home *** CD-ROM | disk | FTP | other *** search
- # d(f(x),x) differentiates f(x) with respect to x. f'(x) = d(f(x),x).
- # d(f(x), x,n) differentiates f(x) with respect to x in n order
-
- sign'(x_) := 0
- abs'(x_) := abs(x)/x
- ln'(x_) := 1/x
- exp'(x_) := e^x
-
- sin'(x_) := cos(x)
- cos'(x_) := -sin(x)
- tan'(x_) := sec(x)^2
- #cot'(x_) := -csc(x)^2
- #sec'(x_) := tan(x)*sec(x)
- #csc'(x_) := -cot(x)*csc(x)
-
- asin'(x_) := 1/sqrt(1-x^2)
- acos'(x_) := -1/sqrt(1-x^2)
- atan'(x_) := 1/(1+x^2)
- acot'(x_) := -1/(1+x^2)
- asec'(x_) := 1/(x*sqrt(x^2-1))
- acsc'(x_) := -1/(x*sqrt(x^2-1))
-
- #sinh'(x_) := cosh(x)
- #cosh'(x_) := sinh(x)
- #tanh'(x_) := sech(x)^2
- #coth'(x_) := -csch(x)^2
- #sech'(x_) := -tanh(x)*sech(x)
- #csch'(x_) := -coth(x)*csch(x)
-
- #asinh'(x_) := 1/sqrt(1+x^2)
- #acosh'(x_) := 1/sqrt(x^2-1)
- #atanh'(x_) := 1/(1-x^2)
- #acoth'(x_) := 1/(x^2-1)
- #asech'(x_) := -1/(x*sqrt(1-x^2))
- #acsch'(x_) := -1/(x*sqrt(1+x^2))
-
- si'(x_) := sin(x)/x
- ci'(x_) := cos(x)/x
-
- erf'(x_) := 2/sqrt(pi)*exp(-x^2)
- gamma'(x_) := gamma(x)*polygamma(x)
- ei'(x_) := e^x/x
- li'(x_) := 1/ln(x)
-
- d(gamma(n_, x_), x) := x^n*e^-x
- d(ei(n_, x_), x_) := x^n*e^x
- d(li(n_, x_), x_) := ln(x)^n
-
- d(y_, x_,n_) := if(n>0, block(p:=y, do(p:=d(p,x), j,1,n,1), p, local(p) ))
-