)),
- # li(n,x)=inte(ln(t)^n, t,0,x), d(li(n,x),x)=ln(x)^n, li(-1, x)=li(x),
- # li(0,x)=x.
-
- # See also: gamma, ei, li.
-
- # d(li(n_,x_),x_):= ln(x)^n
- # d(li(x_) ,x_) := 1/ln(x)
- # li(n_,x_) := if(n>=1, -n*li(n-1,x)+ln(x)^n*x,
- if(n<-1, (-li(n+1,x)+ln(x)^(n+1)*x)/(n+1)))
-
- li(0) := 0
- li(1):=1
- #li(2):=1
- #li(n_):=if(n>2, if(isinteger(n), (n-1)!, (n-1)*li(n-1)))
- #li(n_):=if(n>0 and numerical==on, sqrt(2*pi)*n^(n-0.5)*exp(-n)*(1+1/(12*n)))
-
- #li(0,0) := 0
- li(n_,0) := 0
- #li(n_,inf) := inf
- #li(n_,-inf) := 0
- li(-1,x_) := li(x)
- li(0,x_) := x
-